Jean-Luc Perfettini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3557653/publications.pdf

Version: 2024-02-01

74 papers 12,457 citations

93792 39 h-index 97045 71 g-index

76 all docs

76 docs citations

76 times ranked 20624 citing authors

#	Article	IF	CITATIONS
1	Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 2007, 13, 54-61.	15.2	2,580
2	Activation of the NLRP3 inflammasome in dendritic cells induces IL- $1\hat{l}^2\hat{a}$ ependent adaptive immunity against tumors. Nature Medicine, 2009, 15, 1170-1178.	15.2	1,614
3	Inhibition of Macroautophagy Triggers Apoptosis. Molecular and Cellular Biology, 2005, 25, 1025-1040.	1.1	1,533
4	Cell death by mitotic catastrophe: a molecular definition. Oncogene, 2004, 23, 2825-2837.	2.6	1,074
5	Lysosomal Membrane Permeabilization Induces Cell Death in a Mitochondrion-dependent Fashion. Journal of Experimental Medicine, 2003, 197, 1323-1334.	4.2	421
6	Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death and Differentiation, 2014, 21, 79-91.	5.0	395
7	Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene, 2003, 22, 3927-3936.	2.6	357
8	Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death and Differentiation, 2002, 9, 1287-1293.	5.0	307
9	Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene, 2004, 23, 4362-4370.	2.6	280
10	Chemotherapy induces ATP release from tumor cells. Cell Cycle, 2009, 8, 3723-3728.	1.3	233
11	P _{2Z} /P2X ₇ receptor-dependent apoptosis of dendritic cells. American Journal of Physiology - Cell Physiology, 1999, 276, C1139-C1147.	2.1	204
12	Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death and Differentiation, 2014, 21, 92-99.	5.0	181
13	Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Molecular Cell, 2015, 58, 1001-1014.	4.5	164
14	The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene, 2004, 23, 4353-4361.	2.6	162
15	Mitochondrial fusion and fission in the control of apoptosis. Trends in Cell Biology, 2005, 15, 179-183.	3.6	161
16	Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. Journal of Experimental Medicine, 2011, 208, 1823-1834.	4.2	156
17	Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. Journal of Experimental Medicine, 2005, 201, 279-289.	4.2	152
18	Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO Journal, 2002, 21, 4070-4080.	3.5	146

#	Article	IF	Citations
19	NF-κB and p53 Are the Dominant Apoptosis-inducing Transcription Factors Elicited by the HIV-1 Envelope. Journal of Experimental Medicine, 2004, 199, 629-640.	4.2	116
20	Can immunostimulatory agents enhance the abscopal effect of radiotherapy?. European Journal of Cancer, 2016, 62, 36-45.	1.3	105
21	Modulation of P2Z/P2X ₇ receptor activity in macrophages infected with <i>Chlamydia psittaci</i> . American Journal of Physiology - Cell Physiology, 2001, 280, C81-C89.	2.1	97
22	Role of Bcl-2 Family Members in Caspase-Independent Apoptosis during Chlamydia Infection. Infection and Immunity, 2002, 70, 55-61.	1.0	94
23	PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene, 2005, 24, 7503-7513.	2.6	88
24	Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nature Cell Biology, 2018, 20, 296-306.	4.6	88
25	AGulX [®] from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. British Journal of Radiology, 2019, 92, 20180365.	1.0	86
26	The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene, 2003, 22, 6220-6230.	2.6	83
27	Synergy of Radiotherapy and a Cancer Vaccine for the Treatment of HPV-Associated Head and Neck Cancer. Molecular Cancer Therapeutics, 2015, 14, 1336-1345.	1.9	77
28	Fatal liaisons of p53 with Bax and Bak. Nature Cell Biology, 2004, 6, 386-388.	4.6	76
29	Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomedical Journal, 2017, 40, 200-211.	1.4	71
30	Caspase activation is not death. Nature Immunology, 2003, 4, 308-310.	7.0	69
31	ATM mediates constitutive NF-κB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene, 2009, 28, 1099-1109.	2.6	66
32	Caspase-dependent apoptosis during infection with Cryptosporidium parvum. Microbes and Infection, 1999, 1, 1163-1168.	1.0	64
33	Effect of Chlamydia trachomatis Infection and Subsequent Tumor Necrosis Factor Alpha Secretion on Apoptosis in the Murine Genital Tract. Infection and Immunity, 2000, 68, 2237-2244.	1.0	62
34	A novel effect of DNA methyltransferase and histone deacetylase inhibitors: NFκB inhibition in malignant myeloblasts. Cell Cycle, 2008, 7, 2139-2145.	1.3	62
35	Modulating Both Tumor Cell Death and Innate Immunity Is Essential for Improving Radiation Therapy Effectiveness. Frontiers in Immunology, 2017, 8, 613.	2.2	60
36	NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy. Cell Death and Differentiation, 2017, 24, 1632-1644.	5.0	50

#	Article	IF	CITATIONS
37	Mitochondrial Apoptosis and the Peripheral Benzodiazepine Receptor. Journal of Experimental Medicine, 2002, 196, 1121-1126.	4.2	45
38	Role of Proapoptotic BAX in Propagation of Chlamydia muridarum (the Mouse Pneumonitis Strain of) Tj ETQq0 0 278, 9496-9502.	0 rgBT /O	verlock 10 Tf 43
39	Entosis, a key player in cancer cell competition. Cell Research, 2014, 24, 1280-1281.	5.7	42
40	Entosis: The emerging face of non-cell-autonomous type IV programmed death. Biomedical Journal, 2017, 40, 133-140.	1.4	42
41	Critical Involvement of the ATM-Dependent DNA Damage Response in the Apoptotic Demise of HIV-1-Elicited Syncytia. PLoS ONE, 2008, 3, e2458.	1.1	41
42	Mitochondrial Apoptosis Induced by the HIV-1 Envelope. Annals of the New York Academy of Sciences, 2003, 1010, 19-28.	1.8	40
43	A brain-specific isoform of mitochondrial apoptosis-inducing factor: AIF2. Cell Death and Differentiation, 2010, 17, 1155-1166.	5.0	37
44	Is the inflammasome relevant for epithelial cell function?. Microbes and Infection, 2016, 18, 93-101.	1.0	37
45	Understanding the functions of tumor stroma in resistance to ionizing radiation: Emerging targets for pharmacological modulation. Drug Resistance Updates, 2013, 16, 10-21.	6.5	36
46	Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor S44563 in small-cell lung cancer. Cell Death and Disease, 2014, 5, e1423-e1423.	2.7	36
47	Mitochondrion-dependent caspase activation by the HIV-1 envelope. Biochemical Pharmacology, 2003, 66, 1321-1329.	2.0	34
48	Characterization of Cell Death Pathways in Human Immunodeficiency Virus-Associated Encephalitis. American Journal of Pathology, 2005, 167, 695-704.	1.9	33
49	Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death. Cell Death and Disease, 2018, 9, 716.	2.7	33
50	Multifaceted roles of purinergic receptors in viral infection. Microbes and Infection, 2012, 14, 1278-1283.	1.0	31
51	Cell death and inflammation during infection with the obligate intracellular pathogen, Chlamydia. Biochimie, 2003, 85, 763-769.	1.3	28
52	Preapoptotic Chromatin Condensation Upstream of the Mitochondrial Checkpoint. Journal of Biological Chemistry, 2004, 279, 55937-55945.	1.6	28
53	HIV-1 Envelope Overcomes NLRP3-Mediated Inhibition of F-Actin Polymerization for Viral Entry. Cell Reports, 2019, 28, 3381-3394.e7.	2.9	28
54	Chapter Eighteen Methods to Dissect Mitochondrial Membrane Permeabilization in the Course of Apoptosis. Methods in Enzymology, 2008, 442, 355-374.	0.4	27

#	Article	IF	Citations
55	p53â€"A pro-apoptotic signal transducer involved in AIDS. Biochemical and Biophysical Research Communications, 2005, 331, 701-706.	1.0	26
56	Contagious apoptosis facilitated by the HIV-1 envelope: fusion-induced cell-to-cell transmission of a lethal signal. Journal of Cell Science, 2004, 117, 5643-5653.	1.2	24
57	HIV-1 protease inhibitors and cytomegalovirus vMIA induce mitochondrial fragmentation without triggering apoptosis. Cell Death and Differentiation, 2006, 13, 348-351.	5.0	24
58	Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview. Cell Death and Disease, 2015, 6, e1846-e1846.	2.7	24
59	Anti-apoptotic activity of the glutathione peroxidase homologue encoded by HIV-1. Apoptosis: an International Journal on Programmed Cell Death, 2004, 9, 181-192.	2.2	23
60	Inhibition of Apoptosis by Gamma Interferon in Cells and Mice Infected with Chlamydia muridarum (the) Tj ETQc	10 0 0 rgB	T /Overlock 10
61	Proteomic analysis identifies prohibitin down-regulation as a crucial event in the mitochondrial damage observed in HIV-infected patients. Antiviral Therapy, 2010, 15, 377-390.	0.6	20
62	Editorial: Pannexin-1-the hidden gatekeeper for HIV-1. Journal of Leukocyte Biology, 2013, 94, 390-392.	1.5	20
63	Modulation of apoptosis during infection with Chlamydia. Methods in Enzymology, 2002, 358, 334-344.	0.4	19
64	The tumor suppressor protein PML controls apoptosis induced by the HIV-1 envelope. Cell Death and Differentiation, 2009, 16, 298-311.	5.0	18
65	53BP1 represses mitotic catastrophe in syncytia elicited by the HIV-1 envelope. Cell Death and Differentiation, 2010, 17, 811-820.	5.0	12
66	Bimodal fluorescence/129Xe NMR probe for molecular imaging and biological inhibition of EGFR in Non-Small Cell Lung Cancer. Bioorganic and Medicinal Chemistry, 2017, 25, 6653-6660.	1.4	12
67	A cellular machine generating apoptosis-prone aneuploid cells. Cell Death and Differentiation, 2005, 12, 91-93.	5.0	10
68	SUGT1 controls susceptibility to HIV-1 infection by stabilizing microtubule plus-ends. Cell Death and Differentiation, 2020, 27, 3243-3257.	5.0	10
69	Pro-apoptotic function of checkpoint kinase-2 in syncytia elicited by the HIV-1 envelope. Cell Cycle, 2009, 8, 438-442.	1.3	6
70	Cellular alarms and whispers contribute to the polyphonic melody of danger signals required for immunity. Microbes and Infection, 2012, 14, 1239-1240.	1.0	5
71	p38 MAP kinase in HIV-1 infection: the enemy within. Blood, 2005, 106, 1899-1900.	0.6	4
72	Mitochondrial Regulation of Cell Death. , 2018, , 75-90.		2

#	Article	IF	CITATIONS
73	Apoptose et Chlamydia. Annales De L'Institut Pasteur / Actualités, 2000, 11, 95-109.	0.1	0
74	Molecular Mechanisms of HIV-1 Syncytial Apoptosis. , 2005, , 271-278.		0