Aitor Nogales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3556507/publications.pdf Version: 2024-02-01

ALTOP NOCALES

#	Article	IF	CITATIONS
1	Identification of Amino Acid Residues Required for Inhibition of Host Gene Expression by Influenza Virus A/Viet Nam/1203/2004 H5N1 PA-X. Journal of Virology, 2022, 96, JVI0040821.	3.4	7
2	The Combined Expression of the Nonstructural Protein NS1 and the N-Terminal Half of NS2 (NS2) Tj ETQq0 0 (Bluetongue Virus Challenge. Journal of Virology, 2022, 96, JVI0161421.) rgBT /Ove 3.4	rlock 10 Tf 50 5
3	Generation and Characterization of Single-Cycle Infectious A (sciCIV) and Its Use as Vaccine Platform. Methods in Molecular Biology, 2022, 2465, 227-255.	0.9	0
4	Mutation L319Q in the PB1 Polymerase Subunit Improves Attenuation of a Candidate Live-Attenuated Influenza A Virus Vaccine. Microbiology Spectrum, 2022, 10, e0007822.	3.0	4
5	Vaccinia Virus Attenuation by Codon Deoptimization of the A24R Gene for Vaccine Development. Microbiology Spectrum, 2022, 10, e0027222.	3.0	12
6	Generation, Characterization, and Applications of Influenza A Reporter Viruses. Methods in Molecular Biology, 2022, , 249-268.	0.9	2
7	Dung biomass smoke exposure impairs resolution of inflammatory responses to influenza infection. Toxicology and Applied Pharmacology, 2022, 450, 116160.	2.8	4
8	Immunity to Influenza Infection in Humans. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038729.	6.2	8
9	Replication-Competent ΔNS1 Influenza A Viruses Expressing Reporter Genes. Viruses, 2021, 13, 698.	3.3	2
10	Amino Acid Residues Involved in Inhibition of Host Gene Expression by Influenza A/Brevig Mission/1/1918 PA-X. Microorganisms, 2021, 9, 1109.	3.6	4
11	A New Master Donor Virus for the Development of Live-Attenuated Influenza B Virus Vaccines. Viruses, 2021, 13, 1278.	3.3	2
12	Natural Selection of H5N1 Avian Influenza A Viruses with Increased PA-X and NS1 Shutoff Activity. Viruses, 2021, 13, 1760.	3.3	10
13	Viral Vector Vaccines against Bluetongue Virus. Microorganisms, 2021, 9, 42.	3.6	14
14	Bi-Reporter Vaccinia Virus for Tracking Viral Infections <i>In Vitro</i> and <i>In Vivo</i> . Microbiology Spectrum, 2021, 9, e0160121.	3.0	10
15	Cross-protective immune responses against African horse sickness virus after vaccination with protein NS1 delivered by avian reovirus muNS microspheres and modified vaccinia virus Ankara. Vaccine, 2020, 38, 882-889.	3.8	11
16	Inhibition of Orbivirus Replication by Aurintricarboxylic Acid. International Journal of Molecular Sciences, 2020, 21, 7294.	4.1	10
17	Identification of Inhibitors of ZIKV Replication. Viruses, 2020, 12, 1041.	3.3	17
18	A protective bivalent vaccine against Rift Valley fever and bluetongue. Npj Vaccines, 2020, 5, 70.	6.0	22

#	Article	IF	CITATIONS
19	Influenza Virus and Vaccination. Pathogens, 2020, 9, 220.	2.8	5
20	Heterologous Combination of ChAdOx1 and MVA Vectors Expressing Protein NS1 as Vaccination Strategy to Induce Durable and Cross-Protective CD8+ T Cell Immunity to Bluetongue Virus. Vaccines, 2020, 8, 346.	4.4	15
21	AGL2017-82570-RReverse genetics approaches for the development of new vaccines against influenza A virus infections. Current Opinion in Virology, 2020, 44, 26-34.	5.4	7
22	Identification and Characterization of Novel Compounds with Broad-Spectrum Antiviral Activity against Influenza A and B Viruses. Journal of Virology, 2020, 94, .	3.4	48
23	In vivo rescue of recombinant Zika virus from an infectious cDNA clone and its implications in vaccine development. Scientific Reports, 2020, 10, 512.	3.3	14
24	Increasing the Safety Profile of the Master Donor Live Attenuated Influenza Vaccine. Pathogens, 2020, 9, 86.	2.8	18
25	A Broad and Potent H1-Specific Human Monoclonal Antibody Produced in Plants Prevents Influenza Virus Infection and Transmission in Guinea Pigs. Viruses, 2020, 12, 167.	3.3	7
26	A Lassa Fever Live-Attenuated Vaccine Based on Codon Deoptimization of the Viral Glycoprotein Gene. MBio, 2020, 11, .	4.1	34
27	A Live Attenuated Influenza Vaccine Elicits Enhanced Heterologous Protection When the Internal Genes of the Vaccine Are Matched to Those of the Challenge Virus. Journal of Virology, 2020, 94, .	3.4	18
28	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
29	Editorial overview: Virus reverse genetics approaches for the development of preventive and therapeutic vaccines. Current Opinion in Virology, 2020, 44, iii-iv.	5.4	1
30	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
31	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		Ο
32	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
33	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		Ο
34	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
35	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
36	Rescue of Recombinant Zika Virus from a Bacterial Artificial Chromosome cDNA Clone. Journal of Visualized Experiments, 2019, , .	0.3	20

#	Article	IF	CITATIONS
37	A Bivalent Live-Attenuated Vaccine for the Prevention of Equine Influenza Virus. Viruses, 2019, 11, 933.	3.3	10
38	Comparative Study of the Temperature Sensitive, Cold Adapted and Attenuated Mutations Present in the Master Donor Viruses of the Two Commercial Human Live Attenuated Influenza Vaccines. Viruses, 2019, 11, 928.	3.3	21
39	Interferon-Induced Protein 44 Interacts with Cellular FK506-Binding Protein 5, Negatively Regulates Host Antiviral Responses, and Supports Virus Replication. MBio, 2019, 10, .	4.1	88
40	A Luciferase-fluorescent Reporter Influenza Virus for Live Imaging and Quantification of Viral Infection. Journal of Visualized Experiments, 2019, , .	0.3	14
41	Influenza Viruses in Mice: Deep Sequencing Analysis of Serial Passage and Effects of Sialic Acid Structural Variation. Journal of Virology, 2019, 93, .	3.4	15
42	Host Single Nucleotide Polymorphisms Modulating Influenza A Virus Disease in Humans. Pathogens, 2019, 8, 168.	2.8	28
43	Aryl and Arylalkyl Substituted 3â€Hydroxypyridinâ€2(1 H)â€ones: Synthesis and Evaluation as Inhibitors of Influenzaâ€A Endonuclease. ChemMedChem, 2019, 14, 1204-1223.	3.2	4
44	Novel Approaches for The Development of Live Attenuated Influenza Vaccines. Viruses, 2019, 11, 190.	3.3	44
45	Potent Inhibition of Zika Virus Replication by Aurintricarboxylic Acid. Frontiers in Microbiology, 2019, 10, 718.	3.5	22
46	A Novel Fluorescent and Bioluminescent Bireporter Influenza A Virus To Evaluate Viral Infections. Journal of Virology, 2019, 93, .	3.4	43
47	Broad and Protective Influenza B Virus Neuraminidase Antibodies in Humans after Vaccination and their Clonal Persistence as Plasma Cells. MBio, 2019, 10, .	4.1	24
48	Broad Hemagglutinin-Specific Memory B Cell Expansion by Seasonal Influenza Virus Infection Reflects Early-Life Imprinting and Adaptation to the Infecting Virus. Journal of Virology, 2019, 93, .	3.4	50
49	A natural polymorphism in Zika virus NS2A protein responsible of virulence in mice. Scientific Reports, 2019, 9, 19968.	3.3	23
50	Functional Characterization and Direct Comparison of Influenza A, B, C, and D NS1 Proteins in vitro and in vivo. Frontiers in Microbiology, 2019, 10, 2862.	3.5	27
51	Modeling Arboviral Infection in Mice Lacking the Interferon Alpha/Beta Receptor. Viruses, 2019, 11, 35.	3.3	24
52	Mammalian Adaptation of an Avian Influenza A Virus Involves Stepwise Changes in NS1. Journal of Virology, 2018, 92, .	3.4	31
53	Development of a novel equine influenza virus live-attenuated vaccine. Virology, 2018, 516, 76-85.	2.4	26
54	A Highly Potent and Broadly Neutralizing H1 Influenza-Specific Human Monoclonal Antibody. Scientific Reports, 2018, 8, 4374.	3.3	49

#	Article	IF	CITATIONS
55	Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses, 2018, 10, 708.	3.3	66
56	ldentification of Amino Acid Residues Responsible for Inhibition of Host Gene Expression by Influenza A H9N2 NS1 Targeting of CPSF30. Frontiers in Microbiology, 2018, 9, 2546.	3.5	15
57	Reverse Genetic Approaches for the Generation of Recombinant Zika Virus. Viruses, 2018, 10, 597.	3.3	23
58	An Alanine-to-Valine Substitution in the Residue 175 of Zika Virus NS2A Protein Affects Viral RNA Synthesis and Attenuates the Virus In Vivo. Viruses, 2018, 10, 547.	3.3	32
59	Temperature Sensitive Mutations in Influenza A Viral Ribonucleoprotein Complex Responsible for the Attenuation of the Live Attenuated Influenza Vaccine. Viruses, 2018, 10, 560.	3.3	36
60	Cigarette smoke dampens antiviral signaling in small airway epithelial cells by disrupting TLR3 cleavage. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L505-L513.	2.9	33
61	Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice. PLoS ONE, 2018, 13, e0193680.	2.5	23
62	Crowd on a Chip: Label-Free Human Monoclonal Antibody Arrays for Serotyping Influenza. Analytical Chemistry, 2018, 90, 9583-9590.	6.5	19
63	Functional Evolution of the 2009 Pandemic H1N1 Influenza Virus NS1 and PA in Humans. Journal of Virology, 2018, 92, .	3.4	42
64	A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology, 2017, 504, 96-106.	2.4	27
65	Reverse Genetics of Influenza B Viruses. Methods in Molecular Biology, 2017, 1602, 205-238.	0.9	21
66	NS1 Protein Amino Acid Changes D189N and V194l Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses. Journal of Virology, 2017, 91, .	3.4	43
67	Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. Journal of Virology, 2017, 91, .	3.4	23
68	The K186E Amino Acid Substitution in the Canine Influenza Virus H3N8 NS1 Protein Restores Its Ability To Inhibit Host Gene Expression. Journal of Virology, 2017, 91, .	3.4	25
69	Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo. Scientific Reports, 2017, 7, 10857.	3.3	29
70	Influenza A Virus Studies in a Mouse Model of Infection. Journal of Visualized Experiments, 2017, , .	0.3	26
71	Oxygen-dependent changes in lung development do not affect epithelial infection with influenza A virus. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L940-L949.	2.9	4
72	Interplay of PA-X and NS1 Proteins in Replication and Pathogenesis of a Temperature-Sensitive 2009 Pandemic H1N1 Influenza A Virus. Journal of Virology, 2017, 91, .	3.4	48

#	Article	IF	CITATIONS
73	Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses. Journal of Virology, 2017, 91, .	3.4	51
74	A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses. Vaccine, 2017, 35, 4374-4381.	3.8	14
75	Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology, 2017, 500, 1-10.	2.4	28
76	Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein. Virology, 2017, 501, 35-46.	2.4	48
77	Reverse Genetics Approaches for the Development of Influenza Vaccines. International Journal of Molecular Sciences, 2017, 18, 20.	4.1	90
78	Antigenicity of the 2015–2016 seasonal H1N1 human influenza virus HA and NA proteins. PLoS ONE, 2017, 12, e0188267.	2.5	46
79	Replication-Competent Influenza A Viruses Expressing Reporter Genes. Viruses, 2016, 8, 179.	3.3	57
80	Mutagenesis of Coronavirus nsp14 Reveals Its Potential Role in Modulation of the Innate Immune Response. Journal of Virology, 2016, 90, 5399-5414.	3.4	110
81	Rearrangement of Influenza Virus Spliced Segments for the Development of Live-Attenuated Vaccines. Journal of Virology, 2016, 90, 6291-6302.	3.4	44
82	NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses. Journal of Virology, 2016, 90, 9693-9711.	3.4	34
83	Antisense Oligonucleotides Targeting Influenza A Segment 8 Genomic RNA Inhibit Viral Replication. Nucleic Acid Therapeutics, 2016, 26, 277-285.	3.6	34
84	Replication-competent fluorescent-expressing influenza B virus. Virus Research, 2016, 213, 69-81.	2.2	37
85	Development and applications of single-cycle infectious influenza A virus (scilAV). Virus Research, 2016, 216, 26-40.	2.2	43
86	Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies. PLoS ONE, 2016, 11, e0147723.	2.5	32
87	Mutations Designed by Ensemble Defect to Misfold Conserved RNA Structures of Influenza A Segments 7 and 8 Affect Splicing and Attenuate Viral Replication in Cell Culture. PLoS ONE, 2016, 11, e0156906.	2.5	26
88	Development of a Mouse-Adapted Live Attenuated Influenza Virus That Permits <i>In Vivo</i> Analysis of Enhancements to the Safety of Live Attenuated Influenza Virus Vaccine. Journal of Virology, 2015, 89, 3421-3426.	3.4	37
89	Replication-competent influenza A viruses expressing a red fluorescent protein. Virology, 2015, 476, 206-216.	2.4	70
90	Development of Live-Attenuated Arenavirus Vaccines Based on Codon Deoptimization. Journal of Virology, 2015, 89, 3523-3533.	3.4	65

#	Article	IF	CITATIONS
91	Identification of a Gamma Interferon-Activated Inhibitor of Translation-Like RNA Motif at the 3′ End of the Transmissible Gastroenteritis Coronavirus Genome Modulating Innate Immune Response. MBio, 2015, 6, e00105.	4.1	19
92	Competitive detection of influenza neutralizing antibodies using a novel bivalent fluorescence-based microneutralization assay (BiFMA). Vaccine, 2015, 33, 3562-3570.	3.8	23
93	Downregulating viral gene expression: codon usage bias manipulation for the generation of novel influenza A virus vaccines. Future Virology, 2015, 10, 715-730.	1.8	33
94	Engineering Infectious cDNAs of Coronavirus as Bacterial Artificial Chromosomes. Methods in Molecular Biology, 2015, 1282, 135-152.	0.9	20
95	Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals. Journal of Virology, 2014, 88, 10778-10791.	3.4	83
96	Influenza A Virus Attenuation by Codon Deoptimization of the NS Gene for Vaccine Development. Journal of Virology, 2014, 88, 10525-10540.	3.4	133
97	Transmissible Gastroenteritis Coronavirus RNA-Dependent RNA Polymerase and Nonstructural Proteins 2, 3, and 8 Are Incorporated into Viral Particles. Journal of Virology, 2012, 86, 1261-1266.	3.4	13
98	Immunogenic characterization and epitope mapping of transmissible gastroenteritis virus RNA dependent RNA polymerase. Journal of Virological Methods, 2011, 175, 7-13.	2.1	7
99	Host cell proteins interacting with the 3′ end of TGEV coronavirus genome influence virus replication. Virology, 2009, 391, 304-314.	2.4	63
100	A Guide to Signaling Pathways Connecting Protein-Glycan Interaction with the Emerging Versatile Effector Functionality of Mammalian Lectins. Trends in Glycoscience and Glycotechnology, 2006, 18, 1-37.	0.1	103
101	Construction of a Severe Acute Respiratory Syndrome Coronavirus Infectious cDNA Clone and a Replicon To Study Coronavirus RNA Synthesis. Journal of Virology, 2006, 80, 10900-10906.	3.4	198
102	The adaptor Grb7 is a novel calmodulin-binding protein: functional implications of the interaction of calmodulin with Grb7. Oncogene, 2005, 24, 4206-4219.	5.9	29