
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3556168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and characterization of epitaxially grown yttria-stabilized zirconia thin films on porous silicon substrates for solid oxide fuel cell applications. Journal of the Ceramic Society of Japan, 2022, 130, 464-470.	1.1	2
2	Female C57BL/6 and BALB/c mice differently use the acoustic features of male ultrasonic vocalizations for social preferences. Experimental Animals, 2020, 69, 319-325.	1.1	8
3	Dynamic Aurora PLD with Si and porous Si to prepare ZnFe ₂ 0 ₄ Thin films for liquefied petroleum gas sensing. Journal of the Ceramic Society of Japan, 2020, 128, 457-463.	1.1	2
4	Emerging Functions of Nanostructured Porous Silicon—With a Focus on the Emissive Properties of Photons, Electrons, and Ultrasound. Frontiers in Chemistry, 2019, 7, 273.	3.6	10
5	Improved quasiballistic electron emission from a nanocrystalline Si cold cathode with a monolayer-graphene surface electrode. Applied Physics Letters, 2018, 112, 133102.	3.3	19
6	Reduced energy-angle dispersion of output electrons from a nanocrystalline Si emitter with a monolayergraphene surface electrode. , 2018, , .		0
7	Mechanism of Liquid-Phase Reductive Thin-Film Deposition under Quasiballistic Electron Incidence. ECS Journal of Solid State Science and Technology, 2018, 7, Q222-Q227.	1.8	3
8	Female mice exhibit both sexual and social partner preferences for vocalizing males. Integrative Zoology, 2018, 13, 735-744.	2.6	23
9	Mutual mother-infant recognition in mice: The role of pup ultrasonic vocalizations. Behavioural Brain Research, 2017, 325, 138-146.	2.2	58
10	Liquid-phase deposition of thin Si and Ge films based on ballistic hot electron incidence. Materials Science in Semiconductor Processing, 2017, 70, 44-49.	4.0	8
11	Development of massively parallel electron beam direct write lithography using active-matrix nanocrystalline-silicon electron emitter arrays. Microsystems and Nanoengineering, 2015, 1, .	7.0	41
12	Deposition of thin Si and Ge films by ballistic hot electron reduction in a solution-dripping mode and its application to the growth of thin SiGe films. Japanese Journal of Applied Physics, 2015, 54, 04DH11.	1.5	3
13	Determining Ultrasonic Vocalization Preferences in Mice using a Two-choice Playback Test. Journal of Visualized Experiments, 2015, , .	0.3	9
14	An LSI for Massive Parallel Electron Beam Lithography: Its Design and Evaluation. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 374-381.	0.1	4
15	Review of Development and Performance Evaluation of Active-matrix Nanocrystalline Si Electron Emitter Array for Massively Parallel Electron Beam Direct-write Lithography. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 221-229.	0.1	0
16	Developmental Social Environment Imprints Female Preference for Male Song in Mice. PLoS ONE, 2014, 9, e87186.	2.5	59
17	Development of MEMS pierce-type nanocrystalline Si electron-emitter array for massively parallel electron beam direct writing. , 2014, , .		3
18	Magnetic interactions between metal nanostructures within porous silicon. Nanoscale Research Letters, 2014, 9, 412.	5.7	10

#	Article	IF	CITATIONS
19	Low-Temperature Deposition of Thin Si, Ge, and SiGe Films Using Reducing Activity of Ballistic Hot Electrons. ECS Transactions, 2014, 64, 405-410.	0.5	1
20	Fabrication of Pierce-Type Nanocrystalline Si Electron-Emitter Array for Massively Parallel Electron Beam Lithography. IEEJ Transactions on Sensors and Micromachines, 2014, 134, 146-153.	0.1	3
21	Characteristics of thermally induced acoustic emission from nanoporous silicon device under full digital operation. Applied Physics Letters, 2013, 102, .	3.3	21
22	Theory of quasiballistic transport through nanocrystalline silicon dots. Applied Physics Letters, 2011, 98, .	3.3	34
23	Ballistic electron emission from quantum-sized nanosilicon diode and its applications. Current Opinion in Solid State and Materials Science, 2011, 15, 183-187.	11.5	32
24	Energy transfer from phosphorescent blue-emitting oxidized porous silicon to rhodamine 110. Applied Physics Letters, 2010, 97, .	3.3	7
25	Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing. Applied Physics Letters, 2010, 97, 121111.	3.3	16
26	Development of dry-processed silicon nanodot planar cold cathode and its electron emission properties. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C2B6-C2B10.	1.2	6
27	Thin Cu Film Deposition by Operation of Nanosilicon Ballistic Electron Emitter in Solution. Electrochemical and Solid-State Letters, 2010, 13, D73.	2.2	17
28	Avalanche multiplication of photocarriers in nanometer-sized silicon dot layers. Applied Physics Letters, 2009, 95, 063109.	3.3	6
29	Long-lived blue phosphorescence of oxidized and annealed nanocrystalline silicon. Applied Physics Letters, 2009, 94, .	3.3	29
30	Characteristics of nanosilicon ballistic cold cathode in aqueous solutions as an active electrode. Journal of Vacuum Science & Technology B, 2008, 26, 716-719.	1.3	18
31	Specific spectral features in electron emission from nanocrystalline silicon quasi-ballistic cold cathode detected by an angle-resolved high resolution analyzer. Journal of Vacuum Science & Technology B, 2008, 26, 1782.	1.3	14
32	Effect of Bilayer Structure on the Long-Term Stability of Nanocrystalline Porous Silicon Ultrasonic Emitter. Japanese Journal of Applied Physics, 2007, 46, 6218-6221.	1.5	0
33	Synthesis and Optical Properties of Silicon Oxide Nanowires. Materials Research Society Symposia Proceedings, 2006, 958, 1.	0.1	Ο
34	Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter. Applied Physics Letters, 2006, 88, 043902.	3.3	27
35	Nanocrystalline Silicon and Field Emission Display Devices. Shinku/Journal of the Vacuum Society of Japan, 2006, 49, 757-762.	0.2	0
36	Phased array operation of nanocrystalline porous silicon ultrasonic emitters. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3298-3302.	0.8	12

#	Article	IF	CITATIONS
37	Electron-phonon Interaction in Si Quantum Dots Interconnected with Thin Oxide Layers. AIP Conference Proceedings, 2005, , .	0.4	Ο
38	Mechanism of a remarkable enhancement in the light emission from nanocrystalline porous silicon annealed in high-pressure water vapor. Journal of Applied Physics, 2005, 98, 123509.	2.5	77
39	Ballistic transport mode detected by picosecond time-of-flight measurements for nanocrystalline porous silicon layer. Applied Physics Letters, 2005, 86, 022102.	3.3	22
40	Correlation between nanostructure and electron emission characteristics of a ballistic electron surface-emitting device. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1372.	1.6	24
41	Annealing effects on the operation stability of ballistic electron emission from electrochemically oxidized nanocrystalline silicon diodes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1784.	1.6	17
42	Improved Optoelectronic Characteristics of Nanocrystalline Porous Silicon by High-Pressure Water Vapor Annealing. Materials Research Society Symposia Proceedings, 2004, 832, 239.	0.1	0
43	A solid-state light-emitting device based on ballistic electron excitation using an inorganic material as a fluorescent film. Physica Status Solidi A, 2003, 197, 316-320.	1.7	5
44	Effects of Amorphous Carbon Films on the Performance of Porous Silicon Electroluminescence. Materials Research Society Symposia Proceedings, 2002, 737, 594.	0.1	0
45	Generation of ballistic electrons in nanocrystalline porous silicon layers and its application to a solid-state planar luminescent device. Applied Physics Letters, 2002, 81, 2472-2474.	3.3	59
46	14.1: Invited Paper: Fabrication of Ballistic Electron Surface-Emitting Display on Glass Substrate. Digest of Technical Papers SID International Symposium, 2001, 32, 188.	0.3	3
47	Efficient and ballistic cold electron emission from porous polycrystalline silicon diodes with a porosity multilayer structure. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 64.	1.6	29
48	Ballistic Electron Surface-Emitting Cold Cathode by Porous Polycrystalline Silicon Film Formed on Glass Substrate. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	6
49	28.4: Matrix Flatâ€Panel Application of Ballistic Electron Surfaceâ€Emitting Display. Digest of Technical Papers SID International Symposium, 2000, 31, 428-431.	0.3	10
50	Title is missing!. Journal of Porous Materials, 2000, 7, 73-76.	2.6	3
51	Significant photoinduced refractive index change observed in porous silicon Fabry–Pérot resonators. Applied Physics Letters, 2000, 76, 1990-1992.	3.3	31
52	Light-emissive nonvolatile memory effects in porous silicon diodes. Applied Physics Letters, 1999, 74, 93-95.	3.3	35
53	Fabrication and characteristics of three-dimensionally buried porous silicon optical waveguides. Journal of Applied Physics, 1999, 86, 5274-5278.	2.5	30
54	Activation of blue emission from oxidized porous silicon by annealing in water vapor. Journal of Applied Physics, 1998, 83, 1776-1778.	2.5	34

4

#	Article	IF	CITATIONS
55	Photoluminescence decay dynamics of ion-irradiated porous silicon: Evidence for the absence of carrier migration. Applied Physics Letters, 1998, 73, 2334-2336.	3.3	10
56	Characteristics of Surface-Emitting Cold Cathode Based on Porous Polysilicon. Materials Research Society Symposia Proceedings, 1998, 509, 187.	0.1	19
57	Photo- and Electro-Luminescence from Deuterium Terminated Porous Silicon. Materials Research Society Symposia Proceedings, 1997, 486, 181.	0.1	1
58	Mechanism of the visible electroluminescence from metal/porous silicon/n-Si devices. Journal of Applied Physics, 1997, 81, 1407-1412.	2.5	57
59	Oxideâ€free blue photoluminescence from photochemically etched porous silicon. Applied Physics Letters, 1996, 69, 3779-3781.	3.3	133
60	Control of structure and optical anisotropy in porous Si by magneticâ€field assisted anodization. Applied Physics Letters, 1996, 69, 3206-3208.	3.3	26
61	Optical Properties of Deuterium Terminated Porous Silicon. Materials Research Society Symposia Proceedings, 1996, 452, 449.	0.1	6
62	Fabrication and fundamental properties of an edgeâ€emitting device with stepâ€index porous silicon waveguide. Applied Physics Letters, 1996, 68, 2999-3000.	3.3	33
63	Controlled electroluminescence spectra of porous silicon diodes with a vertical optical cavity. Applied Physics Letters, 1996, 69, 2956-2958.	3.3	59
64	Precisely tuned emission from porous silicon vertical optical cavity in the visible region. Journal of Applied Physics, 1996, 80, 4841-4844.	2.5	30
65	Photoelectronic properties of porous silicon. Journal of Applied Physics, 1994, 76, 1986-1988.	2.5	40
66	Postâ€anodization filtered illumination of porous silicon in HF solutions: An effective method to improve luminescence properties. Applied Physics Letters, 1994, 65, 1656-1658.	3.3	42
67	Photoâ€assisted tuning of luminescence from porous silicon. Journal of Applied Physics, 1993, 74, 6365-6367.	2.5	57
68	Paramagnetic center in porous silicon: A dangling bond withC3vsymmetry. Applied Physics Letters, 1993, 63, 961-963.	3.3	20
69	Electrical quenching of photoluminescence from porous silicon. Applied Physics Letters, 1993, 62, 3177-3179.	3.3	39
70	Porous Silicon Hyomen Kagaku, 1993, 14, 85-89.	0.0	0
71	Photointercalation characteristics of thin WO3films. Journal of Applied Physics, 1992, 71, 398-402.	2.5	12
72	Optoelectronic Characterizations of Porous Silicon. Materials Research Society Symposia Proceedings, 1992, 283, 337.	0.1	13

#	Article	IF	CITATIONS
73	Visible electroluminescence from porous silicon. Applied Physics Letters, 1992, 60, 347-349.	3.3	671
74	Structure and Visible Luminescence of Porous Silicon Hyomen Kagaku, 1992, 13, 402-408.	0.0	0
75	Characterization Studies of pâ€Type Porous Si and Its Photoelectrochemical Activation. Journal of the Electrochemical Society, 1991, 138, 837-841.	2.9	24
76	Visible Electro- and Photoluminescence from Porous Silicon and its Related Optoelectronic Properties. Materials Research Society Symposia Proceedings, 1991, 256, 219.	0.1	21
77	Ion implantation studies of organic polymers Hyomen Kagaku, 1991, 12, 72-78.	0.0	Ο
78	Photointercalation effect of thin WO3films. Applied Physics Letters, 1990, 57, 1324-1325.	3.3	22
79	Electrical properties of ionâ€implanted polyacetylene films. Journal of Applied Physics, 1987, 61, 5487-5488.	2.5	9
80	Effects of electrode structure on output electron energy distribution of microchannel plates. Review of Scientific Instruments, 1986, 57, 354-358.	1.3	15
81	Properties of amorphous MoO3 film as an ion resist Shinku/Journal of the Vacuum Society of Japan, 1986, 29, 201-205.	0.2	0
82	Operating characteristics of a microchannel plate in the reflection mode for low-energy positive ions Shinku/Journal of the Vacuum Society of Japan, 1986, 29, 43-46.	0.2	0
83	Gain model for a microchannel plate operated in the reflection mode for detecting lowâ€energy positive ions. Review of Scientific Instruments, 1985, 56, 1332-1334.	1.3	1
84	Energy distribution of output electrons from a microchannel plate. Review of Scientific Instruments, 1985, 56, 1329-1331.	1.3	27
85	Gain characteristics of a microchannel plate operated in the reflection mode for lowâ€energy positive ions. Review of Scientific Instruments, 1984, 55, 783-785.	1.3	3
86	Application of ion implantation for doping of polyacetylene films. Applied Physics Letters, 1984, 45, 436-437.	3.3	27
87	Properties of Amorphous WO3 Film as an Ion-Beam Resist. Shinku/Journal of the Vacuum Society of Japan, 1984, 27, 596-599.	0.2	1
88	New operation mode of a microchannel plate for the detection of lowâ€energy positive ions. Review of Scientific Instruments, 1983, 54, 62-64.	1.3	11
89	Gain of a Microchannel Plate for Low-Energy Positive Ions. Shinku/Journal of the Vacuum Society of Japan, 1983, 26, 671-676.	0.2	3
90	Functional Device Applications of Nanosilicon. Key Engineering Materials, 0, 470, 20-26.	0.4	3