Jean-Luc Perfettini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3557653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SUGT1 controls susceptibility to HIV-1 infection by stabilizing microtubule plus-ends. Cell Death and Differentiation, 2020, 27, 3243-3257.	11.2	10
2	AGuIX [®] from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. British Journal of Radiology, 2019, 92, 20180365.	2.2	86
3	HIV-1 Envelope Overcomes NLRP3-Mediated Inhibition of F-Actin Polymerization for Viral Entry. Cell Reports, 2019, 28, 3381-3394.e7.	6.4	28
4	Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nature Cell Biology, 2018, 20, 296-306.	10.3	88
5	Mitochondrial Regulation of Cell Death. , 2018, , 75-90.		2
6	Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death. Cell Death and Disease, 2018, 9, 716.	6.3	33
7	NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy. Cell Death and Differentiation, 2017, 24, 1632-1644.	11.2	50
8	Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomedical Journal, 2017, 40, 200-211.	3.1	71
9	Bimodal fluorescence/129Xe NMR probe for molecular imaging and biological inhibition of EGFR in Non-Small Cell Lung Cancer. Bioorganic and Medicinal Chemistry, 2017, 25, 6653-6660.	3.0	12
10	Entosis: The emerging face of non-cell-autonomous type IV programmed death. Biomedical Journal, 2017, 40, 133-140.	3.1	42
11	Modulating Both Tumor Cell Death and Innate Immunity Is Essential for Improving Radiation Therapy Effectiveness. Frontiers in Immunology, 2017, 8, 613.	4.8	60
12	Can immunostimulatory agents enhance the abscopal effect of radiotherapy?. European Journal of Cancer, 2016, 62, 36-45.	2.8	105
13	Is the inflammasome relevant for epithelial cell function?. Microbes and Infection, 2016, 18, 93-101.	1.9	37
14	Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Molecular Cell, 2015, 58, 1001-1014.	9.7	164
15	Synergy of Radiotherapy and a Cancer Vaccine for the Treatment of HPV-Associated Head and Neck Cancer. Molecular Cancer Therapeutics, 2015, 14, 1336-1345.	4.1	77
16	Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview. Cell Death and Disease, 2015, 6, e1846-e1846.	6.3	24
17	Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor S44563 in small-cell lung cancer. Cell Death and Disease, 2014, 5, e1423-e1423.	6.3	36
18	Entosis, a key player in cancer cell competition. Cell Research, 2014, 24, 1280-1281.	12.0	42

JEAN-LUC PERFETTINI

#	Article	IF	CITATIONS
19	Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death and Differentiation, 2014, 21, 92-99.	11.2	181
20	Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death and Differentiation, 2014, 21, 79-91.	11.2	395
21	Understanding the functions of tumor stroma in resistance to ionizing radiation: Emerging targets for pharmacological modulation. Drug Resistance Updates, 2013, 16, 10-21.	14.4	36
22	Editorial: Pannexin-1-the hidden gatekeeper for HIV-1. Journal of Leukocyte Biology, 2013, 94, 390-392.	3.3	20
23	Cellular alarms and whispers contribute to the polyphonic melody of danger signals required for immunity. Microbes and Infection, 2012, 14, 1239-1240.	1.9	5
24	Multifaceted roles of purinergic receptors in viral infection. Microbes and Infection, 2012, 14, 1278-1283.	1.9	31
25	Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. Journal of Experimental Medicine, 2011, 208, 1823-1834.	8.5	156
26	Proteomic analysis identifies prohibitin down-regulation as a crucial event in the mitochondrial damage observed in HIV-infected patients. Antiviral Therapy, 2010, 15, 377-390.	1.0	20
27	53BP1 represses mitotic catastrophe in syncytia elicited by the HIV-1 envelope. Cell Death and Differentiation, 2010, 17, 811-820.	11.2	12
28	A brain-specific isoform of mitochondrial apoptosis-inducing factor: AIF2. Cell Death and Differentiation, 2010, 17, 1155-1166.	11.2	37
29	Chemotherapy induces ATP release from tumor cells. Cell Cycle, 2009, 8, 3723-3728.	2.6	233
30	Pro-apoptotic function of checkpoint kinase-2 in syncytia elicited by the HIV-1 envelope. Cell Cycle, 2009, 8, 438-442.	2.6	6
31	The tumor suppressor protein PML controls apoptosis induced by the HIV-1 envelope. Cell Death and Differentiation, 2009, 16, 298-311.	11.2	18
32	Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nature Medicine, 2009, 15, 1170-1178.	30.7	1,614
33	ATM mediates constitutive NF-κB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene, 2009, 28, 1099-1109.	5.9	66
34	Chapter Eighteen Methods to Dissect Mitochondrial Membrane Permeabilization in the Course of Apoptosis. Methods in Enzymology, 2008, 442, 355-374.	1.0	27
35	A novel effect of DNA methyltransferase and histone deacetylase inhibitors : NFκB inhibition in malignant myeloblasts. Cell Cycle, 2008, 7, 2139-2145.	2.6	62
36	Critical Involvement of the ATM-Dependent DNA Damage Response in the Apoptotic Demise of HIV-1-Elicited Syncytia. PLoS ONE, 2008, 3, e2458.	2.5	41

JEAN-LUC PERFETTINI

#	Article	IF	CITATIONS
37	Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 2007, 13, 54-61.	30.7	2,580
38	HIV-1 protease inhibitors and cytomegalovirus vMIA induce mitochondrial fragmentation without triggering apoptosis. Cell Death and Differentiation, 2006, 13, 348-351.	11.2	24
39	p38 MAP kinase in HIV-1 infection: the enemy within. Blood, 2005, 106, 1899-1900.	1.4	4
40	A cellular machine generating apoptosis-prone aneuploid cells. Cell Death and Differentiation, 2005, 12, 91-93.	11.2	10
41	PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene, 2005, 24, 7503-7513.	5.9	88
42	Mitochondrial fusion and fission in the control of apoptosis. Trends in Cell Biology, 2005, 15, 179-183.	7.9	161
43	Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. Journal of Experimental Medicine, 2005, 201, 279-289.	8.5	152
44	Inhibition of Macroautophagy Triggers Apoptosis. Molecular and Cellular Biology, 2005, 25, 1025-1040.	2.3	1,533
45	p53—A pro-apoptotic signal transducer involved in AIDS. Biochemical and Biophysical Research Communications, 2005, 331, 701-706.	2.1	26
46	Characterization of Cell Death Pathways in Human Immunodeficiency Virus-Associated Encephalitis. American Journal of Pathology, 2005, 167, 695-704.	3.8	33
47	Molecular Mechanisms of HIV-1 Syncytial Apoptosis. , 2005, , 271-278.		Ο
48	NF-κB and p53 Are the Dominant Apoptosis-inducing Transcription Factors Elicited by the HIV-1 Envelope. Journal of Experimental Medicine, 2004, 199, 629-640.	8.5	116
49	Preapoptotic Chromatin Condensation Upstream of the Mitochondrial Checkpoint. Journal of Biological Chemistry, 2004, 279, 55937-55945.	3.4	28
50	Contagious apoptosis facilitated by the HIV-1 envelope: fusion-induced cell-to-cell transmission of a lethal signal. Journal of Cell Science, 2004, 117, 5643-5653.	2.0	24
51	Fatal liaisons of p53 with Bax and Bak. Nature Cell Biology, 2004, 6, 386-388.	10.3	76
52	Cell death by mitotic catastrophe: a molecular definition. Oncogene, 2004, 23, 2825-2837.	5.9	1,074
53	Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene, 2004, 23, 4362-4370.	5.9	280
54	The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene, 2004, 23, 4353-4361.	5.9	162

JEAN-LUC PERFETTINI

#	Article	IF	CITATIONS
55	Anti-apoptotic activity of the glutathione peroxidase homologue encoded by HIV-1. Apoptosis: an International Journal on Programmed Cell Death, 2004, 9, 181-192.	4.9	23
56	Mitochondrial Apoptosis Induced by the HIVâ€1 Envelope. Annals of the New York Academy of Sciences, 2003, 1010, 19-28.	3.8	40
57	Mitochondrion-dependent caspase activation by the HIV-1 envelope. Biochemical Pharmacology, 2003, 66, 1321-1329.	4.4	34
58	Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene, 2003, 22, 3927-3936.	5.9	357
59	The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene, 2003, 22, 6220-6230.	5.9	83
60	Caspase activation is not death. Nature Immunology, 2003, 4, 308-310.	14.5	69
61	Cell death and inflammation during infection with the obligate intracellular pathogen, Chlamydia. Biochimie, 2003, 85, 763-769.	2.6	28
62	Role of Proapoptotic BAX in Propagation of Chlamydia muridarum (the Mouse Pneumonitis Strain of) Tj ETQq0 0 278, 9496-9502.	0 rgBT /O 3.4	verlock 10 Tf 43
63	Lysosomal Membrane Permeabilization Induces Cell Death in a Mitochondrion-dependent Fashion. Journal of Experimental Medicine, 2003, 197, 1323-1334.	8.5	421
64	Inhibition of Apoptosis by Gamma Interferon in Cells and Mice Infected with Chlamydia muridarum (the) Tj ETQq	0 0 0 rgBT 2.2	/Overlock 10
65	Role of Bcl-2 Family Members in Caspase-Independent Apoptosis during Chlamydia Infection. Infection and Immunity, 2002, 70, 55-61.	2.2	94
66	Mitochondrial Apoptosis and the Peripheral Benzodiazepine Receptor. Journal of Experimental Medicine, 2002, 196, 1121-1126.	8.5	45
67	Modulation of apoptosis during infection with Chlamydia. Methods in Enzymology, 2002, 358, 334-344.	1.0	19
68	Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death and Differentiation, 2002, 9, 1287-1293.	11.2	307
69	Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO Journal, 2002, 21, 4070-4080.	7.8	146
70	Modulation of P2Z/P2X ₇ receptor activity in macrophages infected with <i>Chlamydia psittaci</i> . American Journal of Physiology - Cell Physiology, 2001, 280, C81-C89.	4.6	97
71	Effect of Chlamydia trachomatis Infection and Subsequent Tumor Necrosis Factor Alpha Secretion on Apoptosis in the Murine Genital Tract. Infection and Immunity, 2000, 68, 2237-2244.	2.2	62
72	Apoptose et Chlamydia. Annales De L'Institut Pasteur / Actualités, 2000, 11, 95-109.	0.1	0

#	Article	IF	CITATIONS
73	P _{2Z} /P2X ₇ receptor-dependent apoptosis of dendritic cells. American Journal of Physiology - Cell Physiology, 1999, 276, C1139-C1147.	4.6	204
74	Caspase-dependent apoptosis during infection with Cryptosporidium parvum. Microbes and Infection, 1999, 1, 1163-1168.	1.9	64