Klaus J Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3555025/publications.pdf

Version: 2024-02-01

197 papers 8,262 citations

50276 46 h-index 85 g-index

200 all docs

200 docs citations

200 times ranked 9004 citing authors

#	Article	IF	CITATIONS
1	Distilling Authenticity: Materiality and NarrativesÂin Canadian Distilleries' AuthenticityÂWork. Academy of Management Journal, 2023, 66, 1438-1468.	6.3	4
2	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	14.9	96
3	Electrical properties of perovskite solar cells by illumination intensity and temperatureâ€dependent photoluminescence imaging. Progress in Photovoltaics: Research and Applications, 2022, 30, 1038-1044.	8.1	7
4	Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601, 573-578.	27.8	137
5	Unraveling the Role of Energy Band Alignment and Mobile Ions on Interfacial Recombination in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5 . 8	8
6	Above 23% Efficiency by Binary Surface Passivation of Perovskite Solar Cells Using Guanidinium and Octylammonium Spacer Cations. Solar Rrl, 2022, 6, .	5. 8	22
7	Impact of Halide Anions in CsX (X = I, Br, Cl) on the Microstructure and Photovoltaic Performance of FAPbI ₃ â€Based Perovskite Solar Cells. Solar RrI, 2022, 6, .	5 . 8	4
8	27.6% Perovskite/c‧i Tandem Solar Cells Using Industrial Fabricated TOPCon Device. Advanced Energy Materials, 2022, 12, .	19.5	22
9	Anion Exchangeâ€Induced Crystal Engineering via Hotâ€Pressing Sublimation Affording Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000729.	5 . 8	6
10	Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371, 390-395.	12.6	270
11	Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. Journal of Materials Chemistry A, 2021, 9, 18454-18465.	10.3	32
12	Social Responsibility Beyond the Corporate: Executive Mental Accounting Across Sectoral and Issue Domains. Organization Science, 2021, 32, 1473-1491.	4.5	13
13	Contactless and Spatially Resolved Determination of Currentâ°'Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2100348.	5.8	7
14	Contactless and Spatially Resolved Determination of Currentâ [^] Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2170083.	5. 8	1
15	Combined Bulk and Surface Passivation in Dimensionally Engineered 2Dâ€3D Perovskite Films via Chlorine Diffusion. Advanced Functional Materials, 2021, 31, 2104251.	14.9	37
16	Organizational Structure from Interaction: Evidence from Corporate Sustainability Efforts. Administrative Science Quarterly, 2020, 65, 226-271.	6.9	67
17	The Impact of Mobile Ions on the Steady-State Performance of Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 219-229.	3.1	13
18	Doubleâ€Sided Surface Passivation of 3D Perovskite Film for Highâ€Efficiency Mixedâ€Dimensional Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1907962.	14.9	130

#	Article	IF	CITATIONS
19	Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials, 2020, 10, 1902840.	19.5	87
20	Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902901.	19.5	9
21	In Situ Formation of Mixedâ€Dimensional Surface Passivation Layers in Perovskite Solar Cells with Dualâ€Isomer Alkylammonium Cations. Small, 2020, 16, e2005022.	10.0	34
22	High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Materials Science and Engineering Reports, 2020, 142, 100579.	31.8	139
23	Efficient Passivation and Low Resistivity for p ⁺ -Si/TiO ₂ Contact by Atomic Layer Deposition. ACS Applied Energy Materials, 2020, 3, 6291-6301.	5.1	5
24	Destructive reverse bias pinning in perovskite/silicon tandem solar modules caused by perovskite hysteresis under dynamic shading. Sustainable Energy and Fuels, 2020, 4, 4067-4075.	4.9	16
25	Insights into Twinning Formation in Cubic and Tetragonal Multi-cation Mixed-Halide Perovskite. , 2020, 2, 415-424.		17
26	Tandem Solar Cells: Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells (Adv. Energy Mater. 4/2020). Advanced Energy Materials, 2020, 10, 2070016.	19.5	0
27	Impact of Al Doping on Surface Passivation of TiO _x on Si. IEEE Journal of Photovoltaics, 2020, 10, 940-944.	2.5	2
28	High Efficiency Perovskiteâ€Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.	19.5	110
29	Understanding the Chemical and Structural Properties of Multiple-Cation Mixed Halide Perovskite. Journal of Physical Chemistry C, 2019, 123, 26718-26726.	3.1	14
30	Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Science Translational Medicine, 2019, 11 , .	12.4	67
31	30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homoâ€Tandem Structures. Solar Rrl, 2019, 3, 1900083.	5.8	10
32	Perovskite Solar Cells: Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells (Adv.) Tj ETQq0 0	0 rgBJ /0	verlock 10 Tf
33	Interfacial Dynamics and Contact Passivation in Perovskite Solar Cells. Advanced Electronic Materials, 2019, 5, 1800500.	5.1	25
34	Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1802790.	19.5	18
35	Institutional Complexity and Organizational Change: An Open Polity Perspective. Academy of Management Review, 2019, 44, 336-359.	11.7	58
36	Limitations of Cs ₃ Bi ₂ I ₉ as Lead-Free Photovoltaic Absorber Materials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35000-35007.	8.0	133

#	Article	IF	Citations
37	Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design. Science and Technology of Advanced Materials, 2018, 19, 53-75.	6.1	28
38	Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.	30.8	209
39	On the Use of Luminescence Intensity Images for Quantified Characterization of Perovskite Solar Cells: Spatial Distribution of Series Resistance. Advanced Energy Materials, 2018, 8, 1701522.	19.5	29
40	Aerosols of synthetic amorphous silica do not induce fibrosis in lungs after inhalation: Pathology working group review of histopathological specimens from a subchronic 13-week inhalation toxicity study in rats. Toxicology Research and Application, 2018, 2, 239784731880527.	0.6	4
41	Transmission Electron Microscopy Studies of Transition Metal Oxides Employed as Carrier Selective Contacts in Silicon Solar Cells. , 2018, , .		0
42	Impact of Light on the Thermal Stability of Perovskite Solar Cells and Development of Stable Semi-transparent Cells. , 2018, , .		2
43	The Interaction of Ion Migration with Shockley-Read-Hall Recombination in the Bulk of Perovskite Solar Cells Explains Anomalous Voltage and Luminescence Transients. , 2018, , .		0
44	A Universal Doubleâ€Side Passivation for High Openâ€Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 2018, 8, 1801208.	19.5	387
45	Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Letters, 2018, 3, 2441-2448.	17.4	90
46	A Stepâ€byâ€Step Optimization of the câ€Si Bottom Cell in Monolithic Perovskite/câ€Si Tandem Devices. Solar Rrl, 2018, 2, 1800193.	5.8	10
47	Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells. Solar Energy Materials and Solar Cells, 2018, 188, 27-36.	6.2	43
48	Transient Photovoltage in Perovskite Solar Cells: Interaction of Trap-Mediated Recombination and Migration of Multiple Ionic Species. Journal of Physical Chemistry C, 2018, 122, 11270-11281.	3.1	66
49	Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements. Journal of Applied Physics, 2018, 124, .	2.5	10
50	Impact of Perovskite/Silicon Tandem Module Design on Hot-Spot Temperature. ACS Applied Energy Materials, 2018, 1, 3025-3029.	5.1	17
51	Understanding the impact of carrier mobility and mobile ions on perovskite cell performance. , 2018, , .		0
52	Improved Reproducibility for Perovskite Solar Cells with 1 cm ² Active Area by a Modified Two-Step Process. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5974-5981.	8.0	41
53	Characterization of Recombination Properties and Contact Resistivity of Laser-Processed Localized Contacts From Doped Silicon Nanoparticle Ink and Spin-On Dopants. IEEE Journal of Photovoltaics, 2017, 7, 471-478.	2.5	15
54	Industrially feasible, dopantâ€free, carrierâ€selective contacts for highâ€efficiency silicon solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 896-904.	8.1	137

#	Article	IF	CITATIONS
55	Inverted Hysteresis in CH ₃ NH ₃ Pbl ₃ Solar Cells: Role of Stoichiometry and Band Alignment. Journal of Physical Chemistry Letters, 2017, 8, 2672-2680.	4.6	71
56	Rubidium Multication Perovskite with Optimized Bandgap for Perovskiteâ€Silicon Tandem with over 26% Efficiency. Advanced Energy Materials, 2017, 7, 1700228.	19.5	443
57	Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Physical Chemistry Chemical Physics, 2017, 19, 3094-3103.	2.8	159
58	Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy and Environmental Science, 2017, 10, 2472-2479.	30.8	178
59	How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 2017, 5, 22542-22558.	10.3	70
60	Organizations as Polities: An Open Systems Perspective. Academy of Management Annals, 2017, 11, 886-918.	9.6	58
61	Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26859-26866.	8.0	114
62	Identifying the Cause of Voltage and Fill Factor Losses in Perovskite Solar Cells by Using Luminescence Measurements. Energy Technology, 2017, 5, 1827-1835.	3.8	103
63	Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells. Microscopy and Microanalysis, 2017, 23, 900-904.	0.4	19
64	Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy and Environmental Science, 2017, 10, 1792-1800.	30.8	381
65	Efficient Indiumâ€Doped TiO <i></i> Electron Transport Layers for Highâ€Performance Perovskite Solar Cells and Perovskiteâ€Silicon Tandems. Advanced Energy Materials, 2017, 7, 1601768.	19.5	167
66	Notice of Removal High efficiency perovskite/silicon tandem cells with low parasitic absorption. , 2017, , .		1
67	Design guidelines for perovskite/silicon 2-terminal tandem solar cells: an optical study. Optics Express, 2016, 24, A1454.	3.4	76
68	Highâ€Performance TiO ₂ â€Based Electronâ€Selective Contacts for Crystalline Silicon Solar Cells. Advanced Materials, 2016, 28, 5891-5897.	21.0	300
69	Passivation and carrier selectivity of TiO<inf>2</inf> contacts combined with different passivation layers and electrodes for silicon solar cells. , 2016 , , .		11
70	TEM studies of TiO 2 -based passivated contacts in c-Si solar cells. Microscopy and Microanalysis, 2016, 22, 1600-1601.	0.4	2
71	Efficiency Potential of P-Type Al ₂ O ₃ /SiN\$_{x}\$ Passivated PERC Solar Cells With Locally Laser-Doped Rear Contacts. IEEE Journal of Photovoltaics, 2016, 6, 624-631.	2.5	9
72	Filterless Spectral Splitting Perovskite–Silicon Tandem System With >23% Calculated Efficiency. IEEE Journal of Photovoltaics, 2016, 6, 1432-1439.	2.5	15

#	Article	lF	Citations
73	Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics. Chemistry of Materials, 2016, 28, 7496-7504.	6.7	249
74	On the Origin of Hysteresis in Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 6807-6813.	14.9	74
75	Modelling of slow transient processes in organo-metal halide perovskites. , 2016, , .		0
76	WHEN IS THE NEXT BUS?: INFLUENCE OF MOBILITY AND INFRASTRUCTURE ON ENTREPRENEURSHIP IN RURAL INDIA. Journal of Developmental Entrepreneurship, 2016, 21, 1650014.	0.8	0
77	Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy, 2016, 30, 330-340.	16.0	133
78	Silicon heterojunction solar cells with electron selective TiOx contact. Solar Energy Materials and Solar Cells, 2016, 150, 32-38.	6.2	169
79	Metal-Assisted Etching of High-Aspect-Ratio Structures for Solar Cell Applications: Controlling the Porosity of Au Thin Films. IEEE Journal of Photovoltaics, 2016, 6, 393-396.	2.5	3
80	Characterizing the Influence of Crystal Orientation on Surface Recombination in Silicon Wafers. IEEE Journal of Photovoltaics, 2016, 6, 412-418.	2.5	5
81	Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem. IEEE Journal of Photovoltaics, 2016, 6, 679-687.	2.5	80
82	The Impact of N2 Anneal on Laser Processed Silicon. Energy Procedia, 2015, 77, 759-765.	1.8	0
83	Ion-Implanted Laser-Annealed p ⁺ and n ⁺ Regions: A Potential Solution for Industrially Feasible High-Efficiency N-Type Interdigitated Back-Contact Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 87-93.	2.5	6
84	Metal-assisted etching of high aspect ratio structures for solar cell applications: Controlling the porosity of Au thin films. , $2015, \dots$		1
85	High efficiency n-type silicon solar cells with local back surface fields formed by Laser Chemical Processing. , 2015, , .		2
86	N-type silicon solar cells featuring an electron-selective TiO2 contact., 2015,,.		5
87	Electronic Properties of Al p+ Surfaces Formed by Laser Doping from Aluminium Oxide Precursors: Implications for PERC Cell Design and Performance. Energy Procedia, 2015, 77, 321-330.	1.8	4
88	Nanoporous Silicon Produced by Metal-Assisted Etching: A Detailed Investigation of Optical and Contact Properties for Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 538-544.	2.5	4
89	Marks of Distinction. Administrative Science Quarterly, 2015, 60, 333-367.	6.9	94
90	Damage-free ultraviolet nanosecond laser ablation for high efficiency back contact solar cell fabrication. Solar Energy Materials and Solar Cells, 2015, 136, 1-10.	6.2	17

#	Article	IF	CITATIONS
91	High-Level Silicon Surface Passivation by Anodically Grown Silicon Dioxide and Silicon Nitride Stacks. IEEE Journal of Photovoltaics, 2015, 5, 1047-1052.	2.5	11
92	Passivated contacts to laser doped p+ and n+ regions. Solar Energy Materials and Solar Cells, 2015, 140, 38-44.	6.2	9
93	A Robust Metal-Assisted Etching Process for Ag-Catalyzed Texturing of Silicon. IEEE Journal of Photovoltaics, 2015, 5, 766-773.	2.5	5
94	Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence. Optics Express, 2015, 23, A391.	3.4	33
95	High efficiency n-type silicon solar cells featuring passivated contact to laser doped regions. Applied Physics Letters, 2015, 106, .	3.3	13
96	Degradation of the surface passivation of plasma-assisted ALD Al2 O3 under damp-heat exposure. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 274-281.	1.8	14
97	Nonlesions, Misdiagnoses, Missed Diagnoses, and Other Interpretive Challenges in Fish Histopathology Studies. Toxicologic Pathology, 2015, 43, 297-325.	1.8	153
98	Optical Optimization of Perovskite-Silicon Reflective Tandem Solar Cells. , 2015, , .		2
99	Linen, Silver, Slaves, and Coffee: A Spatial Approach to Central Europe's Entanglements with the Atlantic Economy. Culture & History Digital Journal, 2015, 4, e020.	0.1	1
100	Social Movement Theory and Organization Studies. , 2014, , .		2
101	Effective SiN $_{f x}$:H Capping Layers on 1-nm Al ₂ 0 ₃ for p $_{f +}$ Surface Passivation. IEEE Journal of Photovoltaics, 2014, 4, 1405-1412.	2.5	14
102	Optical and Electronic Properties of MAE Textured Nanoporous Silicon. Energy Procedia, 2014, 55, 762-768.	1.8	3
103	Boron Implanted, Laser Annealed p+ Emitter for n-type Interdigitated Back-contact Solar Cells. Energy Procedia, 2014, 55, 320-325.	1.8	3
104	The Impact of SiO\$_{2}\$/SiN \$_{m x}\$ Stack Thickness on Laser Doping of Silicon Solar Cell. IEEE	2.5	7
	Journal of Photovoltaics, 2014, 4, 594-600.	2.0	,
105	Journal of Photovoltaics, 2014, 4, 594-600. Metal-assisted chemical etching for very high aspect ratio grooves in <i>n</i> -type silicon wafers. Journal of Micromechanics and Microengineering, 2014, 24, 125026.	2.6	12
105	Metal-assisted chemical etching for very high aspect ratio grooves in <i>n</i> -type silicon wafers.		
	Metal-assisted chemical etching for very high aspect ratio grooves in <i>n</i> Journal of Micromechanics and Microengineering, 2014, 24, 125026. The Influence of Thermal Effects and Dielectric Films on the Electronic Quality of p	2.6	12

#	Article	IF	Citations
109	Characterization of MAE-Textured Nanoporous Silicon for Solar Cells Application: Optics and Surface Passivation. IEEE Journal of Photovoltaics, 2014, 4, 1235-1242.	2.5	12
110	Debating the Future of Management Research. Journal of Management Studies, 2014, 51, 38-55.	8.3	55
111	Pathology working group review of histopathologic specimens from three laboratory studies of diclofenac in trout. Aquatic Toxicology, 2014, 146, 127-136.	4.0	35
112	Effective silicon surface passivation by atomic layer deposited Al2O3/TiO2stacks. Physica Status Solidi - Rapid Research Letters, 2014, 8, 40-43.	2.4	13
113	Comparison between Secondary Electron Microscopy Dopant Contrast Image (SEMDCI) and Electron Beam Induced Current (EBIC) for Laser Doping of Crystalline Silicon. Energy Procedia, 2014, 55, 179-185.	1.8	3
114	Impact of laterally nonâ€uniform carrier lifetime on photoconductanceâ€based lifetime measurements with selfâ€consistent calibration. Progress in Photovoltaics: Research and Applications, 2013, 21, 1640-1644.	8.1	4
115	Surface Passivation of Boron-Diffused p-Type Silicon Surfaces With $(1\ 0\ 0)$ and $(1\ 1\ 1)$ Orientations by ALD Al $_{2}$ O $_{3}$ Layers. IEEE Journal of Photovoltaics, 2013, 3, 678-683.	2.5	34
116	Secondary Electron Microscopy Dopant Contrast Image (SEMDCI) for Laser Doping. IEEE Journal of Photovoltaics, 2013, 3, 762-768.	2.5	16
117	Emitter Saturation Current Densities Determined by Self-consistent Calibration: Impact of Laterally Non-uniform Lifetime Distribution on Calibration Accuracy. Energy Procedia, 2013, 38, 114-123.	1.8	1
118	Diclofenac: New data on chronic toxicity and bioconcentration in fish. Environmental Toxicology and Chemistry, 2013, 32, 442-452.	4.3	121
119	Chemicals, companies, and countries: The concept of diffusion in management research. Research in Organizational Behavior, 2013, 33, 135-150.	1.2	5
120	Determination of Injection Dependent Recombination Properties of Locally Processed Surface Regions. Energy Procedia, 2013, 38, 22-31.	1.8	20
121	Social Movements, Civil Society and Corporations: Taking Stock and Looking Ahead. Organization Studies, 2013, 34, 573-593.	5.3	166
122	Al2O3/TiO2 stack layers for effective surface passivation of crystalline silicon. Journal of Applied Physics, 2013, 114, .	2.5	33
123	Surface passivation by atomic-layer-deposited Al $<$ inf $>$ 2 $<$ /inf $>$ 0 $<$ inf $>$ 3 $<$ /inf $>$ /TiO $<$ inf $>$ 2 $<$ /inf $>$ stacks. , 2013, , .		0
124	Forming random-micropores by optimized 2-step metal assisted etching process., 2013,,.		1
125	Humidity degradation and repair of ALD Al <inf>2</inf> O <inf>3</inf> passivated silicon., 2013,,.		1
126	Imaging of the relative saturation current density and sheet resistance of laser doped regions via photoluminescence. Journal of Applied Physics, 2013, 114, 053107.	2.5	5

#	Article	IF	CITATIONS
127	Charge trapping and storage in SiN <inf>x</inf> thin films deposited with Oxford PlasmaLab 100 system. , 2012, , .		O
128	Differences in Rat Models Used in Routine Toxicity Studies. International Journal of Toxicology, 2011, 30, 162-173.	1.2	53
129	Social Movements, Business, and the Environment., 2011,,.		3
130	Sliver Solar Cell Technology: Pushing the Material Boundaries. Materials Research Society Symposia Proceedings, 2011, 1323, 101.	0.1	1
131	Modeling the charge decay mechanism in nitrogen-rich silicon nitride films. Applied Physics Letters, 2011, 98, 122909.	3.3	5
132	Investigation of interface properties in oxide passivated boron diffused silicon. Current Applied Physics, 2010, 10, S361-S364.	2.4	3
133	RIEâ€induced carrier lifetime degradation. Progress in Photovoltaics: Research and Applications, 2010, 18, 214-220.	8.1	16
134	When the glass is half full and half empty: CEOs' ambivalent interpretations of strategic issues. Strategic Management Journal, 2010, 31, 689-710.	7. 3	48
135	PECVD Silicon Nitride Passivation on Boron Emitter: The Analysis of Electrostatic Charge on the Interface Properties. Advances in OptoElectronics, 2010, 2010, 1-8.	0.6	17
136	Effect of deposition conditions and thermal annealing on the charge trapping properties of SiNx films. Applied Physics Letters, 2010, 97, 202907.	3.3	22
137	Characterization of boron surface doping effects on PECVD silicon nitride passivation. , 2010, , .		0
138	Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. European Heart Journal, 2010, 31, 1792-1801.	2.2	109
139	Charge stability in LPCVD silicon nitride for surface passivation of silicon solar cells. , 2010, , .		4
140	The thermal stability of atomic H plasma produced interface defects on Si-SiO2 stack. , 2010, , .		0
141	COMPUTATION OF TRANSITION PATHS TOWARDS SUSTAINABLE ENERGY SYSTEMS BY MEANS OF FUZZY OPTIMIZATION. , 2010, , .		0
142	Thyroid Dysplasia in Wistar Hannover GALAS Rats. Journal of Toxicologic Pathology, 2009, 22, 247-254.	0.7	13
143	Deutschland, der atlantische Sklavenhandel und die Plantagenwirtschaft der Neuen Welt. Journal of Modern European History, 2009, 7, 37-67.	0.2	16
144	Investigation of lifetime degradation of RIE-processed silicon samples for solar cells., 2009,,.		1

#	Article	IF	CITATIONS
145	Improved silicon surface passivation achieved by negatively charged silicon nitride films. Applied Physics Letters, 2009, 94, 063509.	3.3	36
146	Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB Journal, 2009, 23, 2034-2044.	0.5	64
147	Introduction of negative charges in nitride for PV applications. , 2009, , .		0
148	CEO Ambivalence and Responses to Strategic Issues. Organization Science, 2009, 20, 993-1010.	4.5	120
149	Passivation and Depassivation of Si–SiO[sub 2] Interfaces with Atomic Hydrogen. Journal of the Electrochemical Society, 2009, 156, H836.	2.9	14
150	From Streets to Suites: How the Anti- Biotech Movement Affected German Pharmaceutical Firms. American Sociological Review, 2009, 74, 106-127.	5.2	210
151	Dispensable role of protein 4.1B/DAL-1 in rodent adrenal medulla regarding generation of pheochromocytoma and plasmalemmal localization of TSLC1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 506-515.	4.1	7
152	Effect of phosphorus diffusion to the recombination at the Si–SiO ₂ interface. Progress in Photovoltaics: Research and Applications, 2009, 17, 177-181.	8.1	1
153	An antimicrobial modified silicone peritoneal catheter with activity against both Gram positive and Gram negative bacteria. Biomaterials, 2009, 30, 3167-3173.	11.4	69
154	Is juvenile localized scleroderma related to Lyme borreliosis?. Journal of the American Academy of Dermatology, 2009, 61, 901.	1.2	7
155	Cutaneous Human Papillomavirus in Head and Neck Squamous Cell Carcinomas. Cancer Investigation, 2009, 27, 781-787.	1.3	10
156	Lesions in the Larynx of Wistar RccHanTM: WIST Rats. Journal of Toxicologic Pathology, 2009, 22, 229-246.	0.7	6
157	Clinical efficacy and safety of enoxaparin in unselected Swiss patients undergoing primary or elective percutaneous coronary intervention: Analysis of the RIVIERA study. Acta Cardiologica, 2009, 64, 455-459.	0.9	3
158	Policy as Myth and Ceremony? The Global Spread of Stock Exchanges, 1980–2005. Academy of Management Journal, 2009, 52, 1319-1347.	6.3	143
159	Boron emitters: Defects at the silicon - silicon dioxide interface. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
160	The effect of boron diffusions on the defect density and recombination at the (111) silicon-silicon oxide interface. Applied Physics Letters, 2008, 92, 122109.	3.3	7
161	Characterization of the Siâ^'SiO[sub 2] Interface Following Room Temperature Ammonia Plasma Exposure. Journal of the Electrochemical Society, 2007, 154, H417.	2.9	5
162	The Effect of LPCVD Silicon Nitride Deposition on the Si-SiO[sub 2] Interface of Oxidized Silicon Wafers. Journal of the Electrochemical Society, 2007, 154, H5.	2.9	6

#	Article	IF	CITATIONS
163	Sliver solar cells. , 2007, 6800, 221.		2
164	Defect generation at the Si–SiO2 interface following corona charging. Applied Physics Letters, 2007, 90, 262109.	3.3	25
165	Hydrogen Passivation of LPCVD Si[sub 3]N[sub 4]â^•SiO[sub 2]â^•Si Stacks by Ammonia Plasma Treatment. Journal of the Electrochemical Society, 2007, 154, H430.	2.9	2
166	Accurate measurement of extremely low surface recombination velocities on charged, oxidized silicon surfaces using a simple metal-oxide-semiconductor structure. Applied Physics Letters, 2007, 90, 042104.	3.3	21
167	Sliver Solar Cells: High-Efficiency, Low-Cost PV Technology. Advances in OptoElectronics, 2007, 2007, 1-9.	0.6	32
168	The effect of low pressure chemical vapor deposition of silicon nitride on the electronic interface properties of oxidized silicon wafers. Progress in Photovoltaics: Research and Applications, 2007, 15, 405-414.	8.1	7
169	Introduction of atomic H into Si3N4/SiO2/Si stacks. Rare Metals, 2006, 25, 150-152.	7.1	10
170	Si-SiO2 interface passivation by plasma NH3 and atomic H. Rare Metals, 2006, 25, 146-149.	7.1	1
171	Depassivation Of Si-SiO2 Interface Following Rapid Thermal Annealing. , 2006, , .		5
172	Reactive ion etching of dielectrics and silicon for photovoltaic applications. Progress in Photovoltaics: Research and Applications, 2006, 14, 603-614.	8.1	9
173	Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors. Solar Energy Materials and Solar Cells, 2006, 90, 1741-1749.	6.2	20
174	Sliver \hat{A}^{\otimes} solar cells: A new thin-crystalline silicon photovoltaic technology. Solar Energy Materials and Solar Cells, 2006, 90, 3422-3430.	6.2	32
175	Towards a Simplified 20% Efficient Sliver Cell. , 2006, , .		2
176	The Effect of a Post Oxidation In-Situ Nitrogen Anneal on si Surface Passivation. , 2006, , .		3
177	Defect generation at SiO2â^•Si interfaces by low pressure chemical vapor deposition of silicon nitride. Applied Physics Letters, 2006, 89, 092120.	3.3	8
178	Sliver Cells - A Complete Photovoltaic Solution. , 2006, , .		10
179	Passivation of LPCVD Nitride Silicon Stacks by Atomic H., 2006,,.		0
180	Hydrogen Reintroduction by Forming Gas Annealing to LPCVD Silicon Nitride Coated Structures. Journal of the Electrochemical Society, 2006, 153, G750.	2.9	10

#	Article	IF	CITATIONS
181	SHORT COMMUNICATION: Surface passivation by rehydrogenation of silicon-nitride-coated silicon wafers. Progress in Photovoltaics: Research and Applications, 2005, 13, 195-200.	8.1	21
182	A novel silicon texturization method based on etching through a silicon nitride mask. Progress in Photovoltaics: Research and Applications, 2005, 13, 691-695.	8.1	27
183	Minority Carrier Lifetime Properties of Reactive Ion Etched p-Type Float Zone Si. Electrochemical and Solid-State Letters, 2005, 8, G78.	2.2	9
184	Endotoxin elicits nitric oxide release in rat but prostacyclin synthesis in human and bovine vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2005, 327, 43-48.	2.1	16
185	Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics. Solar Energy Materials and Solar Cells, 2004, 81, 13-24.	6.2	23
186	A Novel Low-Cost, High-Efficiency Micromachined Silicon Solar Cell. IEEE Electron Device Letters, 2004, 25, 37-39.	3.9	62
187	Modelling a monolithically integrated vertical junction cell in low and high injection. Progress in Photovoltaics: Research and Applications, 2003, 11, 113-124.	8.1	6
188	Boron doping of silicon layers grown by liquid phase epitaxy. Journal of Crystal Growth, 2002, 241, 45-50.	1.5	7
189	A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates. Solar Energy Materials and Solar Cells, 2001, 68, 135-171.	6.2	101
190	A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates. Solar Energy Materials and Solar Cells, 2001, 68, 173-215.	6.2	115
191	Surface morphology of silicon layers grown on patterned silicon substrates by liquid-phase epitaxy. Journal of Crystal Growth, 1999, 204, 453-461.	1.5	1
192	The Epilift technique for Si solar cells. Applied Physics A: Materials Science and Processing, 1999, 69, 195-199.	2.3	23
193	Epitaxial lateral overgrowth of Si on (100)Si substrates by liquid-phase epitaxy. Journal of Crystal Growth, 1998, 186, 369-374.	1.5	23
194	High-efficiency multicrystalline silicon solar cells by liquid phase-epitaxy. Solar Energy Materials and Solar Cells, 1998, 52, 61-68.	6.2	8
195	The influence of drift fields in thin silicon solar cells. Solar Energy Materials and Solar Cells, 1997, 45, 151-160.	6.2	8
196	Liquid phase epitaxy of silicon on multicrystalline silicon substrates. Journal of Crystal Growth, 1995, 154, 54-59.	1.5	10
197	17% Eficient thinâ€film silicon solar cell by liquidâ€phase epitaxy. Progress in Photovoltaics: Research and Applications, 1995, 3, 193-195.	8.1	17