Dongfei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3557114/publications.pdf

Version: 2024-02-01

69 papers

3,984 citations

39 h-index 62 g-index

72 all docs 72 docs citations

times ranked

72

5631 citing authors

#	Article	IF	Citations
1	A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous Nanoparticles with Tunable Properties. Advanced Materials, 2015, 27, 2298-2304.	21.0	203
2	Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab on A Chip, 2017, 17, 1856-1883.	6.0	183
3	Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Advanced Functional Materials, 2019, 29, 1802852.	14.9	179
4	Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Advanced Drug Delivery Reviews, 2018, 128, 54-83.	13.7	159
5	Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. Advanced Materials, 2017, 29, 1603239.	21.0	144
6	Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. Journal of Controlled Release, 2013, 170, 268-278.	9.9	141
7	Fabrication of a Multifunctional Nanoâ€nâ€micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Advanced Materials, 2014, 26, 4497-4503.	21.0	138
8	Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials, 2015, 39, 249-259.	11.4	133
9	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	21.0	127
10	Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. Nano Letters, 2017, 17, 606-614.	9.1	123
11	Production of pure drug nanocrystals and nano co-crystals by confinement methods. Advanced Drug Delivery Reviews, 2018, 131, 3-21.	13.7	115
12	Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomaterialia, 2017, 48, 238-246.	8.3	109
13	Microfluidic Assembly of Monodisperse Multistage pHâ∈Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multiâ€Drug Delivery. Small, 2014, 10, 2029-2038.	10.0	105
14	Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytocompatible Probes for <i>in Vitro</i> Bioimaging. Biomacromolecules, 2017, 18, 2045-2055.	5.4	100
15	Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS Nano, 2015, 9, 8291-8302.	14.6	96
16	Copper-free azide–alkyne cycloaddition of targeting peptides toÂporous silicon nanoparticles for intracellular drug uptake. Biomaterials, 2014, 35, 1257-1266.	11.4	94
17	Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics. Advanced Materials, 2018, 30, e1703393.	21.0	80
18	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	11.4	73

#	Article	IF	CITATIONS
19	Nanostructured Porous Siliconâ€Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release. Advanced Functional Materials, 2013, 23, 1893-1902.	14.9	72
20	Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy? Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1421.	6.1	72
21	A potential new therapeutic system for glaucoma: solid lipid nanoparticles containing methazolamide. Journal of Microencapsulation, 2011, 28, 134-141.	2.8	71
22	pH and Reactive Oxygen Speciesâ€Sequential Responsive Nanoâ€inâ€Micro Composite for Targeted Therapy of Inflammatory Bowel Disease. Advanced Functional Materials, 2018, 28, 1806175.	14.9	68
23	Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology. Journal of Liposome Research, 2014, 24, 17-26.	3.3	67
24	Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14822-14832.	8.0	66
25	Electrospun Polyhydroxybutyrate/Poly(Îμ-caprolactone)/Sol–Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Interfaces, 2018, 10, 14540-14548.	8.0	65
26	Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy. Molecular Pharmaceutics, 2015, 12, 4038-4047.	4.6	63
27	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€lmmunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	14.9	61
28	Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: preparation, characterization and <i>in vitro </i> studies. Journal of Microencapsulation, 2010, 27, 726-734.	2.8	60
29	Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications. Advanced Functional Materials, 2015, 25, 1488-1497.	14.9	60
30	Dualâ€Drug Delivery Using Dextranâ€Functionalized Nanoparticles Targeting Cardiac Fibroblasts for Cellular Reprogramming. Advanced Functional Materials, 2018, 28, 1705134.	14.9	60
31	In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy. Nanoscale, 2016, 8, 10706-10713.	5.6	56
32	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	10.0	53
33	Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. Journal of Nanoparticle Research, 2011, 13, 2375-2386.	1.9	49
34	Methazolamide Calcium Phosphate Nanoparticles in an Ocular Delivery System. Yakugaku Zasshi, 2010, 130, 419-424.	0.2	47
35	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Diterfaces, 2018, 10, 44354-44367.	8.0	47
36	Close-loop dynamic nanohybrids on collagen-ark with <i>in situ</i> gelling transformation capability for biomimetic stage-specific diabetic wound healing. Materials Horizons, 2019, 6, 385-393.	12.2	46

#	Article	IF	Citations
37	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12127-12134.	8.0	45
38	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	14.9	43
39	A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals. Advanced Functional Materials, 2017, 27, 1604508.	14.9	42
40	Acetalated Dextran Nanoparticles Loaded into an Injectable Alginate Cryogel for Combined Chemotherapy and Cancer Vaccination. Advanced Functional Materials, 2019, 29, 1903686.	14.9	41
41	Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications. Advanced Functional Materials, 2016, 26, 6158-6169.	14.9	40
42	High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nature Communications, 2022, 13, 1262.	12.8	39
43	Microfluidic Encapsulation of Prickly Zincâ€Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601406.	7.6	38
44	Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamateâ€Induced Excitotoxicity. Advanced Materials, 2018, 30, e1706032.	21.0	38
45	Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 988-996.	8.0	33
46	An In Situ Gelling Drug Delivery System for Improved Recovery after Spinal Cord Injury. Advanced Healthcare Materials, 2016, 5, 1513-1521.	7.6	31
47	The Influence of Cosolvent on the Complexation of HP- \hat{l}^2 -cyclodextrins with Oleanolic Acid and Ursolic Acid. AAPS PharmSciTech, 2009, 10, 1137-44.	3.3	27
48	<i>In Vivo</i> Evaluation of Porous Silicon and Porous Silicon Solid Lipid Nanocomposites for Passive Targeting and Imaging. Molecular Pharmaceutics, 2014, 11, 2876-2886.	4.6	27
49	Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions. ACS Biomaterials Science and Engineering, 2018, 4, 2308-2313.	5.2	21
50	Polydopamine-Decorated Microcomposites Promote Functional Recovery of an Injured Spinal Cord by Inhibiting Neuroinflammation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47341-47353.	8.0	18
51	Manipulating Superparamagnetic Microparticles with an Electromagnetic Needle. Advanced Materials Technologies, 2018, 3, 1700177.	5.8	16
52	Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by cephalopods. Materials Horizons, 2020, 7, 1573-1580.	12.2	16
53	Intracellular Delivery of Budesonide and Polydopamine Coâ€Loaded in Endosomolytic Poly(butyl) Tj ETQq1 1 0.78 from M1 to M2. Advanced Therapeutics, 2021, 4, 2000058.	4314 rgB ⁻ 3.2	T /Overlock 13
54	Neutrophil Cytoâ€Pharmaceuticals Suppressing Tumor Metastasis via Inhibiting Hypoxiaâ€Inducible Factorâ€I <i>α</i> in Circulating Breast Cancer Cells. Advanced Healthcare Materials, 2022, 11, e2101761.	7.6	13

#	Article	IF	CITATIONS
55	The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. European Journal of Pharmaceutical Sciences, 2017, 104, 124-132.	4.0	11
56	Microfluidic mixing and devices for preparing nanoparticulate drug delivery systems., 2019, , 155-177.		7
57	Inhibiting Phase Transfer of Protein Nanoparticles by Surface Camouflage–A Versatile and Efficient Protein Encapsulation Strategy. Nano Letters, 2021, 21, 9458-9467.	9.1	7
58	The effects of water-soluble polymers on hydroxypropyl-β-cyclodextrin solubilization of oleanolic acid and ursolic acid. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63, 181-188.	1.6	6
59	Prediction of drug capturing by lipid emulsions in vivo for the treatment of a drug overdose. Journal of Controlled Release, 2022, 346, 148-157.	9.9	6
60	Sequential Antifouling Surface for Efficient Modulation of the Nanoparticle–Cell Interactions in Proteinâ€Rich Environments. Advanced Therapeutics, 2018, 1, 1800013.	3.2	5
61	Nanohybrids: Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics (Adv. Mater. 24/2018). Advanced Materials, 2018, 30, 1870168.	21.0	4
62	Biocompatibility of porous silicon for biomedical applications., 2014,, 129-181.		3
63	Drug Delivery: Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications (Adv. Funct. Mater. 10/2015). Advanced Functional Materials, 2015, 25, 1612-1612.	14.9	2
64	Drug Delivery: A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
65	Antitumor Therapeutics: A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics (Adv. Funct. Mater.) Tj ETQq1 1 0.784	13 14. gBT	/Overlock I
66	Drug Co-Delivery: Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications (Adv. Funct. Mater. 34/2016). Advanced Functional Materials, 2016, 26, 6138-6138.	14.9	0
67	Nanovaccines: Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy (Adv. Mater. 7/2017). Advanced Materials, 2017, 29, .	21.0	0
68	Inside Cover Image, Volume 9, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1459.	6.1	0
69	Neuroprotection: Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate-Induced Excitotoxicity (Adv. Mater. 14/2018). Advanced Materials, 2018, 30, 1870095.	21.0	0