TomÃ;Å; KubaÅ™

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3554079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accurate Free Energies for Complex Condensed-Phase Reactions Using an Artificial Neural Network Corrected DFTB/MM Methodology. Journal of Chemical Theory and Computation, 2022, 18, 1213-1226.	5.3	18
2	Unravelling the mechanism of glucose binding in a protein-based fluorescence probe: molecular dynamics simulation with a tailor-made charge model. Physical Chemistry Chemical Physics, 2022, 24, 2441-2453.	2.8	2
3	O to bR transition in bacteriorhodopsin occurs through a proton hole mechanism. Proceedings of the United States of America, 2021, 118, .	7.1	5
4	Electrostatic interactions contribute to the control of intramolecular thiol–disulfide isomerization in a protein. Physical Chemistry Chemical Physics, 2021, 23, 26366-26375.	2.8	6
5	DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex. Journal of Physical Chemistry Letters, 2020, 11, 8660-8667.	4.6	34
6	Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors. Journal of Chemical Theory and Computation, 2020, 16, 2071-2084.	5.3	21
7	DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. Journal of Chemical Physics, 2020, 152, 124101.	3.0	589
8	Tetrameric Charge-Zipper Assembly of the TisB Peptide in Membranes—Computer Simulation and Experiment. Journal of Physical Chemistry B, 2019, 123, 1770-1779.	2.6	6
9	What accounts for the different functions in photolyases and cryptochromes: a computational study of proton transfers to FAD. Physical Chemistry Chemical Physics, 2019, 21, 11956-11966.	2.8	6
10	Orthogonal ¹⁹ Fâ€Labeling for Solidâ€State NMR Spectroscopy Reveals the Conformation and Orientation of Short Peptaibols in Membranes. Chemistry - A European Journal, 2018, 24, 4328-4335.	3.3	14
11	"siRNA traffic lightsâ€ı arabino-configured 2′-anchors for fluorescent dyes are key for dual color readout in cell imaging. Organic and Biomolecular Chemistry, 2018, 16, 3726-3731.	2.8	4
12	A Molecular Dynamics-Quantum Mechanics Theoretical Study of DNA-Mediated Charge Transport in Hydrated Ionic Liquids. Journal of Chemical Theory and Computation, 2018, 14, 2733-2742.	5.3	7
13	On the mechanism of spontaneous thiol–disulfide exchange in proteins. Physical Chemistry Chemical Physics, 2018, 20, 16222-16230.	2.8	22
14	Coupled-perturbed DFTB-QM/MM metadynamics: Application to proton-coupled electron transfer. Journal of Chemical Physics, 2018, 149, 072328.	3.0	14
15	Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome. Biophysical Journal, 2018, 114, 2563-2572.	0.5	17
16	Microsecond Simulation of Electron Transfer in DNA: Bottom-Up Parametrization of an Efficient Electron Transfer Model Based on Atomistic Details. Journal of Physical Chemistry B, 2017, 121, 529-549.	2.6	23
17	Reaction Path Averaging: Characterizing the Structural Response of the DNA Double Helix to Electron Transfer. Journal of Physical Chemistry B, 2017, 121, 1520-1532.	2.6	1
18	Structural Behavior of the Peptaibol Harzianin HK VI in a DMPC Bilayer: Insights from MD Simulations. Biophysical Journal, 2017, 112, 2602-2614.	0.5	8

ТомÃiÅi КиваÅ™

#	Article	IF	CITATIONS
19	Polaron Effects on Charge Transport through Molecular Wires: A Multiscale Approach. Journal of Chemical Theory and Computation, 2017, 13, 286-296.	5.3	16
20	Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method. Physical Chemistry Chemical Physics, 2017, 19, 17985-17997.	2.8	10
21	Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chemical Reviews, 2016, 116, 5301-5337.	47.7	312
22	The effect of the environment on the methyl transfer reaction mechanism between trimethylsulfonium and phenolate. Physical Chemistry Chemical Physics, 2016, 18, 24033-24042.	2.8	6
23	New QM/MM implementation of the DFTB3 method in the gromacs package. Journal of Computational Chemistry, 2015, 36, 1978-1989.	3.3	45
24	Molecular Dynamics Investigation of gluazo, a Photo-Switchable Ligand for the Glutamate Receptor GluK2. PLoS ONE, 2015, 10, e0135399.	2.5	8
25	Solvent Driving Force Ensures Fast Formation of a Persistent and Well-Separated Radical Pair in Plant Cryptochrome. Journal of the American Chemical Society, 2015, 137, 1147-1156.	13.7	70
26	Multi-Scale Approach to Non-Adiabatic Charge Transport in High-Mobility Organic Semiconductors. Journal of Chemical Theory and Computation, 2015, 11, 5068-5082.	5.3	53
27	Parameterization of the DFTB3 Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems. Journal of Chemical Theory and Computation, 2015, 11, 332-342.	5.3	227
28	Fragment Orbital Based Description of Charge Transfer in Peptides Including Backbone Orbitals. Journal of Physical Chemistry B, 2014, 118, 4261-4272.	2.6	16
29	Size-Consistent Multipartitioning QM/MM: A Stable and Efficient Adaptive QM/MM Method. Journal of Chemical Theory and Computation, 2014, 10, 4242-4252.	5.3	55
30	Charge Transfer in E. coli DNA Photolyase: Understanding Polarization and Stabilization Effects via QM/MM Simulations. Journal of Physical Chemistry B, 2013, 117, 10769-10778.	2.6	33
31	Modeling charge transport in DNA using multiâ€scale methods. Physica Status Solidi (B): Basic Research, 2013, 250, 2277-2287.	1.5	26
32	Parametrization of the SCC-DFTB Method for Halogens. Journal of Chemical Theory and Computation, 2013, 9, 2939-2949.	5.3	54
33	Efficient algorithms for the simulation of non-adiabatic electron transfer in complex molecular systems: application to DNA. Physical Chemistry Chemical Physics, 2013, 15, 5794.	2.8	61
34	A hybrid approach to simulation of electron transfer in complex molecular systems. Journal of the Royal Society Interface, 2013, 10, 20130415.	3.4	72
35	Response of the electric conductivity of double-stranded DNA on moderate mechanical stretching stresses. Physical Review B, 2012, 85, .	3.2	19
36	Nonadiabatic QM/MM Simulations of Fast Charge Transfer in Escherichia coli DNA Photolyase. Journal of Physical Chemistry B, 2011, 115, 9846-9863.	2.6	77

ТомÃiÅi КиваÅ™

#	Article	IF	CITATIONS
37	On the Structure and Stretching of Microhydrated DNA. Journal of Physical Chemistry A, 2011, 115, 11238-11247.	2.5	13
38	Structural stability versus conformational sampling in biomolecular systems: Why is the charge transfer efficiency in G4-DNA better than in double-stranded DNA?. Journal of Chemical Physics, 2010, 133, 035103.	3.0	52
39	Coarse-Grained Time-Dependent Density Functional Simulation of Charge Transfer in Complex Systems: Application to Hole Transfer in DNA. Journal of Physical Chemistry B, 2010, 114, 11221-11240.	2.6	79
40	Structural fluctuations and quantum transport through DNA molecular wires: a combined molecular dynamics and model Hamiltonian approach. New Journal of Physics, 2010, 12, 023022.	2.9	53
41	Charge Transport through Biomolecular Wires in a Solvent: Bridging Molecular Dynamics and Model Hamiltonian Approaches. Physical Review Letters, 2009, 102, 208102.	7.8	80
42	Combined density functional theory and Landauer approach for hole transfer in DNA along classical molecular dynamics trajectories. Journal of Chemical Physics, 2009, 130, 215104.	3.0	78
43	Solvent Reorganization Energy of Hole Transfer in DNA. Journal of Physical Chemistry B, 2009, 113, 5653-5656.	2.6	35
44	Solvent Fluctuations Drive the Hole Transfer in DNA: A Mixed Quantumâ^'Classical Study. Journal of Physical Chemistry B, 2009, 113, 13107-13117.	2.6	71
45	Efficient Calculation of Charge-Transfer Matrix Elements for Hole Transfer in DNA. Journal of Physical Chemistry B, 2008, 112, 7937-7947.	2.6	150
46	What Governs the Charge Transfer in DNA? The Role of DNA Conformation and Environment. Journal of Physical Chemistry B, 2008, 112, 8788-8798.	2.6	117