Jørn M Hvam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558507/publications.pdf

Version: 2024-02-01

265 papers 9,220 citations

53 h-index 83 g-index

266 all docs 266 docs citations

266 times ranked 5301 citing authors

#	Article	IF	CITATIONS
1	Build up of off-diagonal long-range order in microcavity exciton-polaritons across the parametric threshold. Optics Express, 2013, 21, 10792.	3.4	8
2	Polarized emission in polariton condensates: Switching in a one-dimensional natural trap versus inversion in two dimensions. Physical Review B, 2013, 88, .	3.2	5
3	Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide. Optics Express, 2012, 20, 16374.	3.4	25
4	Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Physical Review B, 2012, 85, .	3.2	79
5	Coherence properties of exciton polariton OPO condensates in one and two dimensions. New Journal of Physics, 2012, 14, 075018.	2.9	19
6	Spontaneous emission from large quantum dots in nanostructures: Exciton-photon interaction beyond the dipole approximation. Physical Review B, 2012, 86, .	3.2	50
7	Silicon Photonics for Signal Processing of Tbit/s Serial Data Signals. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 996-1005.	2.9	43
8	Optical Waveform Sampling and Error-Free Demultiplexing of 1.28 Tb/s Serial Data in a Nanoengineered Silicon Waveguide. Journal of Lightwave Technology, 2011, 29, 426-431.	4.6	66
9	Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19, 12646.	3.4	159
10	Ultra-high-speed wavelength conversion in a silicon photonic chip. Optics Express, 2011, 19, 19886.	3.4	72
11	One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide. Optics Express, 2011, 19, 24448.	3.4	40
12	Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire. Optics Express, 2011, 19, B825.	3.4	44
13	Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Optics Letters, 2011, 36, 1059.	3.3	98
14	Quantumâ€dot excitons in nanostructured environments. Physica Status Solidi (B): Basic Research, 2011, 248, 375-383.	1.5	2
15	On the interpretation of wave function overlaps in quantum dots. Physica Status Solidi (B): Basic Research, 2011, 248, 855-858.	1.5	4
16	15-THz Tunable Wavelength Conversion of Picosecond Pulses in a Silicon Waveguide. IEEE Photonics Technology Letters, 2011, 23, 1409-1411.	2.5	19
17	Probing long-lived dark excitons in self-assembled quantum dots. Physical Review B, 2010, 81, .	3.2	67
18	Toward superlensing with metal–dielectric composites andÂmultilayers. Applied Physics B: Lasers and Optics, 2010, 100, 93-100.	2.2	37

#	Article	IF	CITATIONS
19	Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Optics Communications, 2010, 283, 3678-3682.	2.1	261
20	High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure. Applied Physics Letters, 2010, 96, .	3.3	96
21	Lambda shifted photonic crystal cavity laser. Applied Physics Letters, 2010, 97, 191109.	3.3	3
22	Thermoplastic microcantilevers fabricated by nanoimprint lithography. Journal of Micromechanics and Microengineering, 2010, 20, 015009.	2.6	12
23	Large quantum dots with small oscillator strength. Physical Review B, 2010, 82, .	3.2	27
24	Optimization of VCSELs for Self-Mixing Sensing. IEEE Photonics Technology Letters, 2010, 22, 667-669.	2.5	9
25	Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator. IEEE Photonics Technology Letters, 2010, 22, 869-871.	2.5	59
26	1.28-Tb/s Demultiplexing of an OTDM DPSK Data Signal Using a Silicon Waveguide. IEEE Photonics Technology Letters, 2010, 22, 1762-1764.	2.5	53
27	Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator. Optics Express, 2010, 18, 6172.	3.4	76
28	Measuring the dynamics of second-order photon correlation functions inside a pulse with picosecond time resolution. Optics Express, 2010, 18, 20229.	3.4	38
29	Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization. Applied Physics Letters, 2009, 95, .	3.3	23
30	Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: Experiment and theory. Physical Review B, 2009, 80, .	3.2	56
31	Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing. Applied Physics Letters, 2009, 94, .	3.3	22
32	Higher-Order Photon Bunching in a Semiconductor Microcavity. Science, 2009, 325, 297-300.	12.6	106
33	Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements. Physical Review B, 2008, 77, .	3.2	119
34	Long luminescence lifetime in self-assembled InGaAs/GaAs quantum dots at room temperature. Applied Physics Letters, 2008, 93, .	3.3	5
35	Short exciton radiative lifetime in submonolayer InGaAsâ^•GaAs quantum dots. Applied Physics Letters, 2008, 92, 063103.	3.3	7
36	Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures. Proceedings of SPIE, 2008, , .	0.8	6

#	Article	IF	CITATIONS
37	Influence of (i) in situ (i) annealing on carrier dynamics in InGaAs/GaAs quantum dots. Nanotechnology, 2007, 18, 325401.	2.6	4
38	Long All-Active Monolithic Mode-Locked Lasers With Surface-Etched Bragg Gratings. IEEE Photonics Technology Letters, 2007, 19, 1723-1725.	2.5	9
39	Ultrafast dynamics of quantum-dot semiconductor optical amplifiers. Journal of Materials Science: Materials in Electronics, 2007, 18, 51-55.	2.2	3
40	Carrier dynamics in submonolayer InGaAsâ [•] GaAs quantum dots. Applied Physics Letters, 2006, 89, 013113.	3.3	19
41	Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs. IEEE Journal of Quantum Electronics, 2006, 42, 1047-1054.	1.9	19
42	Micromanipulation of organic nanofibers for blue light emitting microstructures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1459-1463.	1.8	8
43	Coherent spin dynamics of an interwell excitonic gas inGaAsâ^•AlGaAscoupled quantum wells. Physical Review B, 2006, 73, .	3.2	8
44	Phonon-Induced Polariton Superlattices. Physical Review Letters, 2006, 97, 045501.	7.8	68
45	Collective behavior of a spin-aligned gas of interwell excitons in double quantum wells. JETP Letters, 2005, 81, 108-111.	1.4	2
46	Design and evaluation of mode-locked semiconductor lasers for low noise and high stability (Invited) Tj ETQq0 0	0 rgBT /O	verjock 10 Tf
47	Ultrafast gain dynamics in quantum-dot amplifiers: theoretical analysis and experimental investigations. IEEE Journal of Quantum Electronics, 2005, 41, 1115-1123.	1.9	63
48	Stokes and anti-Stokes photoluminescence towards five different Inx(Al0.17Ga0.83)1â^'xAsâ^•Al0.17Ga0.83As quantum wells. Journal of Applied Physics, 2005, 98, 083527.	2.5	6
49	Propagation of long-range surface plasmon polaritons in photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2027.	2.1	14
50	Controllable delay of ultrashort pulses in a quantum dot optical amplifier. Optics Express, 2005, 13, 8032.	3.4	63
51	Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers. IEEE Photonics Technology Letters, 2005, 17, 2388-2390.	2.5	2
52	Submonolayer InGaAsâ^•GaAs quantum-dot lasers with high modal gain and zero-linewidth enhancement factor. Applied Physics Letters, 2004, 85, 3259-3261.	3.3	51
53	Wave-function reconstruction in a graded semiconductor superlattice. Applied Physics A: Materials Science and Processing, 2004, 78, 441-445.	2.3	2
54	Dynamic Dipole–Dipole Interactions Between Excitons in Quantum Dots of Different Sizes. IEEE Nanotechnology Magazine, 2004, 3, 318-327.	2.0	13

#	Article	IF	CITATIONS
55	Low-Jitter and High-Power 40-GHz All-Active Mode-Locked Lasers. IEEE Photonics Technology Letters, 2004, 16, 975-977.	2.5	63
56	Gain dynamics and saturation in semiconductor quantum dot amplifiers. New Journal of Physics, 2004, 6, 178-178.	2.9	44
57	High-performance 10â€GHz all-active monolithic modelocked semiconductor lasers. Electronics Letters, 2004, 40, 735.	1.0	29
58	Effect of annealing on the structure and optical properties of InGaAs/GaAs quantum dots. Journal of Crystal Growth, 2003, 251, 177-180.	1.5	3
59	Homogeneous linewidth of self-assembled III–V quantum dots observed in single-dot photoluminescence. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 1-6.	2.7	19
60	InGaAs/GaAs quantum-dot–quantum-well heterostructure formed by submonolayer deposition. Nanotechnology, 2003, 14, 1259-1261.	2.6	23
61	Dynamics of unidirectional phonon-assisted transport of photoexcited carriers in step-gradedInx(Al0.17Ga0.83)1a^xAs/Al0.17Ga0.83Asmultiple quantum wells. Physical Review B, 2003, 67, .	3.2	13
62	Structure and optical anisotropy of vertically correlated submonolayer InAs/GaAs quantum dots. Applied Physics Letters, 2003, 82, 3859-3861.	3.3	62
63	Biexcitons in semiconductor microcavities. Semiconductor Science and Technology, 2003, 18, S351-S360.	2.0	14
64	Semiconductor quantum-dot lasers and amplifiers. , 2002, , .		2
64	Semiconductor quantum-dot lasers and amplifiers. , 2002, , . Dephasing in Self-organized InAlGaAs Quantum Dots. Physica Scripta, 2002, T101, 143.	2.5	2
		2.5	
65	Dephasing in Self-organized InAlGaAs Quantum Dots. Physica Scripta, 2002, T101, 143. <title>Coherent interpolariton scattering on moving gratings in microcavity with 25 nm GaAs/AlGaAs</td><td>2.5</td><td>2</td></tr><tr><td>65</td><td>Dephasing in Self-organized InAlGaAs Quantum Dots. Physica Scripta, 2002, T101, 143. <title>Coherent interpolariton scattering on moving gratings in microcavity with 25 nm GaAs/AlGaAs single quantum well Heterodyne technique for measuring the amplitude and phase transfer functions of an optical</td><td></td><td>0</td></tr><tr><td>65
66
67</td><td>Dephasing in Self-organized InAlGaAs Quantum Dots. Physica Scripta, 2002, T101, 143. <title>Coherent interpolariton scattering on moving gratings in microcavity with 25 nm GaAs/AlGaAs single quantum well</ti> <ti>title>., 2002, ,. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator. IEEE Photonics Technology Letters, 2002, 14, 621-623. Elastic Scattering Dynamics of Cavity Polaritons: Evidence for Time-Energy Uncertainty and Polariton</td><td>2.5</td><td>2
0
26</td></tr><tr><td>65
66
67
68</td><td>Dephasing in Self-organized InAlGaAs Quantum Dots. Physica Scripta, 2002, T101, 143. <title>Coherent interpolariton scattering on moving gratings in microcavity with 25 nm GaAs/AlGaAs single quantum well Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator. IEEE Photonics Technology Letters, 2002, 14, 621-623. Elastic Scattering Dynamics of Cavity Polaritons: Evidence for Time-Energy Uncertainty and Polariton Localization. Physical Review Letters, 2002, 88, 047401. Biexciton Binding Energy in ZnSe Quantum Wells and Quantum Wires. Physica Status Solidi (B): Basic</td><td>2.5</td><td>2
0
26
65</td></tr><tr><td>65
66
67
68</td><td>Dephasing in Self-organized InAlGaAs Quantum Dots. Physica Scripta, 2002, T101, 143. https://disease.goog.ncb/https://disease.goog.ncb/ Elastic Scattering Dynamics of Cavity Polaritons: Evidence for Time-Energy Uncertainty and Polariton Localization. Physical Review Letters, 2002, 88, 047401. Biexciton Binding Energy in ZnSe Quantum Wells and Quantum Wires. Physica Status Solidi (B): Basic Research, 2002, 231, 11-18. Biexcitonic Bound and Continuum States of Homogeneously and Inhomogeneously Broadened Exciton Biexcitonic Bound and Continuum States of Homogeneously and Inhomogeneously Broadened Exciton The proper has a second and continuum States of Homogeneously and Inhomogeneously Broadened Exciton The proper has a second and continuum States of Homogeneously and Inhomogeneously Broadened Exciton The proper has a second and continuum States of Homogeneously and Inhomogeneously Broadened Exciton The proper has a second and continuum States of Homogeneously and Inhomogeneously Broadened Exciton The proper has a second and continuum States of Homogeneously and Inho</td><td>2.5
7.8
1.5</td><td>2
0
26
65</td></tr></tbody></table></title>		

#	Article	IF	CITATIONS
73	Long coherence times in self-assembled semiconductor quantum dots. Superlattices and Microstructures, 2002, 31, 97-105.	3.1	8
74	Directional phonon-assisted cascading of photoexcited carriers in stepped Inx(Al0.17Ga0.83)1â^'xAs/Al0.17Ga0.83As multiple quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 182-185.	2.7	5
75	Collective state of interwell excitons in GaAs/AlGaAs double quantum wells under pulse resonance excitation. JETP Letters, 2002, 75, 200-204.	1.4	20
76	Phase diagram of the Bose condensation of interwell excitons in GaAs/AlGaAs double quantum wells. JETP Letters, 2002, 76, 450-455.	1.4	31
77	Long Lived Coherence in Self-Assembled Quantum Dots. Physical Review Letters, 2001, 87, 227401.	7.8	211
78	Spectral signatures of \ddot{l} [‡] (5) processes in four-wave mixing of homogeneously broadened excitons. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1318.	2.1	44
79	Structural and electrooptical characteristics of quantum dots emitting at 1.3 \hat{l} 4m on gallium arsenide. IEEE Journal of Quantum Electronics, 2001, 37, 1050-1058.	1.9	31
80	Waveguiding in Surface Plasmon Polariton Band Gap Structures. Physical Review Letters, 2001, 86, 3008-3011.	7.8	455
81	Coherent versus incoherent dynamics in InAs quantum-dot active wave guides. Journal of Applied Physics, 2001, 89, 6542-6544.	2.5	3
82	Second-harmonic scanning optical microscopy of semiconductor quantum dots. Optics Communications, 2001, 189, 305-311.	2.1	11
83	Localized excitons in quantum wells show spin relaxation without coherence loss. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 40-44.	2.7	12
84	Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers. Physica Status Solidi (B): Basic Research, 2001, 224, 419-423.	1.5	29
85	Excited State Dynamics in In0.5Al0.04Ga0.46As/Al0.08Ga0.92As Self-Assembled Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 447-451.	1.5	1
86	Enhanced confinement energy in strained asymmetric T-shaped quantum wires. Journal of Crystal Growth, 2001, 227-228, 966-969.	1.5	7
87	Persistent photoeffects in p-i-n GaAs/AlGaAs heterostructures with double quantum wells. Semiconductors, 2001, 35, 99-105.	0.5	O
88	Ultrashort pulse-propagation effects in a semiconductor optical amplifier: microscopic theory and experiment. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 694-702.	2.9	7
89	Stimulated Secondary Emission from Semiconductor Microcavities. Physical Review Letters, 2001, 86, 5791-5794.	7.8	52
90	Seeding of Polariton Stimulation in a Homogeneously Broadened Microcavity. Physica Status Solidi (B): Basic Research, 2000, 221, 115-120.	1.5	8

#	Article	IF	CITATIONS
91	Temperature Dependence of the Polariton Linewidth in a GaAs Quantum Well Microcavity. Physica Status Solidi (B): Basic Research, 2000, 221, 143-146.	1.5	1
92	Spin Relaxation without Coherence Loss: Fine-Structure Splitting of Localized Excitons. Physica Status Solidi (B): Basic Research, 2000, 221, 349-353.	1.5	15
93	Linewidth Statistics of Single InGaAs Quantum Dot Photoluminescence Lines. Physica Status Solidi (B): Basic Research, 2000, 221, 49-53.	1.5	21
94	Measuring Excitonic Coherence in Nanostructures: Time-Resolved Speckle Analysis versus Four-Wave Mixing. Physica Status Solidi A, 2000, 178, 13-20.	1.7	7
95	Room-Temperature Dephasing in InAs Quantum Dots. Physica Status Solidi A, 2000, 178, 337-340.	1.7	1
96	Dephasing and interaction of excitons in CdSe/ZnSe islands. Journal of Crystal Growth, 2000, 214-215, 747-751.	1.5	7
97	Long-time luminescence kinetics of localized excitons and conduction band edge smearing in ZnSe(1â^²c)Tec solid solutions. JETP Letters, 2000, 72, 320-323.	1.4	7
98	Interwell excitons in GaAs/AlGaAs double quantum wells and their collective properties. Journal of Experimental and Theoretical Physics, 2000, 90, 1093-1104.	0.9	51
99	Collective behavior of interwell excitons in GaAs/AlGaAs double quantum wells. JETP Letters, 2000, 71, 117-122.	1.4	19
100	InAlGaAs/AlGaAs quantum wells: line widths, transition energies and segregation. Microelectronic Engineering, 2000, 51-52, 257-264.	2.4	2
101	Magnetophonon resonance in photoluminescence excitation spectra of magnetoexcitons in GaAs/Al0.3Ga0.7Assuperlattice. Physical Review B, 2000, 62, 2743-2750.	3.2	4
102	Exciton localization and interface roughness in growth-interrupted GaAs/AlAs quantum wells. Physical Review B, 2000, 61, 10322-10329.	3.2	82
103	Biexcitons or bipolaritons in a semiconductor microcavity. Physical Review B, 2000, 62, R7763-R7766.	3.2	34
104	Phase diagram of a two-dimensional liquid inGaAs/AlxGa1â^'xAsbiased double quantum wells. Physical Review B, 2000, 61, 8420-8424.	3.2	31
105	Quantum kinetic exciton–LO-phonon interaction in CdSe. Physical Review B, 2000, 61, 1935-1940.	3.2	46
106	Instantaneous Rayleigh scattering from excitons localized in monolayer islands. Physical Review B, 2000, 61, R10555-R10558.	3.2	7
107	Ultranarrow polaritons in a semiconductor microcavity. Applied Physics Letters, 2000, 76, 3262-3264.	3.3	33
108	Resonant Rayleigh Scattering of Exciton-Polaritons in Multiple Quantum Wells. Physical Review Letters, 2000, 85, 650-653.	7.8	43

#	Article	lF	CITATIONS
109	Second-harmonic imaging of semiconductor quantum dots. Applied Physics Letters, 2000, 77, 806-808.	3.3	15
110	Direct evidence of reduced dynamic scattering in the lower polariton of a semiconductor microcavity. Physical Review B, 2000, 61, R13377-R13380.	3.2	24
111	Dephasing in the quasi-two-dimensional exciton-biexciton system. Physical Review B, 2000, 61, 1692-1695.	3.2	70
112	Separation of coherent and incoherent nonlinearities in a heterodyne pump-probe experiment. Optics Express, 2000, 7, 107.	3.4	23
113	Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 544-551.	2.9	161
114	Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers. IEEE Photonics Technology Letters, 2000, 12, 594-596.	2.5	156
115	Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 μm. Applied Physics Letters, 2000, 76, 3430-3432.	3.3	85
116	Measurement of pulse amplitude and phase distortion in a semiconductor optical amplifier: from pulse compression to breakup. IEEE Photonics Technology Letters, 2000, 12, 1674-1676.	2.5	33
117	Time-resolved four-wave mixing in InAs/InGaAs quantum-dot amplifiers under electrical injection. Applied Physics Letters, 2000, 76, 1380-1382.	3.3	43
118	Transient four-wave mixing in T-shaped GaAs quantum wires. Physical Review B, 1999, 60, 16667-16674.	3.2	27
119	Well-width dependence of exciton-phonon scattering inlnxGa1â^'xAs/GaAssingle quantum wells. Physical Review B, 1999, 59, 2215-2222.	3.2	66
120	Mixed biexcitons in single quantum wells. Physical Review B, 1999, 59, 4584-4587.	3.2	47
121	Binding energy and dephasing of biexcitons inIn0.18Ga0.82As/GaAssingle quantum wells. Physical Review B, 1999, 60, 4505-4508.	3.2	39
122	Interaction-induced effects in the nonlinear coherent response of quantum-well excitons. Physical Review B, 1999, 60, 4454-4457.	3.2	40
123	Localization-enhanced biexciton binding in semiconductors. Physical Review B, 1999, 59, 15405-15408.	3.2	48
124	Exciton dynamics inGaAs/AlxGa1â^'xAsquantum wells. Physical Review B, 1999, 59, 10255-10260.	3.2	15
125	Excitons, biexcitons, and phonons in ultrathin CdSe/ZnSe quantum structures. Physical Review B, 1999, 60, 8773-8782.	3.2	115
126	Time-Resolved Speckle Analysis: A New Approach to Coherence and Dephasing of Optical Excitations in Solids. Physical Review Letters, 1999, 82, 1040-1043.	7.8	123

#	Article	IF	CITATIONS
127	Exciton dephasing and biexciton binding in CdSe/ZnSe islands. Physical Review B, 1999, 60, 10640-10643.	3.2	25
128	Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers. Optics Communications, 1999, 164, 51-55.	2.1	45
129	Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection. Optics Communications, 1999, 169, 317-324.	2.1	66
130	Image Formation in Second-Harmonic Near-Field Microscopy. Physica Status Solidi A, 1999, 175, 331-336.	1.7	5
131	Optical anisotropy in vertically coupled quantum dots. Physical Review B, 1999, 60, 16680-16685.	3.2	80
132	Luminescence spectra and kinetics of disordered solid solutions. Physical Review B, 1999, 59, 12947-12972.	3.2	65
133	Dephasing in InAs/GaAs quantum dots. Physical Review B, 1999, 60, 7784-7787.	3.2	117
134	Optical properties of InAlGaAs quantum wells: Influence of segregation and band bowing. Journal of Applied Physics, 1999, 86, 2584-2589.	2.5	40
135	Charged excitonic complexes inGaAs/Al0.35Ga0.65Asp-i-ndouble quantum wells. Physical Review B, 1999, 60, 8897-8901.	3.2	22
136	Polarization-resolved imaging with a reflection near-field optical microscope. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16, 2649.	1.5	8
137	<title>Ultrafast dynamics of confined and localized excitons in low-dimensional semiconductors</title> ., 1999,,.		0
138	Thermalization of free excitons in ZnSe quantum wells. Journal of Crystal Growth, 1998, 184-185, 795-800.	1.5	19
139	Transient measurements with an ultrafast scanning tunneling microscope. Applied Physics A: Materials Science and Processing, 1998, 66, S23-S26.	2.3	5
140	Direct and spatially indirect excitons in GaAs/AlGaAs superlattices in strong magnetic fields. Physics of the Solid State, 1998, 40, 767-769.	0.6	2
141	Effect of the coherence of free electron-hole pairs on excitonic absorption in GaAs/AlGaAs superlattices. JETP Letters, 1998, 67, 67-72.	1.4	0
142	Interwell radiative recombination in the presence of random potential fluctuations in GaAs/AlGaAs biased double quantum wells. JETP Letters, 1998, 67, 613-620.	1.4	9
143	Localized Biexcitons in Quasi-2D and Quasi-3D Systems. Physica Status Solidi (B): Basic Research, 1998, 206, 111-118.	1.5	17
144	3D versus 1D Quantum Confinement in Coherently Strained CdS/ZnS Quantum Structures. Physica Status Solidi (B): Basic Research, 1998, 206, 501-506.	1.5	5

#	Article	IF	CITATIONS
145	Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe. Optics Communications, 1998, 146, 277-284.	2.1	16
146	Enhancement of exchange interaction in ultrathin CdS/ZnS quantum structures. Solid State Communications, 1998, 106, 653-657.	1.9	19
147	Interaction-induced dephasing of excitons in wide ZnSe/ZnMgSe single quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 82-86.	2.7	3
148	Optimizing the fabrication of aluminum-coated fiber probes and their application to optical near-field lithography. Ultramicroscopy, 1998, 71, 65-71.	1.9	14
149	Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS. Physical Review B, 1998, 58, 10494-10501.	3.2	120
150	Direct observation of free-exciton thermalization in quantum-well structures. Physical Review B, 1998, 57, 1390-1393.	3.2	114
151	Direct characterization of ultraviolet-light-induced refractive index structures by scanning near-field optical microscopy. IEEE Photonics Technology Letters, 1998, 10, 848-850.	2.5	5
152	Influence of random potential fluctuations on the interwell radiative recombination in biased double quantum well. Europhysics Letters, 1998, 41, 535-540.	2.0	15
153	Exciton dephasing in ZnSe quantum wires. Physical Review B, 1998, 57, 1797-1800.	3.2	25
154	Femtosecond tunneling response of surface plasmon polaritons. Applied Physics Letters, 1998, 72, 3074-3076.	3.3	13
155	Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces. Applied Physics Letters, 1998, 72, 1644-1646.	3.3	16
156	Interaction and dephasing of center-of-mass quantized excitons in wideZnSe/Zn0.94Mg0.06Sequantum wells. Physical Review B, 1998, 57, 1791-1796.	3 . 2	38
157	Second-harmonic imaging of ferroelectric domain walls. Applied Physics Letters, 1998, 73, 1814-1816.	3.3	77
158	Relaxation of Nonthermal hh and lh Excitons in ZnSe Quantum Wells. Physica Status Solidi (B): Basic Research, 1998, 206, 103-109.	1.5	0
159	Binding-energy distribution and dephasing of localized biexcitons. Physical Review B, 1997, 55, R7383-R7386.	3.2	75
160	Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope. Applied Physics Letters, 1997, 70, 2762-2764.	3.3	13
161	Binding of biexcitons in GaAs/AlxGa1â^'xAs superlattices. Physical Review B, 1997, 55, 5284-5289.	3.2	16
162	Measuring voltage transients with an ultrafast scanning tunneling microscope. Applied Physics Letters, 1997, 70, 2625-2627.	3.3	18

#	Article	IF	Citations
163	Coherent dynamics of interwell excitons in GaAs/AlxGa1â^'xAs superlattices. Physical Review B, 1997, 55, 7743-7748.	3.2	3
164	Coherent optical nonlinearities and phase relaxation of quasi-three-dimensional and quasi-two-dimensional excitons inZnSxSe1â^²x/ZnSestructures. Physical Review B, 1997, 56, 12581-12588.	3.2	30
165	Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study. Physical Review B, 1997, 55, 2456-2465.	3.2	40
166	Femtosecond differential transmission measurements on low temperature GaAs metal–semiconductor–metal structures. Applied Physics Letters, 1997, 70, 72-74.	3.3	18
167	Electron microscopic and optical investigations of the indium distribution in GaAs capped InxGa1â^'xAs islands. Applied Physics Letters, 1997, 71, 377-379.	3.3	40
168	Fiber coupled ultrafast scanning tunneling microscope. Journal of Applied Physics, 1997, 81, 2929-2934.	2.5	21
169	Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes. Journal of Applied Physics, 1997, 82, 49-53.	2.5	52
170	Interband coherence in semiconductors; excitons and beyond. Journal of Luminescence, 1997, 72-74, 25-28.	3.1	3
171	Luminescence dynamics in GaAs/AlAs superlattices near the type-I/type-II crossover. Journal of Luminescence, 1997, 72-74, 350-352.	3.1	0
172	Influence of the corrugation on the optical properties of (1 1 3) oriented GaAs/AlAs superlattices. Journal of Luminescence, 1997, 72-74, 353-354.	3.1	2
173	Hot excitons in ZnSe quantum wells. Journal of Luminescence, 1997, 72-74, 292-293.	3.1	1
174	Direct and spatially indirect excitons in GaAs/AlGaAs superlattices in strong magnetic fields. Journal of Experimental and Theoretical Physics, 1997, 85, 601-608.	0.9	5
175	Exciton-exciton collisions and conversion of interwell excitons in GaAs/AlGaAs superlattices. JETP Letters, 1997, 65, 656-662.	1.4	17
176	Dynamics of excitonic states in GaAs/AlGaAs quantum wells. JETP Letters, 1997, 66, 144-150.	1.4	5
177	Binding energy of two-dimensional biexcitons in type-II superlattices. Journal of Luminescence, 1997, 72-74, 393-394.	3.1	3
178	High-resolution spectroscopy of matrix-isolated fullerene molecules. Journal of Luminescence, 1997, 72-74, 457-458.	3.1	3
179	Thermalization of Hot Free Excitons in ZnSe-Based Quantum Wells. Physica Status Solidi (B): Basic Research, 1997, 204, 195-197.	1.5	4
180	Coherent Interaction of Three-Dimensionally Confined Electron–Hole Pairs with LO-Phonons. Physica Status Solidi (B): Basic Research, 1997, 204, 42-44.	1.5	1

#	Article	IF	Citations
181	Room-Temperature Near-Field Reflection Spectroscopy of Single Quantum Wells. Physica Status Solidi A, 1997, 164, 541-546.	1.7	16
182	FIR Induced Intrinsic Exciton Transitions in GaAs/AlGaAs Superlattices. Physica Status Solidi A, 1997, 164, 557-560.	1.7	3
183	Interwell and Intrawell Magnetoexcitons in GaAs/AlGaAs Superlattices. Physica Status Solidi A, 1997, 164, 595-599.	1.7	1
184	Nonlinear Response of Localized Excitons: Effects of the Excitation-Induced Dephasing. Physica Status Solidi A, 1997, 164, 61-65.	1.7	8
185	Interwell excitons in GaAs superlattices. Superlattices and Microstructures, 1997, 21, 587-590.	3.1	3
186	Highly confined T-shaped quantum wires. Superlattices and Microstructures, 1997, 22, 217-220.	3.1	7
187	MBE growth of two-dimensional electron gases on (110) GaAs. Journal of Crystal Growth, 1997, 175-176, 1097-1101.	1.5	0
188	Spectral signatures of excitonic four-wave mixing signals in GaAs multiple quantum wells. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 981.	2.1	13
189	Binding of Quasi-Two-Dimensional Biexcitons. Physical Review Letters, 1996, 76, 672-675.	7.8	188
190	Optimization of the confinement energy of quantum-wire states in T-shaped GaAs/AlxGa1â^'xAs structures. Physical Review B, 1996, 54, 14595-14603.	3.2	46
191	(110) oriented GaAs/Al0.3Ga0.7As quantum wells for optimized Tâ€shaped quantum wires. Applied Physics Letters, 1996, 69, 800-802.	3.3	21
192	Asymmetric GaAs/AlGaAs T wires with large confinement energies. Applied Physics Letters, 1996, 69, 3248-3250.	3.3	32
193	Binding energy of two-dimensional biexcitons. Physical Review B, 1996, 53, 15909-15913.	3.2	96
194	Interwell excitons in GaAs superlattices. Physical Review B, 1996, 54, 10316-10319.	3.2	30
195	Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities. Physical Review B, 1996, 54, R14250-R14253.	3.2	35
196	Luminescence dynamics in type-II GaAs/AlAs superlattices near the type-I to type-II crossover. Physical Review B, 1996, 54, 14589-14594.	3.2	8
197	Influence of the interface corrugation on the subband dispersions and the optical properties of (113)-oriented GaAs/AlAs superlattices. Physical Review B, 1996, 54, 10784-10799.	3.2	14
198	Ultrafast exciton dynamics in semiconductors: Effects of disorder and confinement. Pure and Applied Chemistry, 1995, 67, 401-408.	1.9	2

#	Article	IF	CITATIONS
199	<title>Ultrafast exciton dynamics in semiconductors: effects of disorder and confinement</title> ., 1995,,.		O
200	Interwell excitons in GaAs multiple quantum wells and superlattices. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1359-1366.	0.4	12
201	Influence of inhomogeneous broadening on spectrally resolved fourâ€wave mixing in semiconductors. Physica Status Solidi (B): Basic Research, 1995, 188, 465-472.	1.5	2
202	MBE growth and characterization of high purity GaAs/AlGaAs on the (110) surface of GaAs. Microelectronics Journal, 1995, 26, 767-773.	2.0	5
203	Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe. Physical Review B, 1995, 51, 16651-16659.	3.2	14
204	Nanoroughness localization of excitons in GaAs multiple quantum wells studied by transient four-wave mixing. Physical Review B, 1995, 51, 7977-7980.	3.2	11
205	NONLINEAR QUANTUM BEAT SPECTROSCOPY IN SEMICONDUCTORS. International Journal of Modern Physics B, 1994, 08, 73-120.	2.0	42
206	Many-body effects in type-II quantum-well and quantum-well-wire superlattices. Superlattices and Microstructures, 1994, 15, 47.	3.1	4
207	Nonlinear quantum beat spectroscopy of bound biexcitons in Il–VI semiconductors. Journal of Crystal Growth, 1994, 138, 800-804.	1.5	12
208	Spectrally resolved four-wave mixing in semiconductors: Influence of inhomogeneous broadening. Physical Review B, 1994, 50, 15047-15055.	3.2	61
209	Ultrafast nonlinear optics in GaAs/AlGaAs quantum wells. Physica Scripta, 1994, T54, 181-186.	2.5	9
210	<title>Ultrafast exciton dynamics in direct gap semiconductors</title> ., 1994, 2142, 39.		1
211	Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1â^xAs quantum wells. Physical Review B, 1993, 47, 2413-2416.	3.2	130
212	Ultrafast local field dynamics in photoconductive THz antennas. Applied Physics Letters, 1993, 62, 1265-1267.	3.3	80
213	Nonlinear quantum beats of propagating polaritons. Physical Review Letters, 1993, 70, 327-330.	7.8	43
214	Exciton diffusion in CdSe. Physical Review B, 1993, 47, 3582-3587.	3.2	34
215	Nature of nonlinear four-wave-mixing beats in semiconductors. Physical Review B, 1993, 48, 5720-5723.	3.2	86
216	Exciton scattering in quantum wells at low temperatures. Physical Review B, 1993, 47, 6827-6830.	3.2	55

#	Article	IF	CITATIONS
217	Optical dephasing in semiconductor mixed crystals. Physical Review B, 1992, 46, 4564-4581.	3.2	62
218	Terahertz pulses from semiconductorâ€air interfaces. Applied Physics Letters, 1992, 61, 1372-1374.	3.3	11
219	Measurements of exciton diffusion by degenerate four-wave mixing inCdS1â°'xSex. Physical Review B, 1992, 46, 7528-7532.	3.2	22
220	Dynamics of Excitons in CdS, CdSe, and CdS _{1â^*<i>>x</i>} Se _{<i>x</i>} . Physica Status Solidi (B): Basic Research, 1992, 172, 479-519.	1.5	59
221	Coherent and Incoherent Exciton Dynamics in Al _{1â^'<i>y</i>} Ga _{<i>y</i>} As/GaAs Multiple Quantum Wells. Physica Status Solidi (B): Basic Research, 1992, 173, 53-68.	1.5	52
222	Coherent and Incoherent Exciton Dynamics in Il–VI Semiconductors. Physica Status Solidi (B): Basic Research, 1992, 173, 69-76.	1.5	18
223	Nonlinear Quantum Beats of Excitons in CdSe. Physica Status Solidi (B): Basic Research, 1992, 173, 91-98.	1.5	9
224	Picosecond spectroscopy of exciton-biexciton transitions in CdSe. Journal of Crystal Growth, 1992, 117, 763-767.	1.5	6
225	Photon echo, dephasing and recombination of bound excitons in CdSe. Journal of Crystal Growth, 1992, 117, 773-777.	1.5	2
226	Dephasing and energy relaxation of localized excitons in CdS1â^'xSex mixed crystals. Journal of Crystal Growth, 1992, 117, 778-782.	1.5	5
227	Exciton dynamics in CdSe. Journal of Luminescence, 1992, 53, 317-320.	3.1	9
228	Dephasing of localized excitons inCdS1â^'xSexmixed crystals. Physical Review B, 1991, 44, 3413-3416.	3.2	24
229	Spontaneous photon echo from bound excitons in CdSe. Physical Review B, 1991, 44, 3999-4001.	3.2	22
230	Coherent nonlinear optical resonances in II-VI semiconductors. , 1990, , .		2
231	Picosecond transient gratings in CdS1â^'xSex mixed crystals. Journal of Crystal Growth, 1990, 101, 678-682.	1.5	8
232	Studies of high-speed optical switching in CdSe. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 1225.	2.1	5
233	Optical nonlinearities and phase coherence in CdSe studied by transient four-wave mixing. IEEE Journal of Quantum Electronics, 1989, 25, 904-912.	1.9	83
234	Optical Nonlinearity and Phase Coherence in CdSe and CdSe _{<i>x</i>} S _{1â^²<i>x</i>} . Physica Status Solidi (B): Basic Research, 1988, 150, 387-391.	1.5	22

#	Article	IF	Citations
235	Partial saturation of the conduction band tail in doped a-Si:H. Solid State Communications, 1988, 65, 415-417.	1.9	2
236	Picosecond coherent light scattering in the exciton-biexciton resonance of CdSe. Journal of Luminescence, 1988, 40-41, 529-530.	3.1	3
237	Localization and wave-vector conservation for optical phonons inAlxGa1â^'xAsand thin layers of GaAs. Physical Review B, 1988, 38, 5776-5779.	3.2	34
238	Optical Nonlinearity and Phase Coherence of Exciton-Biexciton Transition in CdSe. Europhysics Letters, 1987, 4, 839-843.	2.0	20
239	Transient phase-space filling by resonantly excited exciton interactions in CuCl. Physical Review Letters, 1987, 58, 1363-1366.	7.8	15
240	Transverse and longitudinal relaxations of excitons and biexcitons in CdSe. Journal of Luminescence, 1987, 38, 76-78.	3.1	6
241	Optical gain and induced absorption in CuBr. Journal of Luminescence, 1986, 35, 91-97.	3.1	1
242	Carrier relaxation in amorphous silicon with optical bias. Journal of Non-Crystalline Solids, 1985, 77-78, 611-614.	3.1	3
243	Subpicosecond Time-Resolved Raman Spectroscopy of LO Phonons in GaAs. Physical Review Letters, 1985, 54, 2151-2154.	7.8	390
244	TIME RESOLVED RAMAN SPECTROSCOPY OF OPTICALLY GENERATED PHONONS IN III-V SEMICONDUCTORS. Journal De Physique Colloque, 1985, 46, C7-235-C7-239.	0.2	0
245	Dispersive transport and trap saturation in doped hydrogenated amorphous silicon. Solid State Communications, 1984, 50, 845-848.	1.9	29
246	The Biexciton Levels and Nonlinear Optical Transitions in ZnO. Physica Status Solidi (B): Basic Research, 1983, 118, 179-189.	1.5	68
247	Timeâ€resolved nonlinear luminescence spectroscopy by picosecond excitation correlation. Applied Physics Letters, 1983, 43, 460-462.	3.3	40
248	Dispersive Transport and Recombination Lifetime in Phosphorus-Doped Hydrogenated Amorphous Silicon. Physical Review Letters, 1981, 46, 371-374.	7.8	146
249	RECOMBINATION OF PHOTOGENERATED CARRIERS IN DOPED HYDROGENATED AMORPHOUS SILICON. Journal De Physique Colloque, 1981, 42, C4-551-C4-554.	0.2	4
250	Optical Gain and Induced Absorption in Highâ€Density Exciton System in CuCl. Physica Status Solidi (B): Basic Research, 1980, 101, 363-372.	1.5	7
251	Excitonic Molecule Transitions in ZnO. Physica Status Solidi (B): Basic Research, 1979, 93, 581-590.	1.5	24
252	Stimulated emission and optical gain in dense exciton systems in CdS. Journal of Luminescence, 1979, 18-19, 312-316.	3.1	5

#	Article	IF	CITATIONS
253	Optical gain and induced absorption from excitonic molecules in ZnO. Solid State Communications, 1978, 26, 987-990.	1.9	55
254	Stimulated two-photon emission from excitonic molecules in ZnO. Solid State Communications, 1978, 27, 1347-1350.	1.9	13
255	Induced absorption and gain from high density excitons in CdS. Solid State Communications, 1978, 26, 373-376.	1.9	18
256	Direct recording of opticalâ€gain spectra from ZnO. Journal of Applied Physics, 1978, 49, 3124-3126.	2.5	57
257	New emission line in highly excited GaN. Journal of Luminescence, 1976, 12-13, 611-615.	3.1	25
258	Exciton diffusion and motion of electron-hole drops in Ge. Physical Review B, 1975, 11, 5053-5058.	3.2	18
259	Exciton Interaction in Photoluminescence from ZnO. Physica Status Solidi (B): Basic Research, 1974, 63, 511-517.	1.5	73
260	Drift of Electron–Hole Drops in Exciton Density Gradients. Physica Status Solidi (B): Basic Research, 1974, 65, 531-536.	1.5	13
261	Size distribution of electron-hole drops in Ge. Solid State Communications, 1974, 15, 929-932.	1.9	9
262	Exciton-exciton interaction and laser emission in high-purity ZnO. Solid State Communications, 1973, 12, 95-97.	1.9	91
263	Spontaneous and stimulated emission from CdSe at high excitation levels. Journal of Physics and Chemistry of Solids, 1971, 32, 2193-2199.	4.0	10
264	Temperature-Induced Wavelength Shift of Electron-Beam-Pumped Lasers from CdSe, CdS, and ZnO. Physical Review B, 1971, 4, 4459-4464.	3.2	72
265	Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers. , 0, , .		8