List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3556783/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Unravelling the effect of healing conditions and vulcanizing additives on the healing performance of rubber networks. Polymer, 2022, 238, 124399.                                                                                                           | 3.8  | 19        |
| 2  | The Final Frontier of Sustainable Materials: Current Developments in Self-Healing Elastomers.<br>International Journal of Molecular Sciences, 2022, 23, 4757.                                                                                               | 4.1  | 17        |
| 3  | Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polymer Testing, 2021, 93, 106986.                                                                                                    | 4.8  | 16        |
| 4  | On the Use of Mechano-Chemically Modified Ground Tire Rubber (GTR) as Recycled and Sustainable<br>Filler in Styrene-Butadiene Rubber (SBR) Composites. Journal of Composites Science, 2021, 5, 68.                                                          | 3.0  | 33        |
| 5  | Sustainable mobility: The route of tires through the circular economy model. Waste Management, 2021, 126, 309-322.                                                                                                                                          | 7.4  | 59        |
| 6  | Interrelationship between feeding profiles and chains composition-morphology-mechanical properties for forced composition copolymers synthesized by redox initiation. Journal of Polymer Research, 2021, 28, 1.                                             | 2.4  | 0         |
| 7  | Effect of filler content on scratch behavior and tribological performance of polyester/graphene oxide nanocomposite coating. Journal of Coatings Technology Research, 2021, 18, 1269-1280.                                                                  | 2.5  | 2         |
| 8  | Understanding the Molecular Dynamics of Dual Crosslinked Networks by Dielectric Spectroscopy.<br>Polymers, 2021, 13, 3234.                                                                                                                                  | 4.5  | 16        |
| 9  | Effect of terbium(III) species on the structure and physical properties of polyurethane (TPU). Polymer, 2021, 233, 124209.                                                                                                                                  | 3.8  | 4         |
| 10 | Use of Novel Non-Toxic Bismuth Catalyst for the Preparation of Flexible Polyurethane Foam. Polymers, 2021, 13, 4460.                                                                                                                                        | 4.5  | 2         |
| 11 | Conductive elastomer engineering in extreme environments. , 2020, , 235-255.                                                                                                                                                                                |      | 0         |
| 12 | Preparation and Characterization of Highly Elastic Foams with Enhanced Electromagnetic Wave<br>Absorption Based On Ethylene-Propylene-Diene-Monomer Rubber Filled with Barium Titanate/Multiwall<br>Carbon Nanotube Hybrid. Polymers, 2020, 12, 2278.       | 4.5  | 10        |
| 13 | An effective and sustainable approach for achieving self-healing in nitrile rubber. European Polymer<br>Journal, 2020, 139, 110032.                                                                                                                         | 5.4  | 52        |
| 14 | Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review.<br>Materials Horizons, 2020, 7, 2882-2902.                                                                                                                 | 12.2 | 225       |
| 15 | Multifunctional metal-free rechargeable polymer composite nanoparticles boosted by CO2. Materials<br>Today Sustainability, 2020, 10, 100048.                                                                                                                | 4.1  | 0         |
| 16 | Structure, thermal and mechanical properties of poly (ε-caprolactone)/organomodified clay<br>bionanocomposites prepared in open air by <i>in situ</i> polymerization. Journal of Macromolecular<br>Science - Pure and Applied Chemistry, 2020, 57, 865-875. | 2.2  | 6         |
| 17 | SEBS-Grafted Itaconic Acid as Compatibilizer for Elastomer Nanocomposites Based on BaTiO3 Particles.<br>Polymers, 2020, 12, 643.                                                                                                                            | 4.5  | 9         |
| 18 | Design of Rubber Composites with Autonomous Self-Healing Capability. ACS Omega, 2020, 5, 1902-1910.                                                                                                                                                         | 3.5  | 65        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dielectric Properties of All-Organic Coatings: Comparison of PEDOT and PANI in Epoxy Matrices.<br>Journal of Composites Science, 2020, 4, 26.                                                                              | 3.0  | 2         |
| 20 | In-situ cure monitoring of epoxy/graphene nanocomposites by several spectroscopic techniques.<br>Polymer Testing, 2019, 80, 106114.                                                                                        | 4.8  | 11        |
| 21 | HDPE/Chitosan Composites Modified with PE-g-MA. Thermal, Morphological and Antibacterial Analysis.<br>Polymers, 2019, 11, 1559.                                                                                            | 4.5  | 16        |
| 22 | Structural characterization and thermal degradation of poly(methylmethacrylate)/zinc oxide<br>nanocomposites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 189-196.                           | 2.2  | 12        |
| 23 | Removal of Surfactant from Nanocomposites Films Based on Thermally Reduced Graphene Oxide and<br>Natural Rubber. Journal of Composites Science, 2019, 3, 31.                                                               | 3.0  | 6         |
| 24 | Transport Properties of One-Step Compression Molded Epoxy Nanocomposite Foams. Polymers, 2019, 11,<br>756.                                                                                                                 | 4.5  | 5         |
| 25 | Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers. Polymer, 2019, 175, 15-24.                                                                          | 3.8  | 82        |
| 26 | Multifunctional Silicone Rubber Nanocomposites by Controlling the Structure and Morphology of<br>Graphene Material. Polymers, 2019, 11, 449.                                                                               | 4.5  | 25        |
| 27 | Electro-mechanical actuation performance of SEBS/PU blends. Polymer, 2019, 171, 25-33.                                                                                                                                     | 3.8  | 27        |
| 28 | Preparation and Mechanical Properties of Graphene/Carbon Fiber-Reinforced Hierarchical Polymer<br>Composites. Journal of Composites Science, 2019, 3, 30.                                                                  | 3.0  | 39        |
| 29 | Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable<br>Self-Healing Styrene–Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires. Polymers,<br>2019, 11, 2122.  | 4.5  | 41        |
| 30 | A Methodology Towards Mechanical Properties Optimization of Three-Component Polymers by the<br>Gradual Variation of Feed Composition in Semi-Continuous Emulsion-Free Radical Polymerization.<br>Polymers, 2019, 11, 2125. | 4.5  | 2         |
| 31 | Synergistic icephobic behaviour of swollen nitrile butadiene rubber graphene and/or carbon nanotube composites. Composites Part B: Engineering, 2019, 166, 352-360.                                                        | 12.0 | 14        |
| 32 | Synthesis of fluorinated graphene oxide by using an easy one-pot deoxyfluorination reaction. Journal of Colloid and Interface Science, 2018, 524, 219-226.                                                                 | 9.4  | 32        |
| 33 | Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties. Composites Science and Technology, 2018, 166, 109-114.      | 7.8  | 51        |
| 34 | Main structural features of graphene materials controlling the transport properties of epoxy resin-based composites. European Polymer Journal, 2018, 101, 56-65.                                                           | 5.4  | 16        |
| 35 | A comparative study on the mechanical, electrical and piezoresistive properties of polymer composites using carbon nanostructures of different topology. European Polymer Journal, 2018, 99, 394-402.                      | 5.4  | 35        |
| 36 | Epoxy Nanocomposites Filled with Carbon Nanoparticles. Chemical Record, 2018, 18, 928-939.                                                                                                                                 | 5.8  | 22        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Rubber Nanocomposites for Extreme Environments: Critics and Counterintuitive Solutions. Frontiers in Materials, 2018, 5, .                                                                                                                                | 2.4  | 3         |
| 38 | Design of a new generation of sustainable SBR compounds with good trade-off between mechanical properties and self-healing ability. European Polymer Journal, 2018, 106, 273-283.                                                                         | 5.4  | 37        |
| 39 | Customizing thermally-reduced graphene oxides for electrically conductive or mechanical reinforced epoxy nanocomposites. European Polymer Journal, 2017, 93, 1-7.                                                                                         | 5.4  | 24        |
| 40 | Facile and Scalable One-Step Method for Amination of Graphene Using Leuckart Reaction. Chemistry of<br>Materials, 2017, 29, 6698-6705.                                                                                                                    | 6.7  | 41        |
| 41 | Development of conductive paraffin/graphene films laminated on fluoroelastomers with high strain recovery and anti-corrosive properties. Composites Science and Technology, 2017, 149, 254-261.                                                           | 7.8  | 11        |
| 42 | Influence of the morphology of carbon nanostructures on theÂpiezoresistivity of hybrid natural<br>rubber nanocomposites. Composites Part B: Engineering, 2017, 109, 147-154.                                                                              | 12.0 | 44        |
| 43 | In Vitro Evaluation of Biocompatibility of Uncoated Thermally Reduced Graphene and Carbon<br>Nanotube-Loaded PVDF Membranes with Adult Neural Stem Cell-Derived Neurons and Glia. Frontiers in<br>Bioengineering and Biotechnology, 2016, 4, 94.          | 4.1  | 29        |
| 44 | Effect of entanglements in the microstructure of cured NR/SBR blends prepared by solution and mixing in a two-roll mill. European Polymer Journal, 2016, 81, 365-375.                                                                                     | 5.4  | 33        |
| 45 | Synergistic effect of lactic acid oligomers and laminar graphene sheets on the barrier properties of polylactide nanocomposites obtained by the <i>in situ</i> polymerization preâ€incorporation method. Journal of Applied Polymer Science, 2016, 133, . | 2.6  | 15        |
| 46 | Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Composites Science and Technology, 2016, 128, 123-130.                                                                                              | 7.8  | 78        |
| 47 | Thermally reduced graphene is a permissive material for neurons and astrocytes and de novo neurogenesis in the adult olfactory bulb inÂvivo. Biomaterials, 2016, 82, 84-93.                                                                               | 11.4 | 42        |
| 48 | Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Composites Part B: Engineering, 2016, 87, 350-356.                                                             | 12.0 | 75        |
| 49 | Epoxy resin curing reaction studied by proton multiple-quantum NMR. Journal of Polymer Science,<br>Part B: Polymer Physics, 2015, 53, 1324-1332.                                                                                                          | 2.1  | 21        |
| 50 | On the use of ball milling to develop poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate)â€graphene<br>nanocomposites (II)—Mechanical, barrier, and electrical properties. Journal of Applied Polymer<br>Science, 2015, 132, .                               | 2.6  | 15        |
| 51 | Influence of the Surfactant Nature on the Occurrence of Self-Assembly between Rubber Particles and<br>Thermally Reduced Graphite Oxide during the Preparation of Natural Rubber Nanocomposites. Journal<br>of Nanomaterials, 2015, 2015, 1-7.             | 2.7  | 9         |
| 52 | Morphology and mechanical properties of nanostructured thermoset/block copolymer blends with carbon nanoparticles. Composites Part A: Applied Science and Manufacturing, 2015, 71, 136-143.                                                               | 7.6  | 30        |
| 53 | Use of graphite oxide and/or thermally reduced graphite oxide for the removal of dyes from water.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2015, 312, 88-95.                                                                           | 3.9  | 11        |
| 54 | Influence of the vulcanization system on the dynamics and structure of natural rubber: Comparative<br>study by means of broadband dielectric spectroscopy and solid-state NMR spectroscopy. European<br>Polymer Journal, 2015, 68, 90-103.                | 5.4  | 51        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | On the use of ball milling to develop PHBV–graphene nanocomposites (I)—Morphology, thermal properties, and thermal stability. Journal of Applied Polymer Science, 2015, 132, .                                                 | 2.6  | 17        |
| 56 | Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Progress in Polymer Science, 2015, 51, 188-211.                                                                         | 24.7 | 369       |
| 57 | Cold-functionalized graphene as conductive filler in UV-curable epoxy resin. Journal of Materials<br>Science, 2015, 50, 605-610.                                                                                               | 3.7  | 21        |
| 58 | SYNERGIC EFFECT OF TWO INORGANIC FILLERS ON THE MECHANICAL AND THERMAL PROPERTIES OF HYBRID POLYPROPYLENE COMPOSITES. Journal of the Chilean Chemical Society, 2014, 59, 2468-2473.                                            | 1.2  | 12        |
| 59 | Semiconductive bionanocomposites of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyhexanoate) and<br>MWCNTs for neural growth applications. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52,<br>349-360.        | 2.1  | 4         |
| 60 | Bismuth complex catalysts for the <i>in situ</i> preparation of polycaprolactone/silicate bionanocomposites. Polymer International, 2014, 63, 709-717.                                                                         | 3.1  | 8         |
| 61 | Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Advances, 2014, 4, 7911.                                                                                   | 3.6  | 59        |
| 62 | Effect of carbon nanofillers on flexible polyurethane foaming from a chemical and physical perspective. RSC Advances, 2014, 4, 20761.                                                                                          | 3.6  | 21        |
| 63 | High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology. Composites Part B: Engineering, 2014, 67, 449-454.                                                                        | 12.0 | 58        |
| 64 | Quantitative mapping of mechanical properties in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by nanoindentation with atomic force microscopy. Composites Science and Technology, 2014, 104, 34-39. | 7.8  | 43        |
| 65 | Pyroshock testing on graphene based EPDM nanocomposites. Composites Part B: Engineering, 2014, 60, 479-484.                                                                                                                    | 12.0 | 21        |
| 66 | Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 2014, 93-94, 78-84.                                                                             | 5.2  | 24        |
| 67 | Effect of mesogenic organic salts on vulcanization and physical properties of rubber compounds.<br>Polymer International, 2014, 63, 136-144.                                                                                   | 3.1  | 5         |
| 68 | Graphene materials with different structures prepared from the same graphite by the Hummers and<br>Brodie methods. Carbon, 2013, 65, 156-164.                                                                                  | 10.3 | 345       |
| 69 | Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation. Carbohydrate Polymers, 2013, 96, 621-627.                                                                            | 10.2 | 94        |
| 70 | Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydrate Polymers, 2013, 96, 611-620.                                                                          | 10.2 | 104       |
| 71 | The role of carbon nanotubes in both physical and chemical liquid–solid transition of polydimethylsiloxane. European Polymer Journal, 2013, 49, 1373-1380.                                                                     | 5.4  | 9         |
| 72 | Structure and Segmental Dynamics Relationship in Natural Rubber/Layered Silicate Nanocomposites<br>during Uniaxial Deformation. Macromolecules, 2013, 46, 3176-3182.                                                           | 4.8  | 16        |

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. European Polymer Journal, 2013, 49, 1347-1353.    | 5.4  | 236       |
| 74 | Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 2013, 38, 1720-1747.                                       | 24.7 | 527       |
| 75 | Graphene oxide–epoxy hybrid material as innovative photocatalyst. Journal of Materials Science, 2013,<br>48, 5204-5208.                                                    | 3.7  | 12        |
| 76 | Effect of Mesogenic Organic Salts on Vulcanization and Physical Properties of Natural Rubber<br>Compounds. Materials Research Society Symposia Proceedings, 2012, 1483, 9. | 0.1  | 0         |
| 77 | Towards materials with enhanced electro-mechanical response: CaCu3Ti4O12–polydimethylsiloxane composites. Journal of Materials Chemistry, 2012, 22, 24705.                 | 6.7  | 72        |
| 78 | Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering. Soft Matter, 2012, 8, 8990.             | 2.7  | 51        |
| 79 | Overall performance of natural rubber/graphene nanocomposites. Composites Science and Technology, 2012, 73, 40-46.                                                         | 7.8  | 195       |
| 80 | Effect of hard segment content and carbon-based nanostructures on the kinetics of flexible polyurethane nanocomposite foams. Polymer, 2012, 53, 4025-4032.                 | 3.8  | 23        |
| 81 | Role of Vulcanizing Additives on the Segmental Dynamics of Natural Rubber. Macromolecules, 2012, 45, 1070-1075.                                                            | 4.8  | 54        |
| 82 | Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. Journal of Materials Science, 2012, 47, 5673-5679.             | 3.7  | 50        |
| 83 | Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Composites Science and Technology, 2012, 72, 305-313.              | 7.8  | 112       |
| 84 | Cationic photocured epoxy nanocomposites filled with different carbon fillers. Polymer, 2012, 53, 1831-1838.                                                               | 3.8  | 58        |
| 85 | Effects of Strain-Induced Crystallization on the Segmental Dynamics of Vulcanized Natural Rubber.<br>Macromolecules, 2011, 44, 6574-6580.                                  | 4.8  | 49        |
| 86 | Reactive Nanocomposite Foams. Frontiers in Forests and Global Change, 2011, 30, 45-62.                                                                                     | 1.1  | 19        |
| 87 | Epoxy-Graphene UV-cured nanocomposites. Polymer, 2011, 52, 4664-4669.                                                                                                      | 3.8  | 142       |
| 88 | Modification of carbon nanotubes with well-controlled fluorescent styrene-based polymers using the Diels–Alder reaction. Polymer, 2011, 52, 5739-5745.                     | 3.8  | 15        |
| 89 | Structure and properties of polylactide/natural rubber blends. Materials Chemistry and Physics, 2011, 129, 823-831.                                                        | 4.0  | 228       |
| 90 | Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Research<br>Letters, 2011, 6, 508.                                                 | 5.7  | 107       |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites.<br>Nanoscale Research Letters, 2011, 6, 610.                                                          | 5.7  | 99        |
| 92  | Graphene filled polymer nanocomposites. Journal of Materials Chemistry, 2011, 21, 3301-3310.                                                                                                        | 6.7  | 666       |
| 93  | In situ Foaming Evolution of Flexible Polyurethane Foam Nanocomposites. Macromolecular Chemistry<br>and Physics, 2011, 212, 971-979.                                                                | 2.2  | 53        |
| 94  | Recent Advances in Clay/Polymer Nanocomposites. Advanced Materials, 2011, 23, 5229-5236.                                                                                                            | 21.0 | 262       |
| 95  | Electrodeposition of transparent and conducting graphene/carbon nanotube thin films. Physica<br>Status Solidi (A) Applications and Materials Science, 2010, 207, 2461-2466.                         | 1.8  | 58        |
| 96  | Novel Experimental Approach To Evaluate Fillerâ^'Elastomer Interactions. Macromolecules, 2010, 43, 334-346.                                                                                         | 4.8  | 163       |
| 97  | Use of butylamine modified graphene sheets in polymer solar cells. Journal of Materials Chemistry, 2010, 20, 995-1000.                                                                              | 6.7  | 99        |
| 98  | Molecular dynamics of natural rubber as revealed by dielectric spectroscopy: The role of natural cross–linking. Soft Matter, 2010, 6, 3636.                                                         | 2.7  | 47        |
| 99  | Morphology and Photoelectrical Properties of Solution Processable Butylamine-Modified Graphene-<br>and Pyrene-Based Organic Semiconductor. Journal of Physical Chemistry C, 2010, 114, 11252-11257. | 3.1  | 17        |
| 100 | Molecular Dynamics of Natural Rubber/Layered Silicate Nanocomposites As Studied by Dielectric Relaxation Spectroscopy. Macromolecules, 2010, 43, 643-651.                                           | 4.8  | 94        |
| 101 | Effects of functionalized carbon nanotubes in peroxide crosslinking of diene elastomers. European<br>Polymer Journal, 2009, 45, 1017-1023.                                                          | 5.4  | 21        |
| 102 | Confinement of Functionalized Graphene Sheets by Triblock Copolymers. Journal of Physical Chemistry C, 2009, 113, 17973-17978.                                                                      | 3.1  | 38        |
| 103 | Phosphonium salt intercalated montmorillonites. Applied Clay Science, 2009, 43, 27-32.                                                                                                              | 5.2  | 44        |
| 104 | Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification With Butylamine. Chemistry of Materials, 2009, 21, 3433-3438.                                                 | 6.7  | 151       |
| 105 | Fluid dynamics of evolving foams. Physical Chemistry Chemical Physics, 2009, 11, 10860.                                                                                                             | 2.8  | 27        |
| 106 | Miscibility–dispersion, interfacial strength and nanoclay mobility relationships in polymer<br>nanocomposites. Soft Matter, 2009, 5, 3481.                                                          | 2.7  | 21        |
| 107 | The Development of Proton Conducting Polymer Membranes for Fuel Cells Using Sulfonated Carbon Nanofibres. Macromolecular Rapid Communications, 2008, 29, 234-238.                                   | 3.9  | 16        |
| 108 | Sulfonation of vulcanized ethylene–propylene–diene terpolymer membranes. Acta Materialia, 2008, 56,<br>4780-4788.                                                                                   | 7.9  | 13        |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Effect of montmorillonite intercalant structure on the cure parameters of natural rubber. European<br>Polymer Journal, 2008, 44, 3108-3115.                                                                                      | 5.4  | 55        |
| 110 | Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. European Polymer Journal, 2008, 44, 2790-2797.                                                                            | 5.4  | 118       |
| 111 | Natural rubber/clay nanocomposites: Influence of poly(ethylene glycol) on the silicate dispersion and<br>local chain order of rubber network. European Polymer Journal, 2008, 44, 3493-3500.                                     | 5.4  | 44        |
| 112 | Carbon nanotubes provide self-extinguishing grade to silicone-based foams. Journal of Materials<br>Chemistry, 2008, 18, 3933.                                                                                                    | 6.7  | 73        |
| 113 | Effect of Nanoclay on Natural Rubber Microstructure. Macromolecules, 2008, 41, 6763-6772.                                                                                                                                        | 4.8  | 144       |
| 114 | Functionalized graphene sheet filled silicone foam nanocomposites. Journal of Materials Chemistry, 2008, 18, 2221.                                                                                                               | 6.7  | 330       |
| 115 | Real-Time Crystallization of Organoclay Nanoparticle Filled Natural Rubber under Stretching.<br>Macromolecules, 2008, 41, 2295-2298.                                                                                             | 4.8  | 61        |
| 116 | Thermoplastic Olefin/Clay Nanocomposites. Effect of Matrix Composition, and Organoclay and<br>Compatibilizer Structure on Morphology/Properties Relationships. Journal of Nanoscience and<br>Nanotechnology, 2007, 7, 4456-4464. | 0.9  | 11        |
| 117 | Millable Polyurethane/Organoclay Nanocomposites: Preparation, Characterization, and Properties.<br>Journal of Nanoscience and Nanotechnology, 2007, 7, 634-640.                                                                  | 0.9  | 8         |
| 118 | Novel anhydrous unfolded structure by heating of acid pre-treated sepiolite. Applied Clay Science, 2007, 36, 245-255.                                                                                                            | 5.2  | 69        |
| 119 | Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Composites Science and Technology, 2007, 67, 1330-1339.                                                            | 7.8  | 167       |
| 120 | Degree of functionalization of carbon nanofibers with benzenesulfonic groups in an acid medium.<br>Carbon, 2007, 45, 1669-1678.                                                                                                  | 10.3 | 43        |
| 121 | Gas transport properties of polypropylene/clay composite membranes. European Polymer Journal, 2007,<br>43, 1132-1143.                                                                                                            | 5.4  | 118       |
| 122 | Rubber network in elastomer nanocomposites. European Polymer Journal, 2007, 43, 4143-4150.                                                                                                                                       | 5.4  | 75        |
| 123 | Poly(2,6-dimethyl-1,4-phenylene oxide) mixed matrix pervaporation membranes. Desalination, 2006, 200, 376-378.                                                                                                                   | 8.2  | 4         |
| 124 | Characterization of the reactivity of a silica derived from acid activation of sepiolite with silane by 29Si and 13C solid-state NMR. Journal of Colloid and Interface Science, 2006, 298, 794-804.                              | 9.4  | 31        |
| 125 | Relevant Features of Bentonite Modification with a Phosphonium Salt. Journal of Nanoscience and<br>Nanotechnology, 2006, 6, 2151-2154.                                                                                           | 0.9  | 19        |
| 126 | Influence of Reaction Parameters on Size and Shape of Silica Nanoparticles. Journal of Nanoscience<br>and Nanotechnology, 2006, 6, 3343-3346.                                                                                    | 0.9  | 24        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Melt grafting of itaconic acid and its derivatives onto an ethylene-propylene copolymer. Reactive and<br>Functional Polymers, 2005, 64, 169-178.                                                    | 4.1  | 20        |
| 128 | Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer, 2005, 46, 9881-9891.  | 3.8  | 85        |
| 129 | Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon, 2005, 43, 1499-1505.                                              | 10.3 | 586       |
| 130 | Preparation and Characterization of Thermoplastic Vulcanizates-Organoclay Nanocomposites.<br>Materials Science Forum, 2005, 480-481, 333-338.                                                       | 0.3  | 2         |
| 131 | Chain Order and Cross-Link Density of Elastomers As Investigated by Proton Multiple-Quantum NMR.<br>Macromolecules, 2005, 38, 9650-9660.                                                            | 4.8  | 125       |
| 132 | Chemical Shift-Related Artifacts in NMR Determinations of Proton Residual Dipolar Couplings in Elastomers. Macromolecules, 2005, 38, 4040-4042.                                                     | 4.8  | 24        |
| 133 | Mechanical properties of polypropylene matrix composites reinforced with natural fibers: A statistical approach. Polymer Composites, 2004, 25, 26-36.                                               | 4.6  | 74        |
| 134 | Effects of carbon nanotubes on the crystallization behavior of polypropylene. Polymer Engineering and Science, 2004, 44, 303-311.                                                                   | 3.1  | 102       |
| 135 | Cure characteristics, mechanical properties, and morphological studies of linoleum flour-filled NBR compounds. Polymer Engineering and Science, 2004, 44, 909-916.                                  | 3.1  | 12        |
| 136 | Organoclay–natural rubber nanocomposites synthesized by mechanical and solution mixing methods.<br>Polymer International, 2004, 53, 1766-1772.                                                      | 3.1  | 125       |
| 137 | Behavior of poly(ethylene-co-olefin) polymers as elastomeric materials. Journal of Applied Polymer<br>Science, 2004, 92, 3008-3015.                                                                 | 2.6  | 13        |
| 138 | Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber. Journal of Applied Polymer Science, 2004, 92, 3394-3400.                | 2.6  | 134       |
| 139 | Novel Approach of Evaluating Polymer Nanocomposite Structure by Measurements of the Freezing-Point Depression. Macromolecular Rapid Communications, 2004, 25, 1309-1313.                            | 3.9  | 32        |
| 140 | Use of Monomethyl Itaconate Grafted Poly(propylene)(PP) and Ethylene Propylene Rubber(EPR) as<br>Compatibilizers for PP/EPR Blends. Macromolecular Materials and Engineering, 2003, 288, 875-885.   | 3.6  | 18        |
| 141 | Vulcanization kinetics of natural rubber-organoclay nanocomposites. Journal of Applied Polymer<br>Science, 2003, 89, 1-15.                                                                          | 2.6  | 202       |
| 142 | Physical and mechanical behavior of single-walled carbon<br>nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites. Journal of Applied Polymer<br>Science, 2003, 89, 2657-2663.      | 2.6  | 132       |
| 143 | Effect of monomethyl itaconate-grafted HDPE and EPR on the compatibility and properties of HDPE-EPR blends. Journal of Applied Polymer Science, 2003, 89, 2239-2248.                                | 2.6  | 9         |
| 144 | Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. Journal of Applied Polymer Science, 2003, 90, 2170-2178. | 2.6  | 96        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer, 2003, 44, 2447-2453.                                                                                     | 3.8 | 622       |
| 146 | Preparation and characterization of organoclay nanocomposites based on natural rubber. Polymer<br>International, 2003, 52, 1070-1077.                                                               | 3.1 | 132       |
| 147 | Ternary composites based on PP-EPDM blends reinforced with flax fibers. Part I: Processing and thermal behavior. Polymer Engineering and Science, 2003, 43, 1018-1030.                              | 3.1 | 12        |
| 148 | Ternary composites based on PP-EPDM blends reinforced with flax fibers. Part II: Mechanical properties/morphology relationship. Polymer Engineering and Science, 2003, 43, 1031-1043.               | 3.1 | 14        |
| 149 | Optimisation of nanocomposites based on polypropylene/polyethylene blends and organo-bentonite.<br>Journal of Materials Chemistry, 2003, 13, 2915-2921.                                             | 6.7 | 21        |
| 150 | Comparative Study of the Effects of Different Fibers on the Processing and Properties of<br>Polypropylene Matrix Composites. Journal of Thermoplastic Composite Materials, 2002, 15, 337-353.       | 4.2 | 20        |
| 151 | Analysis of the effects of the polymerization route of ethylene-propylene-diene rubbers (EPDM) on the properties of polypropylene-EPDM blends. Journal of Applied Polymer Science, 2002, 85, 25-37. | 2.6 | 5         |
| 152 | Short fibers as reinforcement of rubber compounds. Polymer Composites, 2002, 23, 666-673.                                                                                                           | 4.6 | 38        |
| 153 | Comparative study of the effects of different fibers on the processing and properties of ternary composites based on PP-EPDM blends. Polymer Composites, 2002, 23, 779-789.                         | 4.6 | 42        |
| 154 | Rheological behavior and processability of polypropylene blends with rubber ethylene propylene diene<br>terpolymer. Journal of Applied Polymer Science, 2001, 81, 1-10.                             | 2.6 | 44        |
| 155 | Kinetic crystallization of polypropylene in ternary composites based on fiber-reinforced PP-EPDM blends. Journal of Applied Polymer Science, 2001, 81, 1063-1074.                                   | 2.6 | 10        |
| 156 | Effect of Grafted PP on the Properties of Thermoplastic Elastomers Based on PP-EPDM Blends.<br>Macromolecular Chemistry and Physics, 2001, 202, 1909-1916.                                          | 2.2 | 14        |
| 157 | Effect of the incorporation of pet fibers on the properties of thermoplastic elastomer based on PP/elastomer blends. Polymer, 2001, 42, 6557-6563.                                                  | 3.8 | 33        |
| 158 | Effects of reinforcing fibers on the crystallization of polypropylene. Polymer Engineering and Science, 2000, 40, 2194-2204.                                                                        | 3.1 | 83        |
| 159 | Polypropylene Crystallization in an Ethylene-propylene-diene Rubber Matrix. Magyar Apróvad<br>Közlemények, 2000, 61, 437-450.                                                                       | 1.4 | 23        |
| 160 | Effect of interface on the morphology and properties of composites comprising poly(propylene) and short organic fibers. Angewandte Makromolekulare Chemie, 1999, 265, 20-24.                        | 0.2 | 7         |
| 161 | Processing, properties and morphology of polypropyleneâ€epdm blends. Macromolecular Symposia, 1999,<br>148, 345-360.                                                                                | 0.7 | 11        |
| 162 | Crystallization kinetics of polypropylene: 1. Effect of small additions of low-density polyethylene.<br>Polymer, 1996, 37, 5681-5688.                                                               | 3.8 | 73        |

| #   | Article                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | PP/LDPE blends filled with short polyamide fibers. Angewandte Makromolekulare Chemie, 1995, 226, 129-141.   | 0.2 | 8         |
| 164 | Impact Behaviour of Modified Talc Filled PP/LDPE Blends. Journal of Polymer Engineering, 1995, 14, .        | 1.4 | 3         |
| 165 | Effects of Orientation on the Segmental Dynamics of Natural Rubber. Materials Science Forum, 0, 714, 57-61. | 0.3 | 1         |