
Gerard Muyzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3555238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59, 695-700.	1.4	9,925
2	The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 2008, 6, 441-454.	13.6	1,737
3	Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. , 1998, 73, 127-141.		1,726
4	Missing lithotroph identified as new planctomycete. Nature, 1999, 400, 446-449.	13.7	1,382
5	PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 1997, 63, 3327-3332.	1.4	1,206
6	Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 2010, 36, 230-235.	1.6	1,041
7	Phylogenetic relationships ofThiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Archives of Microbiology, 1995, 164, 165-172.	1.0	1,031
8	Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology, 1996, 62, 340-346.	1.4	795
9	DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 1999, 2, 317-322.	2.3	737
10	The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 1998, 22, 421-437.	3.9	660
11	The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. Biotechnology and Bioengineering, 2008, 101, 286-294.	1.7	458
12	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	9.4	457
13	Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Applied and Environmental Microbiology, 1996, 62, 1405-1415.	1.4	427
14	Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2000, 66, 499-508.	1.4	392
15	Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum <i>Chloroflexi</i> . ISME Journal, 2012, 6, 2245-2256.	4.4	345
16	Enrichment of a Mixed Bacterial Culture with a High Polyhydroxyalkanoate Storage Capacity. Biomacromolecules, 2009, 10, 670-676.	2.6	342
17	Optimization of Terminal-Restriction Fragment Length Polymorphism Analysis for Complex Marine Bacterioplankton Communities and Comparison with Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 1999, 65, 3518-3525.	1.4	320
18	Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles, 2014, 18, 791-809.	0.9	264

#	Article	IF	CITATIONS
19	The phylogeny of unicellular, extremely halotolerant cyanobacteria. Archives of Microbiology, 1998, 169, 469-482.	1.0	260
20	The Rise of the Rhizosolenid Diatoms. Science, 2004, 304, 584-587.	6.0	251
21	Structural and Functional Dynamics of Sulfate-Reducing Populations in Bacterial Biofilms. Applied and Environmental Microbiology, 1998, 64, 3731-3739.	1.4	250
22	Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats. Applied and Environmental Microbiology, 1999, 65, 422-430.	1.4	244
23	A COMPARISON OF TAXON CO-OCCURRENCE PATTERNS FOR MACRO- AND MICROORGANISMS. Ecology, 2007, 88, 1345-1353.	1.5	223
24	Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Applied Microbiology and Biotechnology, 2008, 78, 1045-1055.	1.7	217
25	Denaturing gradient gel electrophoresis in marine microbial ecology. Methods in Microbiology, 2001, 30, 425-468.	0.4	212
26	Phototrophic biofilms and their potential applications. Journal of Applied Phycology, 2008, 20, 227-235.	1.5	208
27	Diversity, Activity, and Abundance of Sulfate-Reducing Bacteria in Saline and Hypersaline Soda Lakes. Applied and Environmental Microbiology, 2007, 73, 2093-2100.	1.4	207
28	Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles, 2008, 12, 431-439.	0.9	207
29	The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes. Frontiers in Microbiology, 2011, 2, 44.	1.5	191
30	Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nature Microbiology, 2019, 4, 603-613.	5.9	187
31	Diversity of Sulfate-Reducing Bacteria in Oxic and Anoxic Regions of a Microbial Mat Characterized by Comparative Analysis of Dissimilatory Sulfite Reductase Genes. Applied and Environmental Microbiology, 1999, 65, 4666-4671.	1.4	184
32	Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Applied and Environmental Microbiology, 1996, 62, 3284-3291.	1.4	178
33	Bacteriophage Diversity in the North Sea. Applied and Environmental Microbiology, 1998, 64, 4128-4133.	1.4	178
34	Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth and Planetary Science Letters, 2004, 223, 225-239.	1.8	175
35	Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 1996, 62, 2059-2065.	1.4	173
36	Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microbiology Ecology, 2001, 34, 243-253.	1.3	168

#	Article	IF	CITATIONS
37	Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek, 1997, 71, 75-93.	0.7	167
38	Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Organic Geochemistry, 2004, 35, 1151-1167.	0.9	167
39	Genetic diversity of â€Â~satellite' bacteria present in cultures of marine diatoms. FEMS Microbiology Ecology, 2002, 42, 25-35.	1.3	165
40	Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Frontiers in Microbiology, 2016, 7, 211.	1.5	161
41	Unexpected Population Distribution in a Microbial Mat Community: Sulfate-Reducing Bacteria Localized to the Highly Oxic Chemocline in Contrast to a Eukaryotic Preference for Anoxia. Applied and Environmental Microbiology, 1999, 65, 4659-4665.	1.4	156
42	Rhizosphere Microbiomes of European + Seagrasses Are Selected by the Plant, But Are Not Species Specific. Frontiers in Microbiology, 2016, 7, 440.	1.5	153
43	Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure. Applied and Environmental Microbiology, 2011, 77, 7942-7953.	1.4	150
44	Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. Applied Microbiology and Biotechnology, 2012, 93, 1281-1294.	1.7	148
45	Spatial Heterogeneity of Bacterial Populations along an Environmental Gradient at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece). Applied and Environmental Microbiology, 1999, 65, 3834-3842.	1.4	144
46	Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Applied and Environmental Microbiology, 1996, 62, 4210-4215.	1.4	137
47	Polyhydroxybutyrate production from lactate using a mixed microbial culture. Biotechnology and Bioengineering, 2011, 108, 2022-2035.	1.7	132
48	Distribution of Sulfate-Reducing and Methanogenic Bacteria in Anaerobic Aggregates Determined by Microsensor and Molecular Analyses. Applied and Environmental Microbiology, 1999, 65, 4618-4629.	1.4	131
49	Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Science of the Total Environment, 2009, 407, 1333-1343.	3.9	130
50	Diversity of Thiosulfate-Oxidizing Bacteria from Marine Sediments and Hydrothermal Vents. Applied and Environmental Microbiology, 2000, 66, 3125-3133.	1.4	129
51	Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus) Tj ETQq1 1 (0.784314 1.0	rg <mark>BT</mark> /Overlo
52	Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Archives of Microbiology, 1995, 164, 165-172.	1.0	127
53	Nested PCR-Denaturing Gradient Gel Electrophoresis Approach To Determine the Diversity of Sulfate-Reducing Bacteria in Complex Microbial Communities. Applied and Environmental Microbiology, 2005, 71, 2325-2330.	1.4	125
54	Microheterogeneity in 16S Ribosomal DNA-Defined Bacterial Populations from a Stratified Planktonic Environment Is Related to Temporal Changes and to Ecological Adaptations. Applied and Environmental Microbiology, 2002, 68, 1706-1714.	1.4	124

#	Article	IF	CITATIONS
55	Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology, 2006, 24, 279-285.	1.3	122
56	Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Applied and Environmental Microbiology, 1995, 61, 2203-2210.	1.4	121
57	Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiology Ecology, 2004, 51, 55-70.	1.3	120
58	Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Marine Geology, 2005, 217, 67-96.	0.9	120
59	Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environmental Microbiology, 2007, 9, 26-38.	1.8	120
60	A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome, 2018, 6, 168.	4.9	120
61	Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiology Ecology, 2008, 64, 175-186.	1.3	119
62	A Vista for Microbial Ecology and Environmental Biotechnology. Environmental Science & Technology, 2006, 40, 1096-1103.	4.6	118
63	Analysis of Diversity and Activity of Sulfate-Reducing Bacterial Communities in Sulfidogenic Bioreactors Using 16S rRNA and dsrB Genes as Molecular Markers. Applied and Environmental Microbiology, 2007, 73, 594-604.	1.4	118
64	Bacterial activity and genetic richness along an estuarine gradient (Rhone River plume, France). Aquatic Microbial Ecology, 2002, 28, 13-24.	0.9	117
65	Functional microbiology of soda lakes. Current Opinion in Microbiology, 2015, 25, 88-96.	2.3	115
66	A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in quaternary marine sediments: indicators for high-nutrient conditions. Geochimica Et Cosmochimica Acta, 2003, 67, 1339-1348.	1.6	113
67	Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology (United Kingdom), 2004, 150, 2435-2442.	0.7	113
68	Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium <i>Microcystis</i> . ISME Journal, 2014, 8, 589-600.	4.4	113
69	Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Applied and Environmental Microbiology, 1997, 63, 3789-3796.	1.4	112
70	Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nature Communications, 2014, 5, 3900.	5.8	111
71	Identification of 16S Ribosomal DNA-Defined Bacterial Populations at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece). Applied and Environmental Microbiology, 2000, 66, 3102-3109.	1.4	107
72	Molecular methods to study the organization of microbial communities. Water Science and Technology, 1995, 32, 1.	1.2	106

#	Article	IF	CITATIONS
73	Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: â€Â~La Salada de Chiprana' (NE Spain). FEMS Microbiology Ecology, 2003, 44, 175-189.	1.3	105
74	Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production. Water Research, 2011, 45, 1309-1321.	5.3	105
75	Nitrate-dependent [Fe(II)EDTA]2â^' oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Systematic and Applied Microbiology, 2006, 29, 276-286.	1.2	104
76	Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Applied Microbiology and Biotechnology, 2008, 80, 1121-1130.	1.7	104
77	Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiology, 2013, 8, 753-768.	1.0	103
78	Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environmental Microbiology, 2000, 2, 217-226.	1.8	101
79	Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. FEMS Microbiology Ecology, 1998, 25, 159-169.	1.3	97
80	The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 1265-1277.	0.8	97
81	Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov Archives of Microbiology, 1998, 170, 345-352.	1.0	95
82	Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology (United Kingdom), 2008, 154, 1444-1453.	0.7	92
83	Distribution and Diversity of Sulfur-Oxidizing Thiomicrospira spp. at a Shallow-Water Hydrothermal Vent in the Aegean Sea (Milos, Greece). Applied and Environmental Microbiology, 1999, 65, 3843-3849.	1.4	91
84	Biological removal of NOx from flue gas. Water Science and Technology, 2004, 50, 9-15.	1.2	90
85	Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles, 2004, 8, 325-334.	0.9	89
86	Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Archives of Microbiology, 2000, 173, 138-145.	1.0	88
87	Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai,) Tj ETQq1 1 0.	784314 rg 0.9	BT /Overlock
88	Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production. Water Research, 2016, 94, 62-72.	5.3	86
89	changes in bacterial community structure in seawater mesocosms differing in their nutrient status. Aquatic Microbial Ecology, 1999, 19, 255-267.	0.9	85
90	Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology (United Kingdom), 2006, 152, 3013-3023.	0.7	85

#	Article	IF	CITATIONS
91	Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov Extremophiles, 2011, 15, 391-401.	0.9	85
92	Oxic-anoxic regime shifts mediated by feedbacks between biogeochemical processes and microbial community dynamics. Nature Communications, 2017, 8, 789.	5.8	85
93	Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1884-1889.	0.8	83
94	Skeletal matrices, muci, and the origin of invertebrate calcification Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1554-1559.	3.3	82
95	Thiohalomonas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria from hypersaline habitats. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1582-1589.	0.8	82
96	ECOLOGICAL DIFFERENTIATION BETWEEN SYMPATRIC PSEUDOCRYPTIC SPECIES IN THE ESTUARINE BENTHIC DIATOM <i>NAVICULA PHYLLEPTA</i> (BACILLARIOPHYCEAE) ¹ . Journal of Phycology, 2009, 45, 1278-1289.	1.0	82
97	Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor. ISME Journal, 2011, 5, 896-907.	4.4	82
98	Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1859-1865.	0.8	82
99	A Combined Immunofluorescence-DNA-Fluorescence Staining Technique for Enumeration of Thiobacillus ferrooxidans in a Population of Acidophilic Bacteria. Applied and Environmental Microbiology, 1987, 53, 660-664.	1.4	81
100	Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production. Water Research, 2009, 43, 182-194.	5.3	80
101	DISTRIBUTION OF TWO TYPES OF EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) IN THE NORTHEAST ATLANTIC REGION AS DETERMINED BY IMMUNOFLUORESCENCE AND COCCOLITH MORPHOLOGY1. Journal of Phycology, 1991, 27, 566-570.	1.0	79
102	Heterotrophic Pioneers Facilitate Phototrophic Biofilm Development. Microbial Ecology, 2007, 54, 578-585.	1.4	79
103	Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. FEMS Microbiology Ecology, 2001, 34, 255-266.	1.3	78
104	Characterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh. Water Research, 2009, 43, 1720-1730.	5.3	78
105	Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France). FEMS Microbiology Ecology, 2006, 58, 550-562.	1.3	77
106	Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai,) Tj ETQq0 0 0 rgB	「/Qyerloct	k 10 Tf 50 14
107	Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1069-1075.	0.8	76
108	Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov. – a moderately halophilic chemolithoautotrophic sulfur-oxidizing	1.0	76

gen. nov. sp. nov. – a moderately halophilic chemolithoautotrophic sulfur-oxidizing
Gammaproteobacterium from hypersaline lakes. Archives of Microbiology, 2007, 187, 441-450.

#	Article	IF	CITATIONS
109	Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting <i>Gallionella-</i> related bacteria. ISME Journal, 2009, 3, 715-725.	4.4	73
110	Complete genome sequence of Thioalkalivibrio "sulfidophilus―HL-EbGr7. Standards in Genomic Sciences, 2011, 4, 23-35.	1.5	72
111	Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquatic Microbial Ecology, 2000, 23, 1-11.	0.9	71
112	Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Applied Microbiology and Biotechnology, 2008, 80, 965-975.	1.7	71
113	Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. Applied and Environmental Microbiology, 1997, 63, 4360-4369.	1.4	71
114	Preservation of the bone protein osteocalcin in dinosaurs. Geology, 1992, 20, 871.	2.0	70
115	Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biology, 2019, 17, 69.	1.7	70
116	Biofilm dynamics studied with microsensors and molecular techniques. Water Science and Technology, 1998, 37, 125-129.	1.2	69
117	Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2107-2113.	0.8	69
118	Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio. FEMS Microbiology Ecology, 2006, 56, 95-101.	1.3	65
119	On the origin of 24-norcholestanes and their use as age-diagnostic biomarkers. Geology, 2007, 35, 419.	2.0	65
120	Thiomicrospira kuenenii sp. nov. and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 385-392.	0.8	64
121	Comparison of a New <i>Thiomicrospira</i> Strain from the Mid-Atlantic Ridge with Known Hydrothermal Vent Isolates. Applied and Environmental Microbiology, 1998, 64, 4057-4059.	1.4	62
122	Application of a 2-step process for the biological treatment of sulfidic spent caustics. Water Research, 2012, 46, 723-730.	5.3	61
123	Molecular methods to study the organization of microbial communities. Water Science and Technology, 1995, 32, 1-9.	1.2	60
124	Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons. Geochimica Et Cosmochimica Acta, 1992, 56, 1539-1544.	1.6	59
125	Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Systematic and Applied Microbiology, 2005, 28, 679-687.	1.2	58
126	Genome analysis of <i><scp>C</scp>hitinivibrio alkaliphilus</i> gen. nov., sp. nov., a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum <scp>T</scp> ermite <scp>G</scp> roup 3. Environmental Microbiology, 2014, 16, 1549-1565.	1.8	58

#	Article	IF	CITATIONS
127	Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturing gradient gel electrophoresis and sequencing. Aquatic Microbial Ecology, 2001, 25, 237-246.	0.9	58
128	Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles, 2008, 12, 391-404.	0.9	57
129	Thiohalobacter thiocyanaticus gen. nov., sp. nov., a moderately halophilic, sulfur-oxidizing gammaproteobacterium from hypersaline lakes, that utilizes thiocyanate. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 444-450.	0.8	56
130	Diversity and Distribution of Sulfur Oxidation-Related Genes in Thioalkalivibrio, a Genus of Chemolithoautotrophic and Haloalkaliphilic Sulfur-Oxidizing Bacteria. Frontiers in Microbiology, 2019, 10, 160.	1.5	56
131	Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2890-2897.	0.8	54
132	Thiohalospira halophila gen. nov., sp. nov. and Thiohalospira alkaliphila sp. nov., novel obligately chemolithoautotrophic, halophilic, sulfur-oxidizing gammaproteobacteria from hypersaline habitats. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1685-1692.	0.8	54
133	Comparative Genome Analysis of Three Thiocyanate Oxidizing Thioalkalivibrio Species Isolated from Soda Lakes. Frontiers in Microbiology, 2017, 8, 254.	1.5	53
134	Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olavius loisae (Annelida). Marine Ecology - Progress Series, 1999, 178, 271-280.	0.9	53
135	Methylohalomonas lacus gen. nov., sp. nov. and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gammaproteobacteria from hypersaline lakes. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2762-2769.	0.8	52
136	Microbial diversity of an oil-water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments. FEMS Microbiology Ecology, 2010, 71, 428-443.	1.3	52
137	Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments. FEMS Microbiology Ecology, 2011, 75, 37-47.	1.3	52
138	Biological treatment of refinery spent caustics under halo-alkaline conditions. Bioresource Technology, 2011, 102, 7257-7264.	4.8	52
139	Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using <i>sox</i> B as a functional molecular marker. FEMS Microbiology Ecology, 2013, 84, 280-289.	1.3	52
140	SALINITY-DEPENDENT LIMITATION OF PHOTOSYNTHESIS AND OXYGEN EXCHANGE IN MICROBIAL MATS. Journal of Phycology, 1999, 35, 227-238.	1.0	51
141	Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. Extremophiles, 2008, 12, 619-625.	0.9	51
142	A nested PCR approach for improved recovery of archaeal 16S rRNA gene fragments from freshwater samples. FEMS Microbiology Letters, 2009, 298, 193-198.	0.7	51
143	Succession of Bacterial Communities in a Seasonally Stratified Lake with an Anoxic and Sulfidic Hypolimnion. Frontiers in Microbiology, 2017, 8, 2511.	1.5	50
144	Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacterium isolated from a Thioploca mat. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 875-879.	0.8	49

#	Article	IF	CITATIONS
145	Acetonitrile degradation under haloalkaline conditions by Natronocella acetinitrilica gen. nov., sp. nov Microbiology (United Kingdom), 2007, 153, 1157-1164.	0.7	49
146	Growth kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture. Extremophiles, 2004, 8, 185-192.	0.9	48
147	Metabolism and Occurrence of Methanogenic and Sulfate-Reducing Syntrophic Acetate Oxidizing Communities in Haloalkaline Environments. Frontiers in Microbiology, 2018, 9, 3039.	1.5	48
148	A Polyphasic Approach To Study the Diversity and Vertical Distribution of Sulfur-Oxidizing <i>Thiomicrospira</i> Species in Coastal Sediments of the German Wadden Sea. Applied and Environmental Microbiology, 1998, 64, 4650-4657.	1.4	48
149	Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal. Journal of Hazardous Materials, 2014, 269, 89-97.	6.5	47
150	Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology (United Kingdom), 2010, 156, 2016-2025.	0.7	46
151	Community structure and seasonal dynamics of diatom biofilms and associated grazers in intertidal mudflats. Aquatic Microbial Ecology, 2007, 47, 253-266.	0.9	46
152	Immunology and organic geochemistry. Organic Geochemistry, 1984, 6, 847-855.	0.9	45
153	Genetic diversity of ?satellite? bacteria present in cultures of marine diatoms. FEMS Microbiology Ecology, 2002, 42, 25-35.	1.3	45
154	Sulfur-Oxidizing Bacteria in Soap Lake (Washington State), a Meromictic, Haloalkaline Lake with an Unprecedented High Sulfide Content. Applied and Environmental Microbiology, 2007, 73, 451-455.	1.4	45
155	Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov Extremophiles, 2010, 14, 71-77.	0.9	45
156	Complete genome sequence of Thioalkalivibrio sp. K90mix. Standards in Genomic Sciences, 2011, 5, 341-355.	1.5	45
157	Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp. nov., and Sulfurospirillum alkalitolerans sp. nov. Extremophiles, 2013, 17, 535-543.	0.9	45
158	On the reproducibility of microcosm experiments – different community composition in parallel phototrophic biofilm microcosms. FEMS Microbiology Ecology, 2006, 58, 169-178.	1.3	44
159	Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor. Extremophiles, 2007, 11, 363-370.	0.9	44
160	Natronoflexus pectinivorans gen. nov. sp. nov., an obligately anaerobic and alkaliphilic fermentative member of Bacteroidetes from soda lakes. Extremophiles, 2011, 15, 691-696.	0.9	44
161	Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes. Extremophiles, 2012, 16, 597-605.	0.9	44
162	Metagenomic Analysis Shows the Presence of Bacteria Related to Free-Living Forms of Sulfur-Oxidizing Chemolithoautotrophic Symbionts in the Rhizosphere of the Seagrass Zostera marina. Frontiers in Marine Science, 2018, 5, .	1.2	44

Gerard Muyzer

#	Article	IF	CITATIONS
163	Plasticicumulans acidivorans gen. nov., sp. nov., a polyhydroxyalkanoate-accumulating gammaproteobacterium from a sequencing-batch bioreactor. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2314-2319.	0.8	42
164	Genome analysis of Desulfotomaculum kuznetsovii strain 17T reveals a physiological similarity with Pelotomaculum thermopropionicum strain SIT Standards in Genomic Sciences, 2013, 8, 69-87.	1.5	42
165	Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio. PLoS ONE, 2017, 12, e0173517.	1.1	42
166	Thiomicrospira halophila sp. nov., a moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium from hypersaline lakes. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2375-2380.	0.8	41
167	Aerobic Organic Carbon Mineralization by Sulfate-Reducing Bacteria in the Oxygen-Saturated Photic Zone of a Hypersaline Microbial Mat. Microbial Ecology, 2005, 49, 291-300.	1.4	40
168	Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiology Letters, 2005, 243, 181-187.	0.7	40
169	Biodegradation Potential of Halo(alkali)philic Prokaryotes. Critical Reviews in Environmental Science and Technology, 2012, 42, 811-856.	6.6	40
170	Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Applied Microbiology and Biotechnology, 2013, 97, 7493-7504.	1.7	40
171	Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes. Microbiology (United Kingdom), 2014, 160, 723-732.	0.7	40
172	Macromolecules in brachiopod shells: characterization and diagenesis. Lethaia, 1991, 24, 387-397.	0.6	39
173	Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. Hydrobiologia, 1999, 401, 199-206.	1.0	39
174	Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes. Extremophiles, 2010, 14, 349-355.	0.9	39
175	Anaerobic utilization of pectinous substrates at extremely haloalkaline conditions by Natranaerovirga pectinivora gen. nov., sp. nov., and Natranaerovirga hydrolytica sp. nov., isolated from hypersaline soda lakes. Extremophiles, 2012, 16, 307-315.	0.9	39
176	Tracking the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors operated at different COD/N ratios. Bioresource Technology, 2015, 192, 131-141.	4.8	39
177	Preservation of fossil biopolymeric structures: Conclusive immunological evidence. Geochimica Et Cosmochimica Acta, 1991, 55, 2253-2257.	1.6	38
178	A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments. Nucleic Acids Research, 1995, 23, 4928-4929.	6.5	38
179	Characterization of Microbial Communities Removing Nitrogen Oxides from Flue Gas: the BioDeNOx Process. Applied and Environmental Microbiology, 2005, 71, 6345-6352.	1.4	37
180	Expression of copA and cusA in Shewanella during copper stress. Microbiology (United Kingdom), 2008, 154, 2709-2718.	0.7	37

#	Article	IF	CITATIONS
181	Distribution and Diversity of <i>Gallionella</i> -Like Neutrophilic Iron Oxidizers in a Tidal Freshwater Marsh. Applied and Environmental Microbiology, 2011, 77, 2337-2344.	1.4	37
182	Identification of key factors in Accelerated Low Water Corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota. Biofouling, 2014, 30, 281-297.	0.8	37
183	Spatio-temporal dynamics of sulfur bacteria during oxicanoxic regime shifts in a seasonally stratified lake. FEMS Microbiology Ecology, 2018, 94, .	1.3	37
184	A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. Cytometry, 2001, 43, 314-321.	1.8	36
185	PHYLOGENETIC POSITION OF <i>ATTHEYA LONGICORNIS</i> AND <i>ATTHEYA SEPTENTRIONALIS</i> (BACILLARIOPHYTA) ¹ . Journal of Phycology, 2009, 45, 444-453.	1.0	35
186	Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiology Ecology, 2013, 83, 515-526.	1.3	33
187	Citric acid wastewater as electron donor for biological sulfate reduction. Applied Microbiology and Biotechnology, 2009, 83, 957-963.	1.7	32
188	Sulfur-dependent respiration under extremely haloalkaline conditions in soda lake â€~acetogens' and the description of Natroniella sulfidigena sp. nov FEMS Microbiology Letters, 2011, 319, 88-95.	0.7	32
189	Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland. Frontiers in Microbiology, 2012, 3, 64.	1.5	32
190	Subcellular view of host–microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan–microbe symbiosis. Microbiome, 2021, 9, 44.	4.9	32
191	Haloalkaliphilic spore-forming sulfidogens from soda lake sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov Extremophiles, 2010, 14, 313-320.	0.9	30
192	Seroâ€ŧaxonomy of skeletal macromolecules in living Terebratulid brachiopods. Historical Biology, 1988, 1, 207-224.	0.7	29
193	Halophilic and Haloalkaliphilic Sulfur-Oxidizing Bacteria. , 2013, , 529-554.		29
194	Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7695-7700.	3.3	28
195	Aerobic carboxydotrophy under extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes. Microbiology (United Kingdom), 2010, 156, 819-827.	0.7	28
196	Microbial Isobutyronitrile Utilization under Haloalkaline Conditions. Applied and Environmental Microbiology, 2007, 73, 5574-5579.	1.4	27
197	Microbial sulfide oxidation in the oxic–anoxic transition zone of freshwater sediment: involvement of lithoautotrophic Magnetospirillum strain J10. FEMS Microbiology Ecology, 2009, 70, 54-65.	1.3	27
198	Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading. Applied Microbiology and Biotechnology, 2012, 93, 401-410.	1.7	27

#	Article	IF	CITATIONS
199	Temporal and Spatial Coexistence of Archaeal and Bacterial <i>amoA</i> Genes and Gene Transcripts in Lake Lucerne. Archaea, 2013, 2013, 1-11.	2.3	27
200	Genome analysis of Desulfotomaculum gibsoniae strain GrollT a highly versatile Gram-positive sulfate-reducing bacterium. Standards in Genomic Sciences, 2014, 9, 821-839.	1.5	27
201	Phylogenetic Analysis of the Metal-Oxidizing Bacteria Leptothrix discophora and Sphaerotilus natans Using 16S rDNA Sequencing Data. Systematic and Applied Microbiology, 1993, 16, 219-223.	1.2	26
202	Oxidation of thiosulfate to tetrathionate by an haloarchaeon isolated from hypersaline habitat. Extremophiles, 2005, 9, 501-504.	0.9	26
203	Identification of " Candidatus Thioturbo danicus,―a Microaerophilic Bacterium That Builds Conspicuous Veils on Sulfidic Sediments. Applied and Environmental Microbiology, 2005, 71, 8929-8933.	1.4	26
204	Identification of organic matter sources in sulfidic late Holocene Antarctic fjord sediments from fossil rDNA sequence analysis. Paleoceanography, 2007, 22, .	3.0	26
205	Effects of Deposition of Heavy-Metal-Polluted Harbor Mud on Microbial Diversity and Metal Resistance in Sandy Marine Sediments. Archives of Environmental Contamination and Toxicology, 2008, 55, 372-385.	2.1	26
206	Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia. Extremophiles, 2012, 16, 411-417.	0.9	26
207	Sulfur bacteria in wastewater stabilization ponds periodically affected by the â€~red-water' phenomenon. Applied Microbiology and Biotechnology, 2013, 97, 379-394.	1.7	26
208	Isolation and characterization of an obligately chemolithoautotrophic <i>Halothiobacillus</i> strain capable of growth on thiocyanate as an energy source. FEMS Microbiology Letters, 2014, 354, 69-74.	0.7	26
209	Diversity and distribution of <i>Halomonas</i> in Rambla Salada, a hypersaline environment in the southeast of Spain. FEMS Microbiology Ecology, 2014, 87, 460-474.	1.3	26
210	Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2T, a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes. Standards in Genomic Sciences, 2016, 11, 67.	1.5	26
211	Exploring Biodiversity and Arsenic Metabolism of Microbiota Inhabiting Arsenic-Rich Groundwaters in Northern Italy. Frontiers in Microbiology, 2019, 10, 1480.	1.5	26
212	Diversity of anoxygenic phototrophic sulfur bacteria in the microbial mats of the Ebro Delta: a combined morphological and molecular approach. FEMS Microbiology Ecology, 2005, 52, 339-350.	1.3	25
213	An optimized protocol for the identification of diatoms, flagellated algae and pathogenic protozoa with phylochips. Molecular Ecology Notes, 2007, 7, 925-936.	1.7	25
214	Co-existence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor. Applied Microbiology and Biotechnology, 2007, 75, 1463-1472.	1.7	25
215	Desulfovibrio paquesii sp. nov., a hydrogenotrophic sulfate-reducing bacterium isolated from a synthesis-gas-fed bioreactor treating zinc- and sulfate-rich wastewater. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 229-233.	0.8	25
216	Sulfidogenesis in hypersaline chloride-sulfate lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiology Ecology, 2012, 79, 445-453.	1.3	25

#	Article	IF	CITATIONS
217	Culture-Dependent and Independent Studies of Microbial Diversity in Highly Copper-Contaminated Chilean Marine Sediments. Microbial Ecology, 2013, 65, 311-324.	1.4	25
218	Genome analyses of the carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans as a later synonym of Desulfotomaculum nigrificans. Standards in Genomic Sciences, 2014, 9, 655-675.	1.5	25
219	Seaweed Loads Cause Stronger Bacterial Community Shifts in Coastal Lagoon Sediments Than Nutrient Loads. Frontiers in Microbiology, 2018, 9, 3283.	1.5	25
220	Immunological studies on microbial mats from Solar Lake (Sinai)— A contribution to the organic geochemistry of sediments. Organic Geochemistry, 1986, 10, 697-704.	0.9	23
221	rRNA and Poly-β-Hydroxybutyrate Dynamics in Bioreactors Subjected to Feast and Famine Cycles. Applied and Environmental Microbiology, 2006, 72, 2322-2330.	1.4	23
222	Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils. Applied Microbiology and Biotechnology, 2008, 81, 371-378.	1.7	23
223	SULFUR AND METHANE CYCLING DURING THE HOLOCENE IN ACE LAKE (ANTARCTICA) REVEALED BY LIPID AND DNA STRATIGRAPHY. , 2006, , 41-65.		23
224	An immunohistochemical technique for the localization of preserved biopolymeric remains in fossils. Geochimica Et Cosmochimica Acta, 1989, 53, 1699-1702.	1.6	22
225	Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DLT). Standards in Genomic Sciences, 2012, 7, 304-319.	1.5	22
226	<scp>DNA</scp> â€stable isotope probing (DNAâ€SIP) identifies marine spongeâ€associated bacteria actively utilizing dissolved organic matter (DOM). Environmental Microbiology, 2021, 23, 4489-4504.	1.8	21
227	Comparative Genomics of Thiohalobacter thiocyanaticus HRh1T and Guyparkeria sp. SCN-R1, Halophilic Chemolithoautotrophic Sulfur-Oxidizing Gammaproteobacteria Capable of Using Thiocyanate as Energy Source. Frontiers in Microbiology, 2019, 10, 898.	1.5	20
228	Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms. Microorganisms, 2021, 9, 1495.	1.6	20
229	Bacteria from hydrocarbon seep areas growing on short-chain alkanes. Trends in Microbiology, 2008, 16, 138-141.	3.5	19
230	Trinuclear copper biocatalytic center forms an active site of thiocyanate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5280-5290.	3.3	19
231	Stromatolites as Biosignatures of Atmospheric Oxygenation: Carbonate Biomineralization and UV-C Resilience in a Geitlerinema sp Dominated Culture. Frontiers in Microbiology, 2020, 11, 948.	1.5	18
232	Colorless Sulfur Bacteria. , 2013, , 555-588.		17
233	Temperature as competitive strategy determining factor in pulse-fed aerobic bioreactors. ISME Journal, 2019, 13, 3112-3125.	4.4	17
234	Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile. Standards in Genomic Sciences, 2017, 12, 57.	1.5	16

#	Article	IF	CITATIONS
235	Phylogenetic implications and diagenetic stability of macromolecules from pleistocene and recent shells of <i>Mercenaria mercenaria</i> (mollusca, bivalvia). Historical Biology, 1988, 1, 135-144.	0.7	15
236	Development of a PCR for the detection and identification of cyanobacterial nifD genes. Journal of Microbiological Methods, 2007, 70, 550-556.	0.7	15
237	Biofilm dynamics studied with microsensors and molecular techniques. Water Science and Technology, 1998, 37, 125.	1.2	14
238	Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895. Standards in Genomic Sciences, 2013, 9, 175-184.	1.5	14
239	Long-term trends in the survival of immunological epitopes entombed in fossil brachiopod skeletons. Organic Geochemistry, 2003, 34, 89-96.	0.9	13
240	Evaluation and optimization of nucleic acid extraction methods for the molecular analysis of bacterial communities associated with corroded carbon steel. Biofouling, 2012, 28, 363-380.	0.8	13
241	Partial genome sequence of the haloalkaliphilic soda lake bacterium Thioalkalivibrio thiocyanoxidans ARh 2T. Standards in Genomic Sciences, 2015, 10, 85.	1.5	13
242	Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel. Anaerobe, 2017, 43, 27-34.	1.0	13
243	Microbial diversity in deep sediments of the Benguela Upwelling System. Aquatic Microbial Ecology, 2007, 50, 1-9.	0.9	13
244	Evolution: disjunct degeneration of immunological determinants. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 1999, 78, 135-139.	0.6	12
245	A comparative study of hydrocarbon degradation by <i>Marinobacter</i> sp., <i>Rhodococcus</i> sp. and <i>Corynebacterium</i> sp. isolated from different mat systems. Ophelia, 2004, 58, 271-281.	0.3	12
246	Characterization of Heavy Metal Resistance of Metal-ReducingShewanellaIsolates From Marine Sediments. Geomicrobiology Journal, 2008, 25, 304-314.	1.0	12
247	Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. , 0, .		12
248	Genetic diversity of oxygenic phototrophs in microbial mats exposed to different levels of oil pollution. Ophelia, 2004, 58, 157-164.	0.3	11
249	Structure of microbial communities performing the simultaneous reduction of Fe(II)EDTA.NO2â^'and Fe(III)EDTAâ^'. Applied Microbiology and Biotechnology, 2006, 73, 922-931.	1.7	11
250	A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. Cytometry, 2001, 43, 314-21.	1.8	11
251	Immunological responses from brachiopod skeletal macromolecules; a new technique for assessing taxonomic relationships using shells. Lethaia, 1991, 24, 399-407.	0.6	10
252	Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin. Antonie Van Leeuwenhoek, 2015, 108, 673-684.	0.7	10

#	Article	IF	CITATIONS
253	Characterization and Comparison of Bacterial Communities of an Invasive and Two Native Caribbean Seagrass Species Sheds Light on the Possible Influence of the Microbiome on Invasive Mechanisms. Frontiers in Microbiology, 2021, 12, 653998.	1.5	10
254	Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Applied Microbiology and Biotechnology, 2022, 106, 1759-1776.	1.7	10
255	Analysis of the Genes Involved in Thiocyanate Oxidation during Growth in Continuous Culture of the Haloalkaliphilic Sulfur-Oxidizing Bacterium Thioalkalivibrio thiocyanoxidans ARh 2 ^T Using Transcriptomics. MSystems, 2017, 2, .	1.7	9
256	Transcriptomic Analysis of Two Thioalkalivibrio Species Under Arsenite Stress Revealed a Potential Candidate Gene for an Alternative Arsenite Oxidation Pathway. Frontiers in Microbiology, 2019, 10, 1514.	1.5	9
257	Coexistence of sulfate reducers with the other oil bacterial groups in Diyarbakır oil fields. Anaerobe, 2019, 59, 19-31.	1.0	9
258	Marine sponges maintain stable bacterial communities between reef sites with different coral to algae cover ratios. FEMS Microbiology Ecology, 2021, 97, .	1.3	9
259	Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge. ISME Journal, 2022, 16, 2076-2086.	4.4	9
260	Effectiveness of various sorbents and biological oxidation in the removal of arsenic species from groundwater. Environmental Chemistry, 2014, 11, 558.	0.7	8
261	Bacterial dissimilatory MnO2 reduction at extremely haloalkaline conditions. Extremophiles, 2010, 14, 41-46.	0.9	7
262	Draft Genome Sequence of the Arsenite-Oxidizing Strain Aliihoeflea sp. 2WW, Isolated from Arsenic-Contaminated Groundwater. Genome Announcements, 2013, 1, .	0.8	7
263	Diversity and expression of cyanobacterial hupS genes in pure cultures and in a nitrogen-limited phototrophic biofilm. FEMS Microbiology Ecology, 2008, 63, 292-300.	1.3	5
264	Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1T, an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake. Standards in Genomic Sciences, 2015, 10, 105.	1.5	5
265	A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. , 2001, 43, 314.		5
266	Multispecies biofilms: Report from the discussion session. Water Science and Technology, 1995, 32, 269.	1.2	4
267	Bacterial Community Composition in Produced Water of Diyarbakır Oil Fields in Turkey. Johnson Matthey Technology Review, 2020, 64, 452-466.	0.5	4
268	Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. , 2001, .		4
269	Microbial ecology of biofiltration used for producing safe drinking water. Applied Microbiology and Biotechnology, 2022, 106, 4813-4829.	1.7	4
270	Sulfate reduction at pH 4 during the thermophilic (55°C) acidification of sucrose in UASB reactors. Biotechnology Progress, 2008, 24, 1278-1289.	1.3	3

#	Article	IF	CITATIONS
271	Macromolecules from Living and Fossil Biominerals. Topics in Geobiology, 1993, , 799-816.	0.6	3
272	Discovery of Putative Halogenases in Environmental Samples Using Metagenomics. Current Biotechnology, 2017, 6, 17-25.	0.2	3
273	Molecules and morphology $\hat{a} \in \tilde{~}$ the practical approach. Lethaia, 1993, 26, 5-6.	0.6	2
274	Diversity shifts and crude oil transformation in polluted microbial mat microcosms. Ophelia, 2004, 58, 205-216.	0.3	2
275	Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification. Standards in Genomic Sciences, 2015, 10, 84.	1.5	2
276	Marine Microbial Systems Ecology: Microbial Networks in the Sea. , 2016, , 335-344.		2
277	Molecular and Physiological Adaptations to Low Temperature in Thioalkalivibrio Strains Isolated from Soda Lakes with Different Temperature Regimes. MSystems, 2021, 6, .	1.7	2
278	Unraveling seaweeds bacteriomes. , 2018, , 95-113.		2
279	Section 3 update: Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. , 2008, , 2645-2671.		1
280	Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. , 1999, , 199-206.		1
281	Multispecies biofilms: report from the discussion session. Water Science and Technology, 1995, 32, 269-270.	1.2	1
282	Biological removal of NOx from flue gas. Water Science and Technology, 2004, 50, 9-15.	1.2	1
283	Modelling the Biosphere. Terra Nova, 1992, 4, 539-541.	0.9	0
284	The protohistoric briquetage at Puntone (Tuscany, Italy): A multidisciplinary attempt to unravel its age and role in the salt supply of Early States in Tyrrhenian Central Italy. Journal of Archaeological Science: Reports, 2021, 38, 103055.	0.2	0
285	Sampling and Nucleic Extraction Procedures from Oil Reservoir Samples. , 2010, , 7-16.		0
286	Which Microbial Communities are Present? Application of PCR-DGGE: Case Study on an Oilfield Core Sample. , 2010, , 33-43.		0