
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355401/publications.pdf Version: 2024-02-01

FEDERICA RICCI

#	Article	IF	CITATIONS
1	BASS XXXI: Outflow scaling relations in low redshift X-ray AGN host galaxies with MUSE. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2105-2124.	4.4	18
2	BASS. XXX. Distribution Functions of DR2 Eddington Ratios, Black Hole Masses, and X-Ray Luminosities. Astrophysical Journal, Supplement Series, 2022, 261, 9.	7.7	22
3	BASS. XXVI. DR2 Host Galaxy Stellar Velocity Dispersions. Astrophysical Journal, Supplement Series, 2022, 261, 6.	7.7	19
4	BASS. XXVIII. Near-infrared Data Release 2: High-ionization and Broad Lines in Active Galactic Nuclei*. Astrophysical Journal, Supplement Series, 2022, 261, 7.	7.7	13
5	BASS. XXIV. The BASS DR2 Spectroscopic Line Measurements and AGN Demographics. Astrophysical Journal, Supplement Series, 2022, 261, 4.	7.7	19
6	BASS. XXIX. The Near-infrared View of the Broad-line Region (BLR): The Effects of Obscuration in BLR Characterization*. Astrophysical Journal, Supplement Series, 2022, 261, 8.	7.7	17
7	BASS. XXV. DR2 Broad-line-based Black Hole Mass Estimates and Biases from Obscuration. Astrophysical Journal, Supplement Series, 2022, 261, 5.	7.7	24
8	BASS. XXI. The Data Release 2 Overview. Astrophysical Journal, Supplement Series, 2022, 261, 1.	7.7	26
9	BASS. XXII. The BASS DR2 AGN Catalog and Data. Astrophysical Journal, Supplement Series, 2022, 261, 2.	7.7	32
10	BASS. XXIII. A New Mid-infrared Diagnostic for Absorption in Active Galactic Nuclei. Astrophysical Journal, Supplement Series, 2022, 261, 3.	7.7	10
11	Extended X-Ray Emission around FR II Radio Galaxies: Hot Spots, Lobes, and Galaxy Clusters. Astrophysical Journal, Supplement Series, 2021, 252, 31.	7.7	11
12	An Optical Overview of Blazars with LAMOST. I. Hunting Changing-look Blazars and New Redshift Estimates. Astronomical Journal, 2021, 161, 196.	4.7	18
13	BAT AGN Spectroscopic Survey XXVII: scattered X-Ray radiation in obscured active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2021, 504, 428-443.	4.4	20
14	Peering into the extended X-ray emission on megaparsec scale in 3C 187. Astronomy and Astrophysics, 2021, 647, A79.	5.1	3
15	The Complex Gaseous and Stellar Environments of the Nearby Dual Active Galactic Nucleus Mrk 739. Astrophysical Journal, 2021, 911, 100.	4.5	7
16	<i>Chandra</i> and <i>Magellan</i> /FIRE follow-up observations of PSO167–13: An X-ray weak QSO at <i>z</i> = 6.515. Astronomy and Astrophysics, 2021, 649, A133.	5.1	17
17	Raining in MKW 3 s: A Chandra-MUSE Analysis of X-Ray Cold Filaments around 3CR 318.1. Astrophysical Journal Letters, 2021, 912, L25.	8.3	4
18	Hidden Treasures in the Unknown 3CR Extragalactic Radio Sky: A Multiwavelength Approach. Astrophysical Journal, Supplement Series, 2021, 255, 18.	7.7	6

#	Article	IF	CITATIONS
19	An Optical Overview of Blazars with LAMOST. II. Gamma-Ray Blazar Candidates and Updated Classifications. Astronomical Journal, 2021, 162, 76.	4.7	2
20	Optical Spectroscopic Observations of Gamma-ray Blazar Candidates. XI. Optical Observations from SOAR, Blanco, NTT and OAN-SPM. The Story So Far. Astronomical Journal, 2021, 162, 177.	4.7	7
21	Constraining black hole–galaxy scaling relations and radiative efficiency from galaxy clustering. Nature Astronomy, 2020, 4, 282-291.	10.1	37
22	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
23	Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astronomy and Astrophysics, 2020, 636, A73.	5.1	134
24	BAT AGN Spectroscopic Survey – XIX. Type 1 versus type 2 AGN dichotomy from the point of view of ionized outflows. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5867-5880.	4.4	28
25	Optical spectroscopic observations of gamma-ray blazar candidates. X. Results from the 2018–2019 SOAR and OAN-SPM observations of blazar candidates of uncertain type. Astrophysics and Space Science, 2020, 365, 1.	1.4	17
26	BAT AGN spectroscopic survey - XV: the high frequency radio cores of ultra-hard X-ray selected AGN. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4216-4234.	4.4	31
27	Probing black hole accretion tracks, scaling relations, and radiative efficiencies from stacked X-ray active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1500-1511.	4.4	28
28	Optical spectroscopic observations of low-energy counterparts of <i>Fermi</i> -LAT <i>γ</i> -ray sources. Astronomy and Astrophysics, 2020, 643, A103.	5.1	18
29	Significant Suppression of Star Formation in Radio-quiet AGN Host Galaxies with Kiloparsec-scale Radio Structures. Astrophysical Journal, 2020, 904, 83.	4.5	15
30	Completing the 3CR Chandra Snapshot Survey: Extragalactic Radio Sources at High Redshift. Astrophysical Journal, Supplement Series, 2020, 250, 7.	7.7	16
31	BAT AGN Spectroscopic Survey – XIII. The nature of the most luminous obscured AGN in the low-redshift universe. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3073-3092.	4.4	11
32	Optical spectroscopic observations of gamma-ray blazar candidates VIII: the 2016–2017 follow up campaign carried out at SPM, NOT, KPNO and SOAR telescopes. Astrophysics and Space Science, 2019, 364, 1.	1.4	28
33	Optical spectroscopic observations of gamma-ray blazar candidates. IX. Optical archival spectra and further observations from SOAR and OAGH. Astrophysics and Space Science, 2019, 364, 1.	1.4	24
34	Two New Catalogs of Blazar Candidates in the <i>WISE</i> Infrared Sky. Astrophysical Journal, Supplement Series, 2019, 242, 4.	7.7	51
35	Black hole scaling relations of active and quiescent galaxies: Addressing selection effects and constraining virial factors. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1278-1292.	4.4	59
36	Optical characterization of WISE selected blazar candidates. Astronomy and Astrophysics, 2019, 630, A55.	5.1	16

#	Article	IF	CITATIONS
37	The 3CR Chandra Snapshot Survey: Extragalactic Radio Sources with Redshifts between 1 and 1.5. Astrophysical Journal, Supplement Series, 2018, 235, 32.	7.7	26
38	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
39	Stormy Weather in 3C 196.1: Nuclear Outbursts and Merger Events Shape the Environment of the Hybrid Radio Galaxy 3C 196.1. Astrophysical Journal, 2018, 867, 35.	4.5	10
40	The WISSH quasars project. Astronomy and Astrophysics, 2018, 617, A81.	5.1	86
41	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
42	Novel calibrations of virial black hole mass estimators in active galaxies based on X-ray luminosity and optical/near-infrared emission lines. Astronomy and Astrophysics, 2017, 598, A51.	5.1	21
43	The <scp>XXL</scp> survey: First results and future. Astronomische Nachrichten, 2017, 338, 334-341.	1.2	9
44	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. Astrophysical Journal Letters, 2017, 848, L18.	8.3	327
45	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
46	Detection of faint broad emission lines in type 2 AGN – I. Near-infrared observations and spectral fitting. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1783-1832.	4.4	21
47	Detection of faint broad emission lines in type 2 AGNs – III. On the <i>M</i> BH-σ⋆ relation of type 2 AGNs. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L41-L46.	3.3	14
48	Detection of faint broad emission lines in type 2 AGN – II. On the measurement of the black hole mass of type 2 AGN and the unified model. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L97-L102.	3.3	36
49	Constraining the UV emissivity of AGN throughout cosmic time via X-ray surveys. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1915-1925.	4.4	58
50	Optical spectroscopic observations of gamma-ray blazar candidates. VII. Follow-up campaign in the southern hemisphere. Astrophysics and Space Science, 2017, 362, 1.	1.4	34
51	The WISSH quasars project. Astronomy and Astrophysics, 2017, 598, A122.	5.1	133
52	Detection of Faint BLR Components in the Starburst/Seyfert Galaxy NGC 6221 and Measure of the Central BH Mass. Frontiers in Astronomy and Space Sciences, 2016, 3, .	2.8	4
53	OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. V. TNG, KPNO, AND OAN OBSERVATIONS OF BLAZAR CANDIDATES OF UNCERTAIN TYPE IN THE NORTHERN HEMISPHERE. Astronomical Journal, 2016, 151, 32.	4.7	49
54	Optical archival spectra of blazar candidates of uncertain type in the 3rd Fermi Large Area Telescope Catalog. Astrophysics and Space Science, 2016, 361, 1.	1.4	22

#	Article	IF	CITATIONS
55	OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES. Astronomical Journal, 2016, 151, 95.	4.7	52
56	The gamma-ray blazar quest: new optical spectra, state of art and future perspectives. Astrophysics and Space Science, 2016, 361, 1.	1.4	38
57	Extending virial black hole mass estimates to low-luminosity or obscured AGN: the cases of NGC 4395 and MCG -01-24-012. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1526-1535.	4.4	23
58	OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. IV. RESULTS OF THE 2014 FOLLOW-UP CAMPAIGN. Astronomical Journal, 2015, 149, 160.	4.7	44
59	SWIFT/BAT AGN2 reveal broad emission lines in the NIR: the first virial measure of their black hole masses. , 2015, , .		0
60	Multi-wavelength selection and identification of gamma-ray blazar candidates. Proceedings of the International Astronomical Union, 2014, 10, 58-63.	0.0	0
61	NGC 1275: An Outlier of the Black Hole-Host Scaling Relations. Frontiers in Astronomy and Space Sciences, 0, 5, .	2.8	10