
## Klaus J Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3555025/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rubidium Multication Perovskite with Optimized Bandgap for Perovskiteâ€Silicon Tandem with over 26%<br>Efficiency. Advanced Energy Materials, 2017, 7, 1700228.                                         | 19.5 | 443       |
| 2  | A Universal Double‣ide Passivation for High Openâ€Circuit Voltage in Perovskite Solar Cells: Role of<br>Carbonyl Groups in Poly(methyl methacrylate). Advanced Energy Materials, 2018, 8, 1801208.      | 19.5 | 387       |
| 3  | Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar<br>cells with negligible hysteresis. Energy and Environmental Science, 2017, 10, 1792-1800.          | 30.8 | 381       |
| 4  | Highâ€Performance TiO <sub>2</sub> â€Based Electronâ€5elective Contacts for Crystalline Silicon Solar<br>Cells. Advanced Materials, 2016, 28, 5891-5897.                                                | 21.0 | 300       |
| 5  | Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells.<br>Science, 2021, 371, 390-395.                                                                        | 12.6 | 270       |
| 6  | Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed<br>Photovoltaics. Chemistry of Materials, 2016, 28, 7496-7504.                                        | 6.7  | 249       |
| 7  | From Streets to Suites: How the Anti- Biotech Movement Affected German Pharmaceutical Firms.<br>American Sociological Review, 2009, 74, 106-127.                                                        | 5.2  | 210       |
| 8  | Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.                                   | 30.8 | 209       |
| 9  | Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy and Environmental Science, 2017, 10, 2472-2479.                                                           | 30.8 | 178       |
| 10 | Silicon heterojunction solar cells with electron selective TiOx contact. Solar Energy Materials and<br>Solar Cells, 2016, 150, 32-38.                                                                   | 6.2  | 169       |
| 11 | Efficient Indiumâ€Doped TiO <i><sub>x</sub></i> Electron Transport Layers for Highâ€Performance<br>Perovskite Solar Cells and Perovskiteâ€5ilicon Tandems. Advanced Energy Materials, 2017, 7, 1601768. | 19.5 | 167       |
| 12 | Social Movements, Civil Society and Corporations: Taking Stock and Looking Ahead. Organization Studies, 2013, 34, 573-593.                                                                              | 5.3  | 166       |
| 13 | Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation.<br>Physical Chemistry Chemical Physics, 2017, 19, 3094-3103.                                         | 2.8  | 159       |
| 14 | Nonlesions, Misdiagnoses, Missed Diagnoses, and Other Interpretive Challenges in Fish<br>Histopathology Studies. Toxicologic Pathology, 2015, 43, 297-325.                                              | 1.8  | 153       |
| 15 | Policy as Myth and Ceremony? The Global Spread of Stock Exchanges, 1980–2005. Academy of<br>Management Journal, 2009, 52, 1319-1347.                                                                    | 6.3  | 143       |
| 16 | High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Materials<br>Science and Engineering Reports, 2020, 142, 100579.                                               | 31.8 | 139       |
| 17 | Industrially feasible, dopantâ€free, carrierâ€selective contacts for highâ€efficiency silicon solar cells.<br>Progress in Photovoltaics: Research and Applications, 2017, 25, 896-904.                  | 8.1  | 137       |
| 18 | Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601, 573-578.                                                                                         | 27.8 | 137       |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites. Nano Energy, 2016, 30, 330-340.                               | 16.0 | 133       |
| 20 | Limitations of Cs <sub>3</sub> Bi <sub>2</sub> I <sub>9</sub> as Lead-Free Photovoltaic Absorber<br>Materials. ACS Applied Materials & Interfaces, 2018, 10, 35000-35007.                              | 8.0  | 133       |
| 21 | Doubleâ€Sided Surface Passivation of 3D Perovskite Film for Highâ€Efficiency Mixedâ€Dimensional<br>Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1907962.                           | 14.9 | 130       |
| 22 | Diclofenac: New data on chronic toxicity and bioconcentration in fish. Environmental Toxicology and Chemistry, 2013, 32, 442-452.                                                                      | 4.3  | 121       |
| 23 | CEO Ambivalence and Responses to Strategic Issues. Organization Science, 2009, 20, 993-1010.                                                                                                           | 4.5  | 120       |
| 24 | A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates. Solar<br>Energy Materials and Solar Cells, 2001, 68, 173-215.                                       | 6.2  | 115       |
| 25 | Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation<br>High Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26859-26866. | 8.0  | 114       |
| 26 | High Efficiency Perovskiteâ€ <b>s</b> ilicon Tandem Solar Cells: Effect of Surface Coating versus Bulk<br>Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.                | 19.5 | 110       |
| 27 | Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing:<br>comparison with light and electron microscopy. European Heart Journal, 2010, 31, 1792-1801.               | 2.2  | 109       |
| 28 | Identifying the Cause of Voltage and Fill Factor Losses in Perovskite Solar Cells by Using<br>Luminescence Measurements. Energy Technology, 2017, 5, 1827-1835.                                        | 3.8  | 103       |
| 29 | A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates. Solar<br>Energy Materials and Solar Cells, 2001, 68, 135-171.                                        | 6.2  | 101       |
| 30 | Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite<br>Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.                     | 14.9 | 96        |
| 31 | Marks of Distinction. Administrative Science Quarterly, 2015, 60, 333-367.                                                                                                                             | 6.9  | 94        |
| 32 | Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Letters, 2018, 3, 2441-2448.                    | 17.4 | 90        |
| 33 | Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy<br>Materials, 2020, 10, 1902840.                                                                         | 19.5 | 87        |
| 34 | Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal<br>Tandem. IEEE Journal of Photovoltaics, 2016, 6, 679-687.                                         | 2.5  | 80        |
| 35 | Design guidelines for perovskite/silicon 2-terminal tandem solar cells: an optical study. Optics<br>Express, 2016, 24, A1454.                                                                          | 3.4  | 76        |
| 36 | On the Origin of Hysteresis in Perovskite Solar Cells. Advanced Functional Materials, 2016, 26,<br>6807-6813.                                                                                          | 14.9 | 74        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Inverted Hysteresis in CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Solar Cells: Role of Stoichiometry and Band Alignment. Journal of Physical Chemistry Letters, 2017, 8, 2672-2680.                                   | 4.6  | 71        |
| 38 | How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison,<br>between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 2017,<br>5, 22542-22558. | 10.3 | 70        |
| 39 | An antimicrobial modified silicone peritoneal catheter with activity against both Gram positive and<br>Gram negative bacteria. Biomaterials, 2009, 30, 3167-3173.                                                           | 11.4 | 69        |
| 40 | Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01.<br>Science Translational Medicine, 2019, 11, .                                                                             | 12.4 | 67        |
| 41 | Organizational Structure from Interaction: Evidence from Corporate Sustainability Efforts.<br>Administrative Science Quarterly, 2020, 65, 226-271.                                                                          | 6.9  | 67        |
| 42 | Transient Photovoltage in Perovskite Solar Cells: Interaction of Trap-Mediated Recombination and Migration of Multiple Ionic Species. Journal of Physical Chemistry C, 2018, 122, 11270-11281.                              | 3.1  | 66        |
| 43 | Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB Journal, 2009, 23, 2034-2044.                                                                              | 0.5  | 64        |
| 44 | A Novel Low-Cost, High-Efficiency Micromachined Silicon Solar Cell. IEEE Electron Device Letters, 2004, 25, 37-39.                                                                                                          | 3.9  | 62        |
| 45 | Organizations as Polities: An Open Systems Perspective. Academy of Management Annals, 2017, 11, 886-918.                                                                                                                    | 9.6  | 58        |
| 46 | Institutional Complexity and Organizational Change: An Open Polity Perspective. Academy of<br>Management Review, 2019, 44, 336-359.                                                                                         | 11.7 | 58        |
| 47 | Debating the Future of Management Research. Journal of Management Studies, 2014, 51, 38-55.                                                                                                                                 | 8.3  | 55        |
| 48 | Differences in Rat Models Used in Routine Toxicity Studies. International Journal of Toxicology, 2011, 30, 162-173.                                                                                                         | 1.2  | 53        |
| 49 | When the glass is half full and half empty: CEOs' ambivalent interpretations of strategic issues.<br>Strategic Management Journal, 2010, 31, 689-710.                                                                       | 7.3  | 48        |
| 50 | Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells. Solar Energy Materials and Solar Cells, 2018, 188, 27-36.                            | 6.2  | 43        |
| 51 | Improved Reproducibility for Perovskite Solar Cells with 1 cm <sup>2</sup> Active Area by a Modified<br>Two-Step Process. ACS Applied Materials & Interfaces, 2017, 9, 5974-5981.                                           | 8.0  | 41        |
| 52 | Combined Bulk and Surface Passivation in Dimensionally Engineered 2Dâ€3D Perovskite Films via<br>Chlorine Diffusion. Advanced Functional Materials, 2021, 31, 2104251.                                                      | 14.9 | 37        |
| 53 | Improved silicon surface passivation achieved by negatively charged silicon nitride films. Applied Physics Letters, 2009, 94, 063509.                                                                                       | 3.3  | 36        |
| 54 | Pathology working group review of histopathologic specimens from three laboratory studies of diclofenac in trout. Aquatic Toxicology, 2014, 146, 127-136.                                                                   | 4.0  | 35        |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Surface Passivation of Boron-Diffused p-Type Silicon Surfaces With (1 0 0) and (1 1 1) Orientations by ALD Al\$_{2}\$O\$_{3}\$ Layers. IEEE Journal of Photovoltaics, 2013, 3, 678-683.           | 2.5  | 34        |
| 56 | In Situ Formation of Mixedâ€Dimensional Surface Passivation Layers in Perovskite Solar Cells with<br>Dualâ€Isomer Alkylammonium Cations. Small, 2020, 16, e2005022.                               | 10.0 | 34        |
| 57 | Al2O3/TiO2 stack layers for effective surface passivation of crystalline silicon. Journal of Applied Physics, 2013, 114, .                                                                        | 2.5  | 33        |
| 58 | Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence.<br>Optics Express, 2015, 23, A391.                                                               | 3.4  | 33        |
| 59 | Sliver® solar cells: A new thin-crystalline silicon photovoltaic technology. Solar Energy Materials and Solar Cells, 2006, 90, 3422-3430.                                                         | 6.2  | 32        |
| 60 | Sliver Solar Cells: High-Efficiency, Low-Cost PV Technology. Advances in OptoElectronics, 2007, 2007, 1-9.                                                                                        | 0.6  | 32        |
| 61 | Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl<br>chain organic cations. Journal of Materials Chemistry A, 2021, 9, 18454-18465.            | 10.3 | 32        |
| 62 | On the Use of Luminescence Intensity Images for Quantified Characterization of Perovskite Solar<br>Cells: Spatial Distribution of Series Resistance. Advanced Energy Materials, 2018, 8, 1701522. | 19.5 | 29        |
| 63 | Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design.<br>Science and Technology of Advanced Materials, 2018, 19, 53-75.                                | 6.1  | 28        |
| 64 | A novel silicon texturization method based on etching through a silicon nitride mask. Progress in Photovoltaics: Research and Applications, 2005, 13, 691-695.                                    | 8.1  | 27        |
| 65 | Defect generation at the Si–SiO2 interface following corona charging. Applied Physics Letters, 2007, 90, 262109.                                                                                  | 3.3  | 25        |
| 66 | Interfacial Dynamics and Contact Passivation in Perovskite Solar Cells. Advanced Electronic<br>Materials, 2019, 5, 1800500.                                                                       | 5.1  | 25        |
| 67 | Epitaxial lateral overgrowth of Si on (100)Si substrates by liquid-phase epitaxy. Journal of Crystal<br>Growth, 1998, 186, 369-374.                                                               | 1.5  | 23        |
| 68 | The Epilift technique for Si solar cells. Applied Physics A: Materials Science and Processing, 1999, 69, 195-199.                                                                                 | 2.3  | 23        |
| 69 | Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics. Solar Energy<br>Materials and Solar Cells, 2004, 81, 13-24.                                                | 6.2  | 23        |
| 70 | Effect of deposition conditions and thermal annealing on the charge trapping properties of SiNx films. Applied Physics Letters, 2010, 97, 202907.                                                 | 3.3  | 22        |
| 71 | Above 23% Efficiency by Binary Surface Passivation of Perovskite Solar Cells Using Guanidinium and<br>Octylammonium Spacer Cations. Solar Rrl, 2022, 6, .                                         | 5.8  | 22        |
| 72 | 27.6% Perovskite/c‣i Tandem Solar Cells Using Industrial Fabricated TOPCon Device. Advanced Energy<br>Materials, 2022, 12, .                                                                      | 19.5 | 22        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | SHORT COMMUNICATION: Surface passivation by rehydrogenation of silicon-nitride-coated silicon wafers. Progress in Photovoltaics: Research and Applications, 2005, 13, 195-200.                                             | 8.1  | 21        |
| 74 | Accurate measurement of extremely low surface recombination velocities on charged, oxidized silicon surfaces using a simple metal-oxide-semiconductor structure. Applied Physics Letters, 2007, 90, 042104.                | 3.3  | 21        |
| 75 | Modeling of static concentrator modules incorporating lambertian or v-groove rear reflectors.<br>Solar Energy Materials and Solar Cells, 2006, 90, 1741-1749.                                                              | 6.2  | 20        |
| 76 | Determination of Injection Dependent Recombination Properties of Locally Processed Surface Regions.<br>Energy Procedia, 2013, 38, 22-31.                                                                                   | 1.8  | 20        |
| 77 | Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon<br>Solar Cells. Microscopy and Microanalysis, 2017, 23, 900-904.                                                         | 0.4  | 19        |
| 78 | Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1802790.                                                                                                     | 19.5 | 18        |
| 79 | 17% Eficient thinâ€film silicon solar cell by liquidâ€phase epitaxy. Progress in Photovoltaics: Research and<br>Applications, 1995, 3, 193-195.                                                                            | 8.1  | 17        |
| 80 | PECVD Silicon Nitride Passivation on Boron Emitter: The Analysis of Electrostatic Charge on the Interface Properties. Advances in OptoElectronics, 2010, 2010, 1-8.                                                        | 0.6  | 17        |
| 81 | Damage-free ultraviolet nanosecond laser ablation for high efficiency back contact solar cell fabrication. Solar Energy Materials and Solar Cells, 2015, 136, 1-10.                                                        | 6.2  | 17        |
| 82 | Impact of Perovskite/Silicon Tandem Module Design on Hot-Spot Temperature. ACS Applied Energy<br>Materials, 2018, 1, 3025-3029.                                                                                            | 5.1  | 17        |
| 83 | Insights into Twinning Formation in Cubic and Tetragonal Multi-cation Mixed-Halide Perovskite. , 2020, 2, 415-424.                                                                                                         |      | 17        |
| 84 | Endotoxin elicits nitric oxide release in rat but prostacyclin synthesis in human and bovine vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2005, 327, 43-48.                          | 2.1  | 16        |
| 85 | Deutschland, der atlantische Sklavenhandel und die Plantagenwirtschaft der Neuen Welt. Journal of<br>Modern European History, 2009, 7, 37-67.                                                                              | 0.2  | 16        |
| 86 | RIEâ€induced carrier lifetime degradation. Progress in Photovoltaics: Research and Applications, 2010, 18, 214-220.                                                                                                        | 8.1  | 16        |
| 87 | Secondary Electron Microscopy Dopant Contrast Image (SEMDCI) for Laser Doping. IEEE Journal of Photovoltaics, 2013, 3, 762-768.                                                                                            | 2.5  | 16        |
| 88 | Destructive reverse bias pinning in perovskite/silicon tandem solar modules caused by perovskite hysteresis under dynamic shading. Sustainable Energy and Fuels, 2020, 4, 4067-4075.                                       | 4.9  | 16        |
| 89 | Filterless Spectral Splitting Perovskite–Silicon Tandem System With >23% Calculated Efficiency.<br>IEEE Journal of Photovoltaics, 2016, 6, 1432-1439.                                                                      | 2.5  | 15        |
| 90 | Characterization of Recombination Properties and Contact Resistivity of Laser-Processed Localized<br>Contacts From Doped Silicon Nanoparticle Ink and Spin-On Dopants. IEEE Journal of Photovoltaics,<br>2017, 7, 471-478. | 2.5  | 15        |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Passivation and Depassivation of Si–SiO[sub 2] Interfaces with Atomic Hydrogen. Journal of the Electrochemical Society, 2009, 156, H836.                                            | 2.9 | 14        |
| 92  | Effective SiN\$_{f x}\$ :H Capping Layers on 1-nm Al <sub>2</sub> O <sub>3</sub> for p\$^{f +}\$<br>Surface Passivation. IEEE Journal of Photovoltaics, 2014, 4, 1405-1412.         | 2.5 | 14        |
| 93  | Degradation of the surface passivation of plasma-assisted ALD Al2 O3 under damp-heat exposure.<br>Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 274-281. | 1.8 | 14        |
| 94  | Understanding the Chemical and Structural Properties of Multiple-Cation Mixed Halide Perovskite.<br>Journal of Physical Chemistry C, 2019, 123, 26718-26726.                        | 3.1 | 14        |
| 95  | Thyroid Dysplasia in Wistar Hannover GALAS Rats. Journal of Toxicologic Pathology, 2009, 22, 247-254.                                                                               | 0.7 | 13        |
| 96  | Effective silicon surface passivation by atomic layer deposited Al2O3/TiO2stacks. Physica Status Solidi<br>- Rapid Research Letters, 2014, 8, 40-43.                                | 2.4 | 13        |
| 97  | High efficiency n-type silicon solar cells featuring passivated contact to laser doped regions. Applied<br>Physics Letters, 2015, 106, .                                            | 3.3 | 13        |
| 98  | The Impact of Mobile Ions on the Steady-State Performance of Perovskite Solar Cells. Journal of<br>Physical Chemistry C, 2020, 124, 219-229.                                        | 3.1 | 13        |
| 99  | Social Responsibility Beyond the Corporate: Executive Mental Accounting Across Sectoral and Issue Domains. Organization Science, 2021, 32, 1473-1491.                               | 4.5 | 13        |
| 100 | Metal-assisted chemical etching for very high aspect ratio grooves in <i>n</i> -type silicon wafers.<br>Journal of Micromechanics and Microengineering, 2014, 24, 125026.           | 2.6 | 12        |
| 101 | Characterization of Laser-Doped Localized p-n Junctions for High Efficiency Silicon Solar Cells. IEEE<br>Transactions on Electron Devices, 2014, 61, 1943-1949.                     | 3.0 | 12        |
| 102 | Characterization of MAE-Textured Nanoporous Silicon for Solar Cells Application: Optics and Surface Passivation. IEEE Journal of Photovoltaics, 2014, 4, 1235-1242.                 | 2.5 | 12        |
| 103 | High-Level Silicon Surface Passivation by Anodically Grown Silicon Dioxide and Silicon Nitride Stacks.<br>IEEE Journal of Photovoltaics, 2015, 5, 1047-1052.                        | 2.5 | 11        |
| 104 | Passivation and carrier selectivity of TiO <inf>2</inf> contacts combined with different passivation layers and electrodes for silicon solar cells. , 2016, , .                     |     | 11        |
| 105 | Liquid phase epitaxy of silicon on multicrystalline silicon substrates. Journal of Crystal Growth, 1995,<br>154, 54-59.                                                             | 1.5 | 10        |
| 106 | Introduction of atomic H into Si3N4/SiO2/Si stacks. Rare Metals, 2006, 25, 150-152.                                                                                                 | 7.1 | 10        |
| 107 | Sliver Cells - A Complete Photovoltaic Solution. , 2006, , .                                                                                                                        |     | 10        |
| 108 | Hydrogen Reintroduction by Forming Gas Annealing to LPCVD Silicon Nitride Coated Structures.<br>Journal of the Electrochemical Society, 2006, 153, G750.                            | 2.9 | 10        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Cutaneous Human Papillomavirus in Head and Neck Squamous Cell Carcinomas. Cancer Investigation, 2009, 27, 781-787.                                                                                                                    | 1.3  | 10        |
| 110 | A Stepâ€byâ€6tep Optimization of the câ€6i Bottom Cell in Monolithic Perovskite/câ€6i Tandem Devices. Solar<br>Rrl, 2018, 2, 1800193.                                                                                                 | 5.8  | 10        |
| 111 | Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements. Journal of Applied Physics, 2018, 124, .                                                    | 2.5  | 10        |
| 112 | 30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homoâ€Tandem<br>Structures. Solar Rrl, 2019, 3, 1900083.                                                                                               | 5.8  | 10        |
| 113 | Minority Carrier Lifetime Properties of Reactive Ion Etched p-Type Float Zone Si. Electrochemical and Solid-State Letters, 2005, 8, G78.                                                                                              | 2.2  | 9         |
| 114 | Reactive ion etching of dielectrics and silicon for photovoltaic applications. Progress in Photovoltaics: Research and Applications, 2006, 14, 603-614.                                                                               | 8.1  | 9         |
| 115 | Passivated contacts to laser doped p+ and n+ regions. Solar Energy Materials and Solar Cells, 2015, 140, 38-44.                                                                                                                       | 6.2  | 9         |
| 116 | Efficiency Potential of P-Type Al <sub>2</sub> O <sub>3</sub> /SiN\$_{x} Passivated PERC Solar Cells<br>With Locally Laser-Doped Rear Contacts. IEEE Journal of Photovoltaics, 2016, 6, 624-631.                                      | 2.5  | 9         |
| 117 | Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902901.                                           | 19.5 | 9         |
| 118 | The influence of drift fields in thin silicon solar cells. Solar Energy Materials and Solar Cells, 1997, 45, 151-160.                                                                                                                 | 6.2  | 8         |
| 119 | High-efficiency multicrystalline silicon solar cells by liquid phase-epitaxy. Solar Energy Materials and<br>Solar Cells, 1998, 52, 61-68.                                                                                             | 6.2  | 8         |
| 120 | Defect generation at SiO2â^•Si interfaces by low pressure chemical vapor deposition of silicon nitride.<br>Applied Physics Letters, 2006, 89, 092120.                                                                                 | 3.3  | 8         |
| 121 | Unraveling the Role of Energy Band Alignment and Mobile Ions on Interfacial Recombination in<br>Perovskite Solar Cells. Solar Rrl, 2022, 6, .                                                                                         | 5.8  | 8         |
| 122 | Boron doping of silicon layers grown by liquid phase epitaxy. Journal of Crystal Growth, 2002, 241,<br>45-50.                                                                                                                         | 1.5  | 7         |
| 123 | The effect of low pressure chemical vapor deposition of silicon nitride on the electronic interface properties of oxidized silicon wafers. Progress in Photovoltaics: Research and Applications, 2007, 15, 405-414.                   | 8.1  | 7         |
| 124 | The effect of boron diffusions on the defect density and recombination at the (111) silicon-silicon oxide interface. Applied Physics Letters, 2008, 92, 122109.                                                                       | 3.3  | 7         |
| 125 | Dispensable role of protein 4.1B/DAL-1 in rodent adrenal medulla regarding generation of<br>pheochromocytoma and plasmalemmal localization of TSLC1. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 2009, 1793, 506-515. | 4.1  | 7         |
| 126 | Is juvenile localized scleroderma related to Lyme borreliosis?. Journal of the American Academy of Dermatology, 2009, 61, 901.                                                                                                        | 1.2  | 7         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The Impact of SiO\$_{2}\$/SiN \$_{m x}\$ Stack Thickness on Laser Doping of Silicon Solar Cell. IEEE<br>Journal of Photovoltaics, 2014, 4, 594-600.                                                                                         | 2.5 | 7         |
| 128 | Contactless and Spatially Resolved Determination of Currentâ <sup>~?</sup> Voltage Curves in Perovskite Solar<br>Cells via Photoluminescence. Solar Rrl, 2021, 5, 2100348.                                                                  | 5.8 | 7         |
| 129 | Electrical properties of perovskite solar cells by illumination intensity and temperatureâ€dependent<br>photoluminescence imaging. Progress in Photovoltaics: Research and Applications, 2022, 30, 1038-1044.                               | 8.1 | 7         |
| 130 | Modelling a monolithically integrated vertical junction cell in low and high injection. Progress in Photovoltaics: Research and Applications, 2003, 11, 113-124.                                                                            | 8.1 | 6         |
| 131 | The Effect of LPCVD Silicon Nitride Deposition on the Si-SiO[sub 2] Interface of Oxidized Silicon Wafers. Journal of the Electrochemical Society, 2007, 154, H5.                                                                            | 2.9 | 6         |
| 132 | Ion-Implanted Laser-Annealed p <sup>+</sup> and n <sup>+</sup> Regions: A Potential Solution for<br>Industrially Feasible High-Efficiency N-Type Interdigitated Back-Contact Solar Cells. IEEE Journal of<br>Photovoltaics, 2015, 5, 87-93. | 2.5 | 6         |
| 133 | Anion Exchangeâ€Induced Crystal Engineering via Hotâ€Pressing Sublimation Affording Highly Efficient<br>and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000729.                                                                     | 5.8 | 6         |
| 134 | Lesions in the Larynx of Wistar RccHanTM: WIST Rats. Journal of Toxicologic Pathology, 2009, 22, 229-246.                                                                                                                                   | 0.7 | 6         |
| 135 | Depassivation Of Si-SiO2 Interface Following Rapid Thermal Annealing. , 2006, , .                                                                                                                                                           |     | 5         |
| 136 | Characterization of the Siâ^'SiO[sub 2] Interface Following Room Temperature Ammonia Plasma<br>Exposure. Journal of the Electrochemical Society, 2007, 154, H417.                                                                           | 2.9 | 5         |
| 137 | Modeling the charge decay mechanism in nitrogen-rich silicon nitride films. Applied Physics Letters, 2011, 98, 122909.                                                                                                                      | 3.3 | 5         |
| 138 | Chemicals, companies, and countries: The concept of diffusion in management research. Research in<br>Organizational Behavior, 2013, 33, 135-150.                                                                                            | 1.2 | 5         |
| 139 | Imaging of the relative saturation current density and sheet resistance of laser doped regions via photoluminescence. Journal of Applied Physics, 2013, 114, 053107.                                                                        | 2.5 | 5         |
| 140 | Quantitative Surface Recombination Imaging of Single Side Processed Silicon Wafers Obtained by Photoluminescence Modeling. Energy Procedia, 2014, 55, 63-70.                                                                                | 1.8 | 5         |
| 141 | N-type silicon solar cells featuring an electron-selective TiO2 contact. , 2015, , .                                                                                                                                                        |     | 5         |
| 142 | A Robust Metal-Assisted Etching Process for Ag-Catalyzed Texturing of Silicon. IEEE Journal of Photovoltaics, 2015, 5, 766-773.                                                                                                             | 2,5 | 5         |
| 143 | Characterizing the Influence of Crystal Orientation on Surface Recombination in Silicon Wafers. IEEE<br>Journal of Photovoltaics, 2016, 6, 412-418.                                                                                         | 2.5 | 5         |
|     |                                                                                                                                                                                                                                             |     |           |

Perovskite Solar Cells: Imaging Spatial Variations of Optical Bandgaps in Perovskite Solar Cells (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

| #   | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Efficient Passivation and Low Resistivity for p <sup>+</sup> -Si/TiO <sub>2</sub> Contact by Atomic<br>Layer Deposition. ACS Applied Energy Materials, 2020, 3, 6291-6301.                                                                                                               | 5.1 | 5         |
| 146 | Charge stability in LPCVD silicon nitride for surface passivation of silicon solar cells. , 2010, , .                                                                                                                                                                                    |     | 4         |
| 147 | Impact of laterally nonâ€uniform carrier lifetime on photoconductanceâ€based lifetime measurements<br>with selfâ€consistent calibration. Progress in Photovoltaics: Research and Applications, 2013, 21,<br>1640-1644.                                                                   | 8.1 | 4         |
| 148 | Electronic Properties of Al p+ Surfaces Formed by Laser Doping from Aluminium Oxide Precursors:<br>Implications for PERC Cell Design and Performance. Energy Procedia, 2015, 77, 321-330.                                                                                                | 1.8 | 4         |
| 149 | Nanoporous Silicon Produced by Metal-Assisted Etching: A Detailed Investigation of Optical and Contact Properties for Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 538-544.                                                                                                      | 2.5 | 4         |
| 150 | Aerosols of synthetic amorphous silica do not induce fibrosis in lungs after inhalation: Pathology<br>working group review of histopathological specimens from a subchronic 13-week inhalation toxicity<br>study in rats. Toxicology Research and Application, 2018, 2, 239784731880527. | 0.6 | 4         |
| 151 | Impact of Halide Anions in CsX (X = I, Br, Cl) on the Microstructure and Photovoltaic Performance of<br>FAPbI <sub>3</sub> â€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, .                                                                                                         | 5.8 | 4         |
| 152 | Distilling Authenticity: Materiality and NarrativesÂin Canadian Distilleries' AuthenticityÂWork. Academy<br>of Management Journal, 2023, 66, 1438-1468.                                                                                                                                  | 6.3 | 4         |
| 153 | The Effect of a Post Oxidation In-Situ Nitrogen Anneal on si Surface Passivation. , 2006, , .                                                                                                                                                                                            |     | 3         |
| 154 | Investigation of interface properties in oxide passivated boron diffused silicon. Current Applied Physics, 2010, 10, S361-S364.                                                                                                                                                          | 2.4 | 3         |
| 155 | Social Movements, Business, and the Environment. , 2011, , .                                                                                                                                                                                                                             |     | 3         |
| 156 | Optical and Electronic Properties of MAE Textured Nanoporous Silicon. Energy Procedia, 2014, 55, 762-768.                                                                                                                                                                                | 1.8 | 3         |
| 157 | Boron Implanted, Laser Annealed p+ Emitter for n-type Interdigitated Back-contact Solar Cells. Energy<br>Procedia, 2014, 55, 320-325.                                                                                                                                                    | 1.8 | 3         |
| 158 | The Influence of Thermal Effects and Dielectric Films on the Electronic Quality of p <sup><br/>+</sup> -Doped Silicon Processed by Nanosecond Laser. IEEE Journal of Photovoltaics, 2014, 4, 1220-1227.                                                                                  | 2.5 | 3         |
| 159 | Comparison between Secondary Electron Microscopy Dopant Contrast Image (SEMDCI) and Electron<br>Beam Induced Current (EBIC) for Laser Doping of Crystalline Silicon. Energy Procedia, 2014, 55, 179-185.                                                                                 | 1.8 | 3         |
| 160 | Metal-Assisted Etching of High-Aspect-Ratio Structures for Solar Cell Applications: Controlling the Porosity of Au Thin Films. IEEE Journal of Photovoltaics, 2016, 6, 393-396.                                                                                                          | 2.5 | 3         |
| 161 | Clinical efficacy and safety of enoxaparin in unselected Swiss patients undergoing primary or elective percutaneous coronary intervention: Analysis of the RIVIERA study. Acta Cardiologica, 2009, 64, 455-459.                                                                          | 0.9 | 3         |
| 162 | Towards a Simplified 20% Efficient Sliver Cell. , 2006, , .                                                                                                                                                                                                                              |     | 2         |

Towards a Simplified 20%  ${\ensuremath{\mathsf{Efficient}}}$  Sliver Cell. , 2006, , . 162

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Sliver solar cells. , 2007, 6800, 221.                                                                                                                                                             |     | 2         |
| 164 | Hydrogen Passivation of LPCVD Si[sub 3]N[sub 4]â^•SiO[sub 2]â^•Si Stacks by Ammonia Plasma Treatment.<br>Journal of the Electrochemical Society, 2007, 154, H430.                                  | 2.9 | 2         |
| 165 | Social Movement Theory and Organization Studies. , 2014, , .                                                                                                                                       |     | 2         |
| 166 | High efficiency n-type silicon solar cells with local back surface fields formed by Laser Chemical Processing. , 2015, , .                                                                         |     | 2         |
| 167 | TEM studies of TiO 2 -based passivated contacts in c-Si solar cells. Microscopy and Microanalysis, 2016, 22, 1600-1601.                                                                            | 0.4 | 2         |
| 168 | Impact of Light on the Thermal Stability of Perovskite Solar Cells and Development of Stable Semi-transparent Cells. , 2018, , .                                                                   |     | 2         |
| 169 | Impact of Al Doping on Surface Passivation of TiO <sub>x</sub> on Si. IEEE Journal of Photovoltaics, 2020, 10, 940-944.                                                                            | 2.5 | 2         |
| 170 | Optical Optimization of Perovskite-Silicon Reflective Tandem Solar Cells. , 2015, , .                                                                                                              |     | 2         |
| 171 | Surface morphology of silicon layers grown on patterned silicon substrates by liquid-phase epitaxy.<br>Journal of Crystal Growth, 1999, 204, 453-461.                                              | 1.5 | 1         |
| 172 | Si-SiO2 interface passivation by plasma NH3 and atomic H. Rare Metals, 2006, 25, 146-149.                                                                                                          | 7.1 | 1         |
| 173 | Investigation of lifetime degradation of RIE-processed silicon samples for solar cells. , 2009, , .                                                                                                |     | 1         |
| 174 | Effect of phosphorus diffusion to the recombination at the Si–SiO <sub>2</sub> interface. Progress in Photovoltaics: Research and Applications, 2009, 17, 177-181.                                 | 8.1 | 1         |
| 175 | Sliver Solar Cell Technology: Pushing the Material Boundaries. Materials Research Society Symposia<br>Proceedings, 2011, 1323, 101.                                                                | 0.1 | 1         |
| 176 | Emitter Saturation Current Densities Determined by Self-consistent Calibration: Impact of Laterally Non-uniform Lifetime Distribution on Calibration Accuracy. Energy Procedia, 2013, 38, 114-123. | 1.8 | 1         |
| 177 | Forming random-micropores by optimized 2-step metal assisted etching process. , 2013, , .                                                                                                          |     | 1         |
| 178 | Humidity degradation and repair of ALD Al <inf>2</inf> O <inf>3</inf> passivated silicon. , 2013, , .                                                                                              |     | 1         |
| 179 | Metal-assisted etching of high aspect ratio structures for solar cell applications: Controlling the porosity of Au thin films. , 2015, , .                                                         |     | 1         |
| 180 | Notice of Removal High efficiency perovskite/silicon tandem cells with low parasitic absorption. , 2017, , .                                                                                       |     | 1         |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Contactless and Spatially Resolved Determination of Currentâ <sup>~'</sup> Voltage Curves in Perovskite Solar<br>Cells via Photoluminescence. Solar Rrl, 2021, 5, 2170083.                                                                        | 5.8  | 1         |
| 182 | Linen, Silver, Slaves, and Coffee: A Spatial Approach to Central Europe's Entanglements with the Atlantic Economy. Culture & History Digital Journal, 2015, 4, e020.                                                                              | 0.1  | 1         |
| 183 | Passivation of LPCVD Nitride Silicon Stacks by Atomic H. , 2006, , .                                                                                                                                                                              |      | 0         |
| 184 | Boron emitters: Defects at the silicon - silicon dioxide interface. Conference Record of the IEEE<br>Photovoltaic Specialists Conference, 2008, , .                                                                                               | 0.0  | 0         |
| 185 | Introduction of negative charges in nitride for PV applications. , 2009, , .                                                                                                                                                                      |      | 0         |
| 186 | Characterization of boron surface doping effects on PECVD silicon nitride passivation. , 2010, , .                                                                                                                                                |      | 0         |
| 187 | The thermal stability of atomic H plasma produced interface defects on Si-SiO2 stack. , 2010, , .                                                                                                                                                 |      | 0         |
| 188 | Charge trapping and storage in SiN <inf>x</inf> thin films deposited with Oxford PlasmaLab<br>100 system. , 2012, , .                                                                                                                             |      | 0         |
| 189 | Surface passivation by atomic-layer-deposited Al <inf>2</inf> O <inf>3</inf> /TiO <inf>2</inf> stacks. , 2013, , .                                                                                                                                |      | 0         |
| 190 | The Impact of N2 Anneal on Laser Processed Silicon. Energy Procedia, 2015, 77, 759-765.                                                                                                                                                           | 1.8  | 0         |
| 191 | Modelling of slow transient processes in organo-metal halide perovskites. , 2016, , .                                                                                                                                                             |      | 0         |
| 192 | WHEN IS THE NEXT BUS?: INFLUENCE OF MOBILITY AND INFRASTRUCTURE ON ENTREPRENEURSHIP IN RURAL INDIA. Journal of Developmental Entrepreneurship, 2016, 21, 1650014.                                                                                 | 0.8  | 0         |
| 193 | Transmission Electron Microscopy Studies of Transition Metal Oxides Employed as Carrier Selective Contacts in Silicon Solar Cells. , 2018, , .                                                                                                    |      | 0         |
| 194 | The Interaction of Ion Migration with Shockley-Read-Hall Recombination in the Bulk of Perovskite<br>Solar Cells Explains Anomalous Voltage and Luminescence Transients. , 2018, , .                                                               |      | 0         |
| 195 | Tandem Solar Cells: Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation<br>Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells (Adv. Energy Mater. 4/2020). Advanced<br>Energy Materials, 2020, 10, 2070016. | 19.5 | 0         |
| 196 | COMPUTATION OF TRANSITION PATHS TOWARDS SUSTAINABLE ENERGY SYSTEMS BY MEANS OF FUZZY OPTIMIZATION. , 2010, , .                                                                                                                                    |      | 0         |
| 197 | Understanding the impact of carrier mobility and mobile ions on perovskite cell performance. , 2018, , .                                                                                                                                          |      | Ο         |