
Maurilio Sampaolesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3555379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 2005, 8, 211-226.	16.8	1,212
2	Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 2007, 9, 255-267.	10.3	899
3	Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 2006, 444, 574-579.	27.8	692
4	Cell Therapy of Â-Sarcoglycan Null Dystrophic Mice Through Intra-Arterial Delivery of Mesoangioblasts. Science, 2003, 301, 487-492.	12.6	593
5	Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death and Differentiation, 2007, 14, 1162-1171.	11.2	448
6	Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. Journal of Cell Biology, 2004, 164, 441-449.	5.2	428
7	Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials, 2005, 26, 4606-4615.	11.4	384
8	No Identical "Mesenchymal Stem Cells―at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels. Stem Cell Reports, 2016, 6, 897-913.	4.8	378
9	Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. Journal of Clinical Investigation, 2004, 114, 182-195.	8.2	315
10	Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nature Medicine, 2006, 12, 1147-1150.	30.7	294
11	Transplantation of Genetically Corrected Human iPSC-Derived Progenitors in Mice with Limb-Girdle Muscular Dystrophy. Science Translational Medicine, 2012, 4, 140ra89.	12.4	269
12	Autologous Transplantation of Muscle-Derived CD133+ Stem Cells in Duchenne Muscle Patients. Cell Transplantation, 2007, 16, 563-577.	2.5	214
13	Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators of Inflammation, 2015, 2015, 1-14.	3.0	197
14	Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. Journal of Cell Biology, 2006, 174, 231-243.	5.2	187
15	Differentiation Potential of Human Postnatal Mesenchymal Stem Cells, Mesoangioblasts, and Multipotent Adult Progenitor Cells Reflected in Their Transcriptome and Partially Influenced by the Culture Conditions. Stem Cells, 2011, 29, 871-882.	3.2	155
16	New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends in Molecular Medicine, 2007, 13, 520-526.	6.7	152
17	Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Research in Veterinary Science, 2011, 91, 18-24.	1.9	122
18	Isolation and Characterization of Mesoangioblasts from Mouse, Dog, and Human Tissues. Current Protocols in Stem Cell Biology, 2007, 3, Unit 2B.1.	3.0	104

#	Article	IF	CITATIONS
19	Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 2008, 15, 1417-1428.	11.2	94
20	Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death and Differentiation, 2006, 13, 2042-2051.	11.2	89
21	Mesoangioblasts, Vessel-Associated Multipotent Stem Cells, Repair the Infarcted Heart by Multiple Cellular Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 692-697.	2.4	88
22	Tuning Multi/Pluri-Potent Stem Cell Fate by Electrospun Poly(<scp>l</scp> -lactic) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 622	Td (acid)-Ca
23	Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. Journal of Biomedical Materials Research - Part A, 2008, 84A, 1094-1101.	4.0	82
24	Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise. EBioMedicine, 2017, 16, 30-40.	6.1	81
25	Cryopreservation Does Not Affect the Stem Characteristics of Multipotent Cells Isolated from Equine Peripheral Blood. Tissue Engineering - Part C: Methods, 2010, 16, 771-781.	2.1	80
26	miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. Journal of Cell Biology, 2011, 193, 1197-1212.	5.2	77
27	MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16995-17000.	7.1	75
28	Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell, 2021, 28, 1125-1135.e7.	11.1	72
29	Intrinsic cell memory reinforces myogenic commitment of pericyteâ€derived iPSCs. Journal of Pathology, 2011, 223, 593-603.	4.5	71
30	Interstitial Cell Remodeling Promotes Aberrant Adipogenesis in Dystrophic Muscles. Cell Reports, 2020, 31, 107597.	6.4	64
31	Molecular and cell-based therapies for muscle degenerations: a road under construction. Frontiers in Physiology, 2014, 5, 119.	2.8	61
32	New therapies for muscular dystrophy: cautious optimism. Trends in Molecular Medicine, 2004, 10, 516-520.	6.7	60
33	Longâ€Term <i>miRâ€669a</i> Therapy Alleviates Chronic Dilated Cardiomyopathy in Dystrophic Mice. Journal of the American Heart Association, 2013, 2, e000284.	3.7	56
34	Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle. Journal of Clinical Investigation, 2015, 125, 4463-4482.	8.2	56
35	Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters. American Journal of Physiology - Cell Physiology, 2001, 281, C690-C699.	4.6	52
36	Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. Journal of Muscle Research and Cell Motility, 2009, 30, 243-253.	2.0	52

#	Article	IF	CITATIONS
37	Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo. , 2011, 21, 304-316.		52
38	Lentiviral Vector Gene Transfer Is Limited by the Proteasome at Postentry Steps in Various Types of Stem Cells. Stem Cells, 2008, 26, 2142-2152.	3.2	51
39	Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration. Stem Cell Research and Therapy, 2017, 8, 175.	5.5	48
40	Human motor units in microfluidic devices are impaired by FUS mutations and improved by HDAC6 inhibition. Stem Cell Reports, 2021, 16, 2213-2227.	4.8	47
41	Human cardiac mesoangioblasts isolated from hypertrophic cardiomyopathies are greatly reduced in proliferation and differentiation potency. Cardiovascular Research, 2009, 83, 707-716.	3.8	46
42	Cell therapy strategies and improvements for muscular dystrophy. Cell Death and Differentiation, 2010, 17, 1222-1229.	11.2	45
43	NEU3 Sialidase Strictly Modulates GM3 Levels in Skeletal Myoblasts C2C12 Thus Favoring Their Differentiation and Protecting Them from Apoptosis. Journal of Biological Chemistry, 2008, 283, 36265-36271.	3.4	44
44	Transforming Growth Factor type \hat{I}^2 and Smad family signaling in stem cell function. Cytokine and Growth Factor Reviews, 2009, 20, 449-458.	7.2	43
45	Mouse and Human Mesoangioblasts: Isolation and Characterization from Adult Skeletal Muscles. Methods in Molecular Biology, 2012, 798, 65-76.	0.9	43
46	Interactions between microRNAs and long non-coding RNAs in cardiac development and repair. Pharmacological Research, 2018, 127, 58-66.	7.1	43
47	Actuation enhances patterning in human neural tube organoids. Nature Communications, 2021, 12, 3192.	12.8	43
48	Novel Hyperactive Transposons for Genetic Modification of Induced Pluripotent and Adult Stem Cells: A Nonviral Paradigm for Coaxed Differentiation. Stem Cells, 2010, 28, 1760-1771.	3.2	42
49	Interleukinâ€4 administration improves muscle function, adult myogenesis, and lifespan of colon carcinomaâ€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 783-801.	7.3	42
50	Myomir dysregulation and reactive oxygen species in aged human satellite cells. Biochemical and Biophysical Research Communications, 2016, 473, 462-470.	2.1	40
51	Role of miRNAs in Muscle Stem Cell Biology: Proliferation, Differentiation and Death. Current Pharmaceutical Design, 2012, 18, 1718-1729.	1.9	39
52	Magic-Factor 1, a Partial Agonist of Met, Induces Muscle Hypertrophy by Protecting Myogenic Progenitors from Apoptosis. PLoS ONE, 2008, 3, e3223.	2.5	36
53	miRNAs in ESC differentiation. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H931-H939.	3.2	35
54	Next-generation muscle-directed gene therapy by in silico vector design. Nature Communications, 2019, 10, 492.	12.8	35

#	Article	IF	CITATIONS
55	YAP–TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death and Differentiation, 2021, 28, 1193-1207.	11.2	33
56	Adult Stem Cells and Skeletal Muscle Regeneration. Current Gene Therapy, 2015, 15, 348-363.	2.0	33
57	Notch signaling regulates myogenic regenerative capacity of murine and human mesoangioblasts. Cell Death and Disease, 2014, 5, e1448-e1448.	6.3	32
58	Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering. International Journal of Molecular Sciences, 2018, 19, 3212.	4.1	32
59	Polyâ€ <scp>l</scp> â€Lactic Acid Nanofiber–Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing. Macromolecular Bioscience, 2016, 16, 1533-1544.	4.1	31
60	Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory Phenotype Impair Cardiac Regeneration and Function Independently of Age. Diabetes, 2022, 71, 1081-1098.	0.6	30
61	Implications for the mammalian sialidases in the physiopathology of skeletal muscle. Skeletal Muscle, 2012, 2, 23.	4.2	29
62	Autologous micrograft accelerates endogenous wound healing response through ERK-induced cell migration. Cell Death and Differentiation, 2020, 27, 1520-1538.	11.2	29
63	Syntrophin is an actin-binding protein the cellular localization of which is regulated through cytoskeletal reorganization in skeletal muscle cells. European Journal of Cell Biology, 2004, 83, 555-565.	3.6	28
64	Alpha sarcoglycan is required for FGF-dependent myogenic progenitor cell proliferation in vitro and in vivo. Development (Cambridge), 2011, 138, 4523-4533.	2.5	25
65	<i>piggyBac</i> transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Research, 2016, 44, 744-760.	14.5	25
66	Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports, 2016, 6, 55-63.	4.8	25
67	<i>In vitro</i> osteoblastic differentiation of human mesenchymal stem cells and human dental pulp stem cells on polyâ€ <scp>L</scp> â€lysineâ€treated titaniumâ€6â€aluminiumâ€4â€vanadium. Journal of Biomedi Materials Research - Part A, 2011, 97A, 118-126.	c a lo	24
68	Molecular signature of amniotic fluid derived stem cells in the fetal sheep model of myelomeningocele. Journal of Pediatric Surgery, 2015, 50, 1521-1527.	1.6	24
69	MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors. Nature Communications, 2017, 8, 1249.	12.8	24
70	MmNEU3 sialidase overâ€expression in C2C12 myoblasts delays differentiation and induces hypertrophic myotube formation. Journal of Cellular Biochemistry, 2012, 113, 2967-2978.	2.6	23
71	Aging affects the inÂvivo regenerative potential of human mesoangioblasts. Aging Cell, 2018, 17, e12714.	6.7	23
72	The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Advanced Drug Delivery Reviews, 2015, 88, 37-52.	13.7	22

#	Article	IF	CITATIONS
73	The Future of Induced Pluripotent Stem Cells for Cardiac Therapy and Drug Development. Current Pharmaceutical Design, 2011, 17, 3258-3270.	1.9	21
74	Myogenic Potential of Canine Craniofacial Satellite Cells. Frontiers in Aging Neuroscience, 2014, 6, 90.	3.4	21
75	Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 484-495.	2.7	21
76	Bisperoxovanadium, a phosphoâ€ŧyrosine phosphatase inhibitor, reprograms myogenic cells to acquire a pluripotent, circulating phenotype. FASEB Journal, 2007, 21, 3573-3583.	0.5	20
77	Synthetic sulfonyl-hydrazone-1 positively regulates cardiomyogenic microRNA expression and cardiomyocyte differentiation of induced pluripotent stem cells. Journal of Cellular Biochemistry, 2011, 112, 2006-2014.	2.6	20
78	Tissue clearing for confocal imaging of native and bio-artificial skeletal muscle. Biotechnic and Histochemistry, 2015, 90, 424-431.	1.3	20
79	Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nature Reviews Urology, 2017, 14, 373-385.	3.8	20
80	Alteration of Cardiac Progenitor Cell Potency in GRMD Dogs. Cell Transplantation, 2012, 21, 1945-1967.	2.5	19
81	Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. Journal of Molecular Cell Biology, 2016, 8, 73-87.	3.3	19
82	Molecular signature of progenitor cells isolated from young and adult human hearts. Scientific Reports, 2018, 8, 9266.	3.3	19
83	Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice. Aging, 2020, 12, 13939-13957.	3.1	19
84	Stretch-induced cell damage in sarcoglycan-deficient myotubes. Pflugers Archiv European Journal of Physiology, 2001, 442, 161-170.	2.8	18
85	Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Scientific Reports, 2018, 8, 2942.	3.3	18
86	Dystrophin deficiency leads to dysfunctional glutamate clearance in iPSC derived astrocytes. Translational Psychiatry, 2019, 9, 200.	4.8	18
87	Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Frontiers in Genetics, 2021, 12, 702547.	2.3	18
88	Sodium Iodide Symporter PET and BLI Noninvasively Reveal Mesoangioblast Survival in Dystrophic Mice. Stem Cell Reports, 2015, 5, 1183-1195.	4.8	17
89	MICAL2 is essential for myogenic lineage commitment. Cell Death and Disease, 2020, 11, 654.	6.3	17
90	Phosphocaveolin-1 Enforces Tumor Growth and Chemoresistance in Rhabdomyosarcoma. PLoS ONE, 2014, 9, e84618.	2.5	17

#	Article	IF	CITATIONS
91	Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells, 2021, 10, 3035.	4.1	17
92	The role of PKCÎμ-dependent signaling for cardiac differentiation. Histochemistry and Cell Biology, 2013, 139, 35-46.	1.7	16
93	Binding of sFRP-3 to EGF in the Extra-Cellular Space Affects Proliferation, Differentiation and Morphogenetic Events Regulated by the Two Molecules. PLoS ONE, 2008, 3, e2471.	2.5	16
94	Medical and Regenerative Solutions for Congenital Diaphragmatic Hernia: A Perinatal Perspective. European Journal of Pediatric Surgery, 2014, 24, 270-277.	1.3	15
95	Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo. Scientific Reports, 2016, 6, 31949.	3.3	15
96	Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy. Stem Cell Reports, 2022, 17, 352-368.	4.8	15
97	Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging. Stem Cells International, 2016, 2016, 1-20.	2.5	13
98	Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Frontiers in Physiology, 2020, 11, 945.	2.8	13
99	Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. International Journal of Molecular Sciences, 2021, 22, 1939.	4.1	13
100	Hamster Cardiomyocytes: a Model of Myocardial Regeneration?. Annals of the New York Academy of Sciences, 1995, 752, 65-71.	3.8	12
101	Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease–Mediated Genome Editing. Journal of Nuclear Medicine, 2017, 58, 1659-1665.	5.0	12
102	The human somatostatin receptor type 2 as an imaging and suicide reporter gene for pluripotent stem cell-derived therapy of myocardial infarction. Theranostics, 2018, 8, 2799-2813.	10.0	12
103	(Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives. Cells, 2019, 8, 429.	4.1	12
104	Growth Factor Screening in Dystrophic Muscles Reveals PDGFB/PDGFRB-Mediated Migration of Interstitial Stem Cells. International Journal of Molecular Sciences, 2019, 20, 1118.	4.1	12
105	Bedside to bench: a look at experimental research with a clinical trial checklist. Cardiovascular Research, 2014, 101, 1-3.	3.8	11
106	Metabolomic profile of amniotic fluid to evaluate lung maturity: the diaphragmatic hernia lamb model. Multidisciplinary Respiratory Medicine, 2014, 9, 54.	1.5	11
107	Activin A Modulates CRIPTO-1/HNF4 <i>α</i> ⁺ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells. Stem Cells International, 2017, 2017, 1-17.	2.5	11
108	Diet Modulation Restores Autophagic Flux in Damaged Skeletal Muscle Cells. Journal of Nutrition, Health and Aging, 2019, 23, 739-745.	3.3	11

#	Article	IF	CITATIONS
109	Cell therapy of primary myopathies. Archives Italiennes De Biologie, 2005, 143, 235-42.	0.4	11
110	Myogenic induction of adult and pluripotent stem cells using recombinant proteins. Biochemical and Biophysical Research Communications, 2015, 464, 755-761.	2.1	10
111	Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells International, 2016, 2016, 1-13.	2.5	10
112	Valproic acid stimulates myogenesis in pluripotent stem cell-derived mesodermal progenitors in a NOTCH-dependent manner. Cell Death and Disease, 2021, 12, 677.	6.3	10
113	Incomplete Assembly of the Dystrophin-Associated Protein Complex in 2D and 3D-Cultured Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 737840.	3.7	10
114	Atrial natriuretic factor (ANF) and ANF receptor C gene expression and localization in the respiratory system: effects induced by hypoxia and hemodynamic overload Endocrinology, 1996, 137, 4339-4350.	2.8	9
115	Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limbâ€girdle muscular dystrophy type 2E. Muscle and Nerve, 2018, 58, 133-144.	2.2	9
116	Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity. Cellular and Molecular Life Sciences, 2014, 71, 615-627.	5.4	8
117	Methotrexate and Valproic Acid Affect Early Neurogenesis of Human Amniotic Fluid Stem Cells from Myelomeningocele. Stem Cells International, 2017, 2017, 1-10.	2.5	8
118	Healthy, mtDNA-mutationÂfree mesoangioblasts from mtDNA patients qualify for autologous therapy. Stem Cell Research and Therapy, 2019, 10, 405.	5.5	8
119	Peer review: (r)evolution needed. Cardiovascular Research, 2017, 113, e54-e56.	3.8	7
120	Met-Activating Genetically Improved Chimeric Factor-1 Promotes Angiogenesis and Hypertrophy in Adult Myogenesis. Current Pharmaceutical Biotechnology, 2017, 18, 309-317.	1.6	7
121	Fate of mesoangioblasts in a vaginal birth injury model: influence of the route of administration. Scientific Reports, 2018, 8, 10604.	3.3	7
122	Zeb2 Regulates Myogenic Differentiation in Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 2525.	4.1	7
123	Correction: Corrigendum: Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 2013, 494, 506-506.	27.8	6
124	Nanocomposites Based on PLLA and Multi Walled Carbon Nanotubes Support the Myogenic Differentiation of Murine Myoblast Cell Line. ISRN Tissue Engineering, 2013, 2013, 1-8.	0.5	6
125	Exploring Wound-Healing Genomic Machinery with a Network-Based Approach. Pharmaceuticals, 2017, 10, 55.	3.8	6
126	Medicinal Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery and		6

Development. , 2019, , 89-128.

#	Article	IF	CITATIONS
127	In vivo stem cell tracking using scintigraphy in a canine model of DMD. Scientific Reports, 2020, 10, 10681.	3.3	6
128	Human fetal mesoangioblasts reveal tissue-dependent transcriptional signatures. Stem Cells Translational Medicine, 2020, 9, 575-589.	3.3	6
129	Upregulation of miR181a/miR212 Improves Myogenic Commitment in Murine Fusion-Negative Rhabdomyosarcoma. Frontiers in Physiology, 2021, 12, 701354.	2.8	6
130	Localization of Magic-F1 Transgene, Involved in Muscular Hypertrophy, during Early Myogenesis. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	5
131	Pluripotent Stem Cell Derivation and Differentiation Toward Cardiac Muscle: Novel Techniques and Advances in Patent Literature. Recent Patents on Drug Delivery and Formulation, 2013, 7, 18-28.	2.1	5
132	Activator Protein-1 Transcriptional Activity Drives Soluble Micrograft-Mediated Cell Migration and Promotes the Matrix Remodeling Machinery. Stem Cells International, 2019, 2019, 1-19.	2.5	5
133	InÂVivo Myoblasts Tracking Using the Sodium Iodide Symporter Gene Expression in Dogs. Molecular Therapy - Methods and Clinical Development, 2020, 17, 317-327.	4.1	5
134	Physiological and pathological gestational cardiac hypertrophy: what can we learn from rodents?. Cardiovascular Research, 2017, 113, 1533-1535.	3.8	4
135	Generation of Human Motor Units with Functional Neuromuscular Junctions in Microfluidic Devices. Journal of Visualized Experiments, 2021, , .	0.3	4
136	Sampaolesi et al. reply. Nature, 2007, 450, E23-E25.	27.8	3
137	Development of a New Tool for 3D Modeling for Regenerative Medicine. International Journal of Biomedical Imaging, 2011, 2011, 1-13.	3.9	3
138	Altered functional differentiation of mesoangioblasts in a genetic myopathy. Journal of Cellular and Molecular Medicine, 2013, 17, 419-428.	3.6	3
139	Isolation of Mammalian Mesoangioblasts: A Subset of Pericytes with Myogenic Potential. Methods in Molecular Biology, 2021, 2235, 155-167.	0.9	3
140	Comprehensive Overview of Non-coding RNAs in Cardiac Development. Advances in Experimental Medicine and Biology, 2020, 1229, 197-211.	1.6	3
141	Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands. Neuromuscular Disorders, 2021, 31, 673-680.	0.6	2
142	Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy. Molecular Therapy - Methods and Clinical Development, 2021, 23, 51-67.	4.1	2
143	Stem cell highways: signalling beats trafficking?. Cardiovascular Research, 2013, 100, 178-180.	3.8	1

Novel Therapeutic Approaches for Skeletal Muscle Dystrophies. , 2015, , .

1

0

#	Article	IF	CITATIONS
145	In the heart of the in vivo reprogramming. Stem Cell Investigation, 2018, 5, 38-38.	3.0	1
146	Pluripotent Stem Cells for Treating Heart Diseases. , 2019, , .		1
147	Unconventional Players on the Striated Muscle Field: microRNAs, Signaling Pathways and Epigenetic Regulators. Current Stem Cell Research and Therapy, 2016, 11, 554-560.	1.3	1
148	Stem Cells for the Treatment of Muscular Dystrophy. , 2009, , 543-550.		1
149	Abnormal calcium homeostasis and cell damage in dystrophic myotubes. Journal of Molecular and Cellular Cardiology, 2001, 33, A51.	1.9	0
150	Correction: Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. Journal of Cell Biology, 2006, 175, 361-361.	5.2	0
151	Correction: Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration abilit. Journal of Cell Biology, 2006, 174, 605-605.	5.2	0
152	Caffeine-induced Ca2+ signaling as an index of cardiac differentiation. Journal of Molecular and Cellular Cardiology, 2007, 42, S89-S90.	1.9	0
153	T.P.6.03 Restoring cell-basal lamina interaction to rescue tissue degeneration in congenital muscular dystrophy. Neuromuscular Disorders, 2009, 19, 633.	0.6	0
154	P4.35 In vivo stem cell tracking using scintigraphy in the GRMD dog. Neuromuscular Disorders, 2011, 21, 714-715.	0.6	0
155	Aberrant Functional Differentiation of Cardiac Precursors from a Dystrophic Mouse. Biophysical Journal, 2012, 102, 674a.	0.5	0
156	Stem Cells for the Treatment of Muscular Dystrophy. , 2013, , 641-651.		0
157	Stem Cells for the Treatment of Muscular Dystrophy. , 2014, , 529-542.		0
158	Atmospheric pressure non-thermal plasma for the production of composite materials. , 2015, , .		0
159	Welcome to Cardiovascular Research in 2015. Cardiovascular Research, 2015, 105, 1-2.	3.8	0
160	547: Amniotic fluid stem cells accelerate muscle regeneration. American Journal of Obstetrics and Gynecology, 2015, 212, S273.	1.3	0
161	628. Transposons Expressing Full-Length Human Dystrophin Enable Genetic Correction of Dystrophic Mesoangioblasts and iPS-Derived Mesoangioblast-Like Cells. Molecular Therapy, 2016, 24, S249.	8.2	0

162 Stem Cell Therapy in Muscle Degeneration. , 2017, , 55-91.

#	Article	IF	CITATIONS
163	Effect of simulated vaginal birth on urethral function and vaginal smooth muscle contractility. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2017, 211, 205.	1.1	0
164	Optimal delivery route of mesoangioblasts for stem cell therapy in rat model for simulated vaginal birth injury. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2017, 211, 206.	1.1	0
165	In vivo tracking of canine myoblasts mediated by the sodium iodide symporter gene expression. Neuromuscular Disorders, 2017, 27, S189.	0.6	0
166	Advanced Treatments and Emerging Therapies for Dystrophin- Deficient Cardiomyopathies. , 0, , .		0
167	Effect of frizzled related protein (FRZB) on muscles: an inverse relationship between FRZB and calpain-3 with potential impact on muscle dystrophy and osteoarthritis. Osteoarthritis and Cartilage, 2018, 26, S401.	1.3	0
168	Dental Pulp Stem Cells Promote Wound Healing and Muscle Regeneration. , 2018, , 221-240.		0
169	MicroRNAs (miRs) in Muscle Gene Therapy. , 2019, , 99-119.		0
170	Stem Cells for the Treatment of Muscular Dystrophy: More Than Wishful Thinking?. , 2004, , 721-729.		0
171	Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. Journal of Experimental Medicine, 2006, 203, i21-i21.	8.5	0
172	Pluripotent Stem Cell Derivation and Differentiation Toward Cardiac Muscle: Novel Techniques and Advances in Patent Literature. Recent Patents on Drug Delivery and Formulation, 2012, 7, 18-28.	2.1	0
173	Epigenetic modifications in induced pluripotent stem cells to boost myogenic commitment. , 2022, , 197-223.		Ο