## Miguel A Blazquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355607/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reversion of fruitâ€dependent inhibition of flowering in Citrus requires sprouting of buds with epigenetically silenced CcMADS19. New Phytologist, 2022, 233, 526-533.                         | 7.3  | 9         |
| 2  | Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell and Developmental Biology, 2021, 109, 46-54.                                                          | 5.0  | 78        |
| 3  | A genetic approach reveals different modes of action of prefoldins. Plant Physiology, 2021, 187, 1534-1550.                                                                                    | 4.8  | 10        |
| 4  | Coordination between growth and stress responses by DELLA in the liverwort Marchantia polymorpha. Current Biology, 2021, 31, 3678-3686.e11.                                                    | 3.9  | 28        |
| 5  | Extremophilic bacteria restrict the growth of Macrophomina phaseolina by combined secretion of polyamines and lytic enzymes. Biotechnology Reports (Amsterdam, Netherlands), 2021, 32, e00674. | 4.4  | 9         |
| 6  | Fruitâ€dependent epigenetic regulation of flowering in <i>Citrus</i> . New Phytologist, 2020, 225, 376-384.                                                                                    | 7.3  | 37        |
| 7  | Prefoldins contribute to maintaining the levels of the spliceosome LSM2–8 complex through Hsp90 in<br>Arabidopsis. Nucleic Acids Research, 2020, 48, 6280-6293.                                | 14.5 | 20        |
| 8  | ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus<br>Trees. Frontiers in Plant Science, 2020, 11, 601858.                                        | 3.6  | 3         |
| 9  | Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology, 2020, 104, 8549-8565.                                                                         | 3.6  | 75        |
| 10 | COP1 destabilizes DELLA proteins in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13792-13799.                              | 7.1  | 84        |
| 11 | Plant vascular development: mechanisms and environmental regulation. Cellular and Molecular Life<br>Sciences, 2020, 77, 3711-3728.                                                             | 5.4  | 41        |
| 12 | Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts.<br>Nature Plants, 2020, 6, 259-272.                                                               | 9.3  | 225       |
| 13 | Evolution of Plant Hormone Response Pathways. Annual Review of Plant Biology, 2020, 71, 327-353.                                                                                               | 18.7 | 169       |
| 14 | The <scp>MPK</scp> 8â€ <scp>TCP</scp> 14 pathway promotes seed germination in Arabidopsis. Plant<br>Journal, 2019, 100, 677-692.                                                               | 5.7  | 29        |
| 15 | Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring<br>DsRED Fluorescence in Dry Seeds. Frontiers in Plant Science, 2019, 10, 1150.           | 3.6  | 56        |
| 16 | Origin of Gibberellin-Dependent Transcriptional Regulation by Molecular Exploitation of a<br>Transactivation Domain in DELLA Proteins. Molecular Biology and Evolution, 2019, 36, 908-918.     | 8.9  | 38        |
| 17 | Conservation of Thermospermine Synthase Activity in Vascular and Non-vascular Plants. Frontiers in<br>Plant Science, 2019, 10, 663.                                                            | 3.6  | 16        |
| 18 | The role of a class <scp>III</scp> gibberellin 2â€oxidase in tomato internode elongation. Plant Journal, 2019. 97. 603-615.                                                                    | 5.7  | 28        |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in<br>Arabidopsis thaliana. Journal of Experimental Botany, 2018, 69, 619-631.                                       | 4.8  | 48        |
| 20 | Reduction of indoleâ€3â€acetic acid methyltransferase activity compensates for highâ€ŧemperature male<br>sterility in Arabidopsis. Plant Biotechnology Journal, 2018, 16, 272-279.                               | 8.3  | 13        |
| 21 | Regulation of xylem fibers differentiation by gibberellins through DELLA-KNAT1 interaction.<br>Development (Cambridge), 2018, 145, .                                                                             | 2.5  | 25        |
| 22 | Long-day photoperiod enhances jasmonic acid-related plant defense. Plant Physiology, 2018, 178, pp.00443.2018.                                                                                                   | 4.8  | 20        |
| 23 | β-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis<br>thaliana. Plant and Cell Physiology, 2018, 59, 2086-2098.                                                    | 3.1  | 20        |
| 24 | Auxin methylation is required for differential growth in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6864-6869.                             | 7.1  | 37        |
| 25 | Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports, 2017, 7, 16813.                                                  | 3.3  | 61        |
| 26 | Evolutionary Analysis of DELLA-Associated Transcriptional Networks. Frontiers in Plant Science, 2017,<br>8, 626.                                                                                                 | 3.6  | 35        |
| 27 | The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nature Communications, 2015, 6, 6202.                                                             | 12.8 | 96        |
| 28 | TCP14 and TCP15 Mediate the Promotion of Seed Germination by Gibberellins in Arabidopsis thaliana.<br>Molecular Plant, 2015, 8, 482-485.                                                                         | 8.3  | 139       |
| 29 | Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 2015, 25, 1483-1488.                                                                                             | 3.9  | 131       |
| 30 | A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 2015, 35, 432-443.                                                                                               | 7.0  | 96        |
| 31 | Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive<br>Genes by DELLA Proteins. PLoS Genetics, 2015, 11, e1005337.                                                    | 3.5  | 99        |
| 32 | Gibberellin Implication in Plant Growth and Stress Responses. , 2014, , 119-161.                                                                                                                                 |      | 5         |
| 33 | The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953. | 5.7  | 104       |
| 34 | Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE<br>RESPONSE FACTORS as Functional DELLA Partners. Plant Physiology, 2014, 166, 1022-1032.                     | 4.8  | 124       |
| 35 | AUXIN BINDING PROTEIN1 Links Cell Wall Remodeling, Auxin Signaling, and Cell Expansion in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 280-295.                                                                   | 6.6  | 71        |
| 36 | Spatial control of plant steroid signaling. Trends in Plant Science, 2013, 18, 235-236.                                                                                                                          | 8.8  | 9         |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Genomic Analysis of DELLA Protein Activity. Plant and Cell Physiology, 2013, 54, 1229-1237.                                                                                                                                                                       | 3.1 | 108       |
| 38 | Dynamic Regulation of Cortical Microtubule Organization through Prefoldin-DELLA Interaction.<br>Current Biology, 2013, 23, 804-809.                                                                                                                               | 3.9 | 124       |
| 39 | Thermospermine levels are controlled by an auxinâ€dependent feedback loop mechanism in<br><i>Populus</i> xylem. Plant Journal, 2013, 75, 685-698.                                                                                                                 | 5.7 | 57        |
| 40 | Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science, 2013, 4, 441.                                                                                                                                                        | 3.6 | 98        |
| 41 | Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava.<br>Journal of Experimental Botany, 2013, 64, 1393-1402.                                                                                                           | 4.8 | 49        |
| 42 | Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways<br>in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of<br>America, 2012, 109, 13446-13451.                         | 7.1 | 327       |
| 43 | Integral Control of Plant Gravitropism through the Interplay of Hormone Signaling and Gene<br>Regulation. Biophysical Journal, 2011, 101, 757-763.                                                                                                                | 0.5 | 10        |
| 44 | DELLA-Induced Early Transcriptional Changes during Etiolated Development in Arabidopsis thaliana.<br>PLoS ONE, 2011, 6, e23918.                                                                                                                                   | 2.5 | 63        |
| 45 | Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant Journal, 2011, 67, 622-634.                                                                                                                                                 | 5.7 | 92        |
| 46 | Polarization of PIN3â€dependent auxin transport for hypocotyl gravitropic response in <i>Arabidopsis<br/>thaliana</i> . Plant Journal, 2011, 67, 817-826.                                                                                                         | 5.7 | 171       |
| 47 | A Hormonal Regulatory Module That Provides Flexibility to Tropic Responses  Â. Plant Physiology, 2011,<br>156, 1819-1825.                                                                                                                                         | 4.8 | 33        |
| 48 | In search for the role of thermospermine synthase gene in poplar vascular development. BMC<br>Proceedings, 2011, 5, .                                                                                                                                             | 1.6 | 1         |
| 49 | Can plant biotechnology help in solving our food and energy shortage in the future?. Current<br>Opinion in Biotechnology, 2011, 22, 220-223.                                                                                                                      | 6.6 | 11        |
| 50 | Integrating circadian and gibberellin signaling in Arabidopsis. Plant Signaling and Behavior, 2011, 6,<br>1411-1413.                                                                                                                                              | 2.4 | 2         |
| 51 | Circadian oscillation of gibberellin signaling in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9292-9297.                                                                                     | 7.1 | 131       |
| 52 | Perturbation of <i>spermine synthase</i> Gene Expression and Transcript Profiling Provide New<br>Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against <i>Pseudomonas<br/>viridiflava</i> Â Â Â. Plant Physiology, 2011, 156, 2266-2277. | 4.8 | 93        |
| 53 | Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 2010, 48, 534-539.                                                                                                                                                           | 5.8 | 88        |
| 54 | Expression of polyamine biosynthesis genes during parthenocarpic fruit development in Citrus clementina. Planta, 2010, 231, 1401-1411.                                                                                                                            | 3.2 | 9         |

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Quantitation of biogenic tetraamines in Arabidopsis thaliana. Analytical Biochemistry, 2010, 397, 208-211.                                                                         | 2.4  | 29        |
| 56 | Transcriptional Diversification and Functional Conservation between DELLA Proteins in Arabidopsis.<br>Molecular Biology and Evolution, 2010, 27, 1247-1256.                        | 8.9  | 123       |
| 57 | Instructive roles for hormones in plant development. International Journal of Developmental<br>Biology, 2009, 53, 1597-1608.                                                       | 0.6  | 70        |
| 58 | Molecular interactions between light and hormone signaling to control plant growth. Plant<br>Molecular Biology, 2009, 69, 409-417.                                                 | 3.9  | 112       |
| 59 | Regulatory mechanisms of polyamine biosynthesis in plants. Genes and Genomics, 2009, 31, 107-118.                                                                                  | 1.4  | 32        |
| 60 | Fertilizationâ€dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant Journal, 2009, 58, 318-332.    | 5.7  | 219       |
| 61 | Hormonal regulation of temperatureâ€induced growth in Arabidopsis. Plant Journal, 2009, 60, 589-601.                                                                               | 5.7  | 271       |
| 62 | Manufacturing antibodies in the plant cell. Biotechnology Journal, 2009, 4, 1712-1724.                                                                                             | 3.5  | 23        |
| 63 | Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling deâ€etiolation in<br>darkness. Plant Journal, 2008, 53, 324-335.                                    | 5.7  | 160       |
| 64 | The <i>ABA1</i> gene and carotenoid biosynthesis are required for late skotomorphogenic growth in<br><i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2008, 31, 227-234. | 5.7  | 37        |
| 65 | A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451, 480-484.                                                                            | 27.8 | 1,053     |
| 66 | Phenotypic Analysis of Arabidopsis Mutants: Gibberellin/Abscisic Acid/Paclobutrazol Hormone<br>Response. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4964-pdb.prot4964.      | 0.3  | 3         |
| 67 | Phenotypic Analysis of Arabidopsis Mutants: Flowering Time. Cold Spring Harbor Protocols, 2008, 2008, 2008, pdb.prot4963-pdb.prot4963.                                             | 0.3  | 0         |
| 68 | Integration of light and hormone signals. Plant Signaling and Behavior, 2008, 3, 448-449.                                                                                          | 2.4  | 15        |
| 69 | Evolutionary Diversification in Polyamine Biosynthesis. Molecular Biology and Evolution, 2008, 25, 2119-2128.                                                                      | 8.9  | 150       |
| 70 | ACAULIS5 controls <i>Arabidopsis</i> xylem specification through the prevention of premature cell death. Development (Cambridge), 2008, 135, 2573-2582.                            | 2.5  | 140       |
| 71 | Quantitative CUS Activity Assay in Intact Plant Tissue. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4688-pdb.prot4688.                                                       | 0.3  | 12        |
| 72 | Quantitative GUS Activity Assay of Plant Extracts. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4690.                                                                         | 0.3  | 27        |

| #  | Article                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | How Floral Meristems are Built. Plant Molecular Biology, 2006, 60, 855-870.                                                                          | 3.9  | 160       |
| 74 | Transcriptional Regulation of Gibberellin Metabolism Genes by Auxin Signaling in Arabidopsis. Plant<br>Physiology, 2006, 142, 553-563.               | 4.8  | 255       |
| 75 | Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 2005, 57, 375-391. | 3.9  | 104       |
| 76 | PLANT SCIENCE: Enhanced: The Right Time and Place for Making Flowers. Science, 2005, 309, 1024-1025.                                                 | 12.6 | 34        |
| 77 | Preface - Plants develop and grow. International Journal of Developmental Biology, 2005, 49, 449-452.                                                | 0.6  | 1         |
| 78 | Gibberellins Repress Photomorphogenesis in Darkness. Plant Physiology, 2004, 134, 1050-1057.                                                         | 4.8  | 236       |
| 79 | Signalling for developmental plasticity. Trends in Plant Science, 2004, 9, 309-314.                                                                  | 8.8  | 117       |
| 80 | A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics, 2003, 33, 168-171.                                      | 21.4 | 420       |
| 81 | Independent Control of Gibberellin Biosynthesis and Flowering Time by the Circadian Clock in<br>Arabidopsis. Plant Physiology, 2002, 130, 1770-1775. | 4.8  | 67        |
| 82 | A Polyamine Metabolon Involving Aminopropyl Transferase Complexes in Arabidopsis. Plant Cell, 2002,<br>14, 2539-2551.                                | 6.6  | 159       |
| 83 | Integration of floral inductive signals in Arabidopsis. Nature, 2000, 404, 889-892.                                                                  | 27.8 | 458       |
| 84 | Arabidopsis Research 2000. Plant Cell, 2000, 12, 2302.                                                                                               | 6.6  | 0         |
| 85 | Activation Tagging in Arabidopsis. Plant Physiology, 2000, 122, 1003-1014.                                                                           | 4.8  | 896       |
| 86 | Flower development pathways. Journal of Cell Science, 2000, 113, 3547-3548.                                                                          | 2.0  | 102       |
| 87 | Independent Regulation of Flowering by Phytochrome B and Gibberellins in Arabidopsis1. Plant<br>Physiology, 1999, 120, 1025-1032.                    | 4.8  | 93        |
| 88 | Isolation and molecular characterization of theArabidopsis TPS1gene, encoding trehaloseâ€6â€phosphate<br>synthase. Plant Journal, 1998, 13, 685-689. | 5.7  | 215       |
| 89 | Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter. Plant Cell, 1998, 10, 791-800.                                       | 6.6  | 519       |
| 90 | Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter. Plant Cell, 1998, 10,<br>791.                                        | 6.6  | 32        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Flowering-Time Genes Modulate the Response to LEAFY Activity. Genetics, 1998, 150, 403-410.                                                                                                                  | 2.9 | 151       |
| 92  | Disruption of the <i>Candida albicans TPS1</i> Gene Encoding Trehalose-6-Phosphate Synthase Impairs<br>Formation of Hyphae and Decreases Infectivity. Journal of Bacteriology, 1998, 180, 3809-3815.         | 2.2 | 121       |
| 93  | Illuminating flowers: CONSTANS inducesLEAFYexpression. BioEssays, 1997, 19, 277-279.                                                                                                                         | 2.5 | 11        |
| 94  | Schizosaccharomyces pombepossesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases. FEBS Letters, 1996, 378, 185-189.                               | 2.8 | 32        |
| 95  | Mode of action of the gcr9 and cat3 mutations in restoring the ability of Saccharomyces cerevisiae tps1 mutants to grow on glucose. Molecular Genetics and Genomics, 1995, 249, 655-664.                     | 2.4 | 23        |
| 96  | Lack of lactate-proton symport activity inpck1mutants ofSaccharomyces cerevisiae. FEMS<br>Microbiology Letters, 1995, 128, 279-282.                                                                          | 1.8 | 13        |
| 97  | A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants fromSaccharomyces cerevisiae. FEBS Letters, 1995, 377, 197-200.                                  | 2.8 | 29        |
| 98  | Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe. Journal of Bacteriology, 1994, 176, 3895-3902.                                       | 2.2 | 82        |
| 99  | Identification of extragenic suppressors of the cif1 mutation in Saccharomyces cerevisiae. Current<br>Genetics, 1994, 25, 89-94.                                                                             | 1.7 | 27        |
| 100 | Transport of lactate and its regulation inSaccharomyces cerevisiae mutants deficient in specific metabolic steps. Folia Microbiologica, 1994, 39, 512-512.                                                   | 2.3 | 0         |
| 101 | Use of Yarrowia lipolytica hexokinase for the quantitative determination of trehalose 6-phosphate.<br>FEMS Microbiology Letters, 1994, 121, 223-227.                                                         | 1.8 | 19        |
| 102 | Catabolite inactivation of heterologous fructose-1,6-bisphosphatases and<br>fructose-1,6-bisphosphatase-beta-galactosidase fusion proteins in Saccharomyces cerevisiae. FEBS<br>Journal, 1994, 222, 879-884. | 0.2 | 17        |
| 103 | Thefdp1andcif1mutations are caused by different single nucleotide changes in the yeastClF1gene. FEMS<br>Microbiology Letters, 1993, 107, 251-253.                                                            | 1.8 | 7         |
| 104 | Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Letters, 1993, 329, 51-54.                                                                                        | 2.8 | 291       |
| 105 | The fdp1 and cif1 mutations are caused by different single nucleotide changes in the yeast CIF1 gene.<br>FEMS Microbiology Letters, 1993, 107, 251-253.                                                      | 1.8 | 1         |
| 106 | Molecular cloning ofCIF1, a yeast gene necessary for growth on glucose. Yeast, 1992, 8, 183-192.                                                                                                             | 1.7 | 114       |