Adrian Bejan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3553878/publications.pdf

Version: 2024-02-01

		7561	10441
687	33,256	77	139
papers	citations	h-index	g-index
750	750	750	8833
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Entropy generation minimization: The new thermodynamics of finiteâ€size devices and finiteâ€time processes. Journal of Applied Physics, 1996, 79, 1191-1218.	1.1	1,565
2	A Study of Entropy Generation in Fundamental Convective Heat Transfer. Journal of Heat Transfer, 1979, 101, 718-725.	1.2	1,259
3	Convection in Porous Media. , 1999, , .		1,171
4	Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 1997, 40, 799-816.	2.5	759
5	Convection in Porous Media. , 2013, , .		658
6	Second law analysis in heat transfer. Energy, 1980, 5, 720-732.	4.5	575
7	Convection in Porous Media. , 1992, , .		511
8	Second-Law Analysis in Heat Transfer and Thermal Design. Advances in Heat Transfer, 1982, , 1-58.	0.4	430
9	Constructal theory of generation of configuration in nature and engineering. Journal of Applied Physics, 2006, 100, 041301.	1.1	394
10	The "Heatline―Visualization of Convective Heat Transfer. Journal of Heat Transfer, 1983, 105, 916-919.	1.2	391
11	Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. International Journal of Energy Research, 2002, 26, 0-43.	2.2	374
10			
12	Convection in Porous Media., 2017,,.		351
13	Convection in Porous Media., 2017,,. Heat and mass transfer by natural convection in a porous medium. International Journal of Heat and Mass Transfer, 1985, 28, 909-918.	2.5	351 283
	Heat and mass transfer by natural convection in a porous medium. International Journal of Heat and	2.5	
13	Heat and mass transfer by natural convection in a porous medium. International Journal of Heat and Mass Transfer, 1985, 28, 909-918. The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchangers for Gas-to-Gas		283
13	Heat and mass transfer by natural convection in a porous medium. International Journal of Heat and Mass Transfer, 1985, 28, 909-918. The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchangers for Gas-to-Gas Applications. Journal of Heat Transfer, 1977, 99, 374-380. Unifying constructal theory for scale effects in running, swimming and flying. Journal of	1.2	283
13 14 15	Heat and mass transfer by natural convection in a porous medium. International Journal of Heat and Mass Transfer, 1985, 28, 909-918. The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchangers for Gas-to-Gas Applications. Journal of Heat Transfer, 1977, 99, 374-380. Unifying constructal theory for scale effects in running, swimming and flying. Journal of Experimental Biology, 2006, 209, 238-248. Constructal law of design and evolution: Physics, biology, technology, and society. Journal of Applied	0.8	283 281 266

#	Article	lF	CITATIONS
19	Theory of heat transfer-irreversible power plants. International Journal of Heat and Mass Transfer, 1988, 31, 1211-1219.	2.5	250
20	The optimal spacing of parallel plates cooled by forced convection. International Journal of Heat and Mass Transfer, 1992, 35, 3259-3264.	2.5	245
21	Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. International Journal of Heat and Mass Transfer, 1985, 28, 1597-1611.	2.5	239
22	General criterion for rating heat-exchanger performance. International Journal of Heat and Mass Transfer, 1978, 21, 655-658.	2.5	233
23	Entropy Generation Through Heat and Fluid Flow. Journal of Applied Mechanics, Transactions ASME, 1983, 50, 475-475.	1.1	226
24	The constructal law of design and evolution in nature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1335-1347.	1.8	224
25	Scaling theory of melting with natural convection in an enclosure. International Journal of Heat and Mass Transfer, 1988, 31, 1221-1235.	2.5	218
26	The constructal law and the thermodynamics of flow systems with configuration. International Journal of Heat and Mass Transfer, 2004, 47, 3203-3214.	2.5	215
27	The thermodynamic design of heat and mass transfer processes and devices. International Journal of Heat and Fluid Flow, 1987, 8, 258-276.	1.1	210
28	Street network theory of organization in nature. Journal of Advanced Transportation, 1996, 30, 85-107.	0.9	208
29	On the boundary layer regime in a vertical enclosure filled with a porous medium. Letters in Heat and Mass Transfer, 1979, 6, 93-102.	0.3	201
29 30	On the boundary layer regime in a vertical enclosure filled with a porous medium. Letters in Heat and Mass Transfer, 1979, 6, 93-102. Theory of heat transfer-irreversible refrigeration plants. International Journal of Heat and Mass Transfer, 1989, 32, 1631-1639.		201
	Mass Transfer, 1979, 6, 93-102. Theory of heat transfer-irreversible refrigeration plants. International Journal of Heat and Mass	0.3	
30	Mass Transfer, 1979, 6, 93-102. Theory of heat transfer-irreversible refrigeration plants. International Journal of Heat and Mass Transfer, 1989, 32, 1631-1639.	0.3 2.5	193
30	Mass Transfer, 1979, 6, 93-102. Theory of heat transfer-irreversible refrigeration plants. International Journal of Heat and Mass Transfer, 1989, 32, 1631-1639. Constructal tree networks for heat transfer. Journal of Applied Physics, 1997, 82, 89-100. Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. International	0.3 2.5 1.1	193 182
30 31 32	Mass Transfer, 1979, 6, 93-102. Theory of heat transfer-irreversible refrigeration plants. International Journal of Heat and Mass Transfer, 1989, 32, 1631-1639. Constructal tree networks for heat transfer. Journal of Applied Physics, 1997, 82, 89-100. Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. International Journal of Thermal Sciences, 2000, 39, 949-960. Second Law Analysis and Synthesis of Solar Collector Systems. Journal of Solar Energy Engineering,	0.3 2.5 1.1 2.6	193 182 176
30 31 32 33	Mass Transfer, 1979, 6, 93-102. Theory of heat transfer-irreversible refrigeration plants. International Journal of Heat and Mass Transfer, 1989, 32, 1631-1639. Constructal tree networks for heat transfer. Journal of Applied Physics, 1997, 82, 89-100. Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. International Journal of Thermal Sciences, 2000, 39, 949-960. Second Law Analysis and Synthesis of Solar Collector Systems. Journal of Solar Energy Engineering, Transactions of the ASME, 1981, 103, 23-28. The resonance of natural convection in an enclosure heated periodically from the side. International	0.3 2.5 1.1 2.6	193 182 176

#	Article	IF	CITATIONS
37	Mass and heat transfer by natural convection in a vertical slot filled with porous medium. International Journal of Heat and Mass Transfer, 1986, 29, 403-415.	2.5	165
38	Deterministic Tree Networks for Fluid Flow: Geometry for Minimal Flow Resistance Between a Volume and One Point. Fractals, 1997, 05, 685-695.	1.8	157
39	Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. International Journal of Thermal Sciences, 1996, 35, 637-646.	0.2	154
40	Constructal design for cooling a disc-shaped area by conduction. International Journal of Heat and Mass Transfer, 2002, 45, 1643-1652.	2.5	153
41	Optimal distribution of discrete heat sources on a wall with natural convection. International Journal of Heat and Mass Transfer, 2004, 47, 203-214.	2.5	153
42	Fin Geometry for Minimum Entropy Generation in Forced Convection. Journal of Heat Transfer, 1982, 104, 616-623.	1.2	142
43	Combined Heat and Mass Transfer by Natural Convection in a Vertical Enclosure. Journal of Heat Transfer, 1987, 109, 104-112.	1.2	139
44	Tree-shaped flow structures designed by minimizing path lengths. International Journal of Heat and Mass Transfer, 2002, 45, 3299-3312.	2.5	136
45	Convective trees of fluid channels for volumetric cooling. International Journal of Heat and Mass Transfer, 2000, 43, 3105-3118.	2.5	134
46	Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage. Journal of Heat Transfer, 1978, 100, 708-712.	1.2	130
47	The fluid dynamics of an attic space. Journal of Fluid Mechanics, 1983, 131, 251.	1.4	126
48	Optimal allocation of a heat-exchanger inventory in heat driven refrigerators. International Journal of Heat and Mass Transfer, 1995, 38, 2997-3004.	2.5	124
49	Laminar Natural Convection Heat Transfer in a Horizontal Cavity with Different End Temperatures. Journal of Heat Transfer, 1978, 100, 641-647.	1.2	119
50	The nondarcy regime for vertical boundary layer natural convection in a porous medium. International Journal of Heat and Mass Transfer, 1984, 27, 717-722.	2.5	117
51	Unifying constructal theory of tree roots, canopies and forests. Journal of Theoretical Biology, 2008, 254, 529-540.	0.8	116
52	Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. International Journal of Thermal Sciences, 2004, 43, 477-487.	2.6	106
53	Optimal Arrays of Pin Fins and Plate Fins in Laminar Forced Convection. Journal of Heat Transfer, 1993, 115, 75-81.	1.2	105
54	The boundary layer regime in a porous layer with uniform heat flux from the side. International Journal of Heat and Mass Transfer, 1983, 26, 1339-1346.	2.5	100

#	Article	IF	CITATIONS
55	The optimal spacing of cylinders in free-stream cross-flow forced convection. International Journal of Heat and Mass Transfer, 1996, 39, 311-317.	2.5	99
56	The constructal law of organization in nature: tree-shaped flows and body size. Journal of Experimental Biology, 2005, 208, 1677-1686.	0.8	99
57	The tree of convective heat streams: its thermal insulation function and the predicted 3/4-power relation between body heat loss and body size. International Journal of Heat and Mass Transfer, 2001, 44, 699-704.	2.5	98
58	The Boundary Layer Natural Convection Regime in a Rectangular Cavity With Uniform Heat Flux From the Side. Journal of Heat Transfer, 1984, 106, 98-103.	1.2	97
59	Theory of heat transfer-irreversible power plants—II. The optimal allocation of heat exchange equipment. International Journal of Heat and Mass Transfer, 1995, 38, 433-444.	2.5	97
60	Optimal distribution of discrete heat sources on a plate with laminar forced convection. International Journal of Heat and Mass Transfer, 2004, 47, 2139-2148.	2.5	96
61	Conduction tree networks with loops for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 2006, 49, 2626-2635.	2.5	95
62	Models of power plants that generate minimum entropy while operating at maximum power. American Journal of Physics, 1996, 64, 1054-1059.	0.3	94
63	Constructal multi-scale tree-shaped heat exchangers. Journal of Applied Physics, 2004, 96, 1709-1718.	1.1	94
64	Power and Refrigeration Plants for Minimum Heat Exchanger Inventory. Journal of Energy Resources Technology, Transactions of the ASME, 1993, 115, 148-150.	1.4	90
65	Constructal-theory tree networks of "constant―thermal resistance. Journal of Applied Physics, 1999, 86, 1136-1144.	1.1	89
66	Thermodynamic optimization of finned crossflow heat exchangers for aircraft environmental control systems. International Journal of Heat and Fluid Flow, 2001, 22, 657-665.	1.1	89
67	The need for exergy analysis and thermodynamic optimization in aircraft development. Exergy an International Journal, 2001, 1, 14-24.	0.7	89
68	Constructal theory of global circulation and climate. International Journal of Heat and Mass Transfer, 2006, 49, 1857-1875.	2.5	89
69	Constructal solar chimney configuration. International Journal of Heat and Mass Transfer, 2010, 53, 327-333.	2.5	89
70	Inverted fins: geometric optimization of the intrusion into a conducting wall. International Journal of Heat and Mass Transfer, 2004, 47, 2577-2586.	2.5	88
71	Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below. International Journal of Heat and Mass Transfer, 1987, 30, 2341-2356.	2.5	87
72	Evolution in thermodynamics. Applied Physics Reviews, 2017, 4, 011305.	5.5	87

#	Article	IF	CITATIONS
73	Svelteness, freedom to morph, and constructal multi-scale flow structures. International Journal of Thermal Sciences, 2005, 44, 1123-1130.	2.6	86
74	Constructal Law: Optimization as Design Evolution. Journal of Heat Transfer, 2015, 137, .	1.2	86
75	The optimal spacing between horizontal cylinders in a fixed volume cooled by natural convection. International Journal of Heat and Mass Transfer, 1995, 38, 2047-2055.	2,5	85
76	Dendritic constructal heat exchanger with small-scale crossflows and larger-scales counterflows. International Journal of Heat and Mass Transfer, 2002, 45, 4607-4620.	2. 5	84
77	Natural convection in a partially divided enclosure. International Journal of Heat and Mass Transfer, 1983, 26, 1867-1878.	2.5	82
78	Unification of Three Different Theories Concerning the Ideal Conversion of Enclosed Radiation. Journal of Solar Energy Engineering, Transactions of the ASME, 1987, 109, 46-51.	1.1	82
79	Combined Heat and Mass Transfer by Natural Convection in a Porous Medium. Advances in Heat Transfer, 1990, 20, 315-352.	0.4	82
80	A mathematical model for skin burn injury induced by radiation heating. International Journal of Heat and Mass Transfer, 2008, 51, 5497-5510.	2.5	82
81	Constructal optimization of nonuniformly distributed tree-shaped flow structures for conduction. International Journal of Heat and Mass Transfer, 2001, 44, 4185-4194.	2.5	81
82	Constructal tree network for fluid flow between a finite-size volume and one source or sink. International Journal of Thermal Sciences, 1997, 36, 592-604.	0.2	80
83	The evolution of speed, size and shape in modern athletics. Journal of Experimental Biology, 2009, 212, 2419-2425.	0.8	80
84	Optimally staggered finned circular and elliptic tubes in forced convection. International Journal of Heat and Mass Transfer, 2004, 47, 1347-1359.	2.5	79
85	Fully developed natural counterflow in a long horizontal pipe with different end temperatures. International Journal of Heat and Mass Transfer, 1978, 21, 701-708.	2.5	78
86	Note on Gill's solution for free convection in a vertical enclosure. Journal of Fluid Mechanics, 1979, 90, 561-568.	1.4	78
87	Heatline visualization of forced convection laminar boundary layers. International Journal of Heat and Mass Transfer, 1993, 36, 3957-3966.	2.5	78
88	Vascularized materials: Tree-shaped flow architectures matched canopy to canopy. Journal of Applied Physics, 2006, 100, 063525.	1.1	78
89	Dendritic heat convection on a disc. International Journal of Heat and Mass Transfer, 2003, 46, 4381-4391.	2.5	77
90	Natural Convection Experiments in a Triangular Enclosure. Journal of Heat Transfer, 1983, 105, 652-655.	1.2	76

#	Article	IF	Citations
91	A synthesis of analytical results for natural convection heat transfer across rectangular enclosures. International Journal of Heat and Mass Transfer, 1980, 23, 723-726.	2.5	75
92	Artificial Intelligence Evolution in Smart Buildings for Energy Efficiency. Applied Sciences (Switzerland), 2021, 11, 763.	1.3	75
93	Conduction trees with spacings at the tips. International Journal of Heat and Mass Transfer, 1999, 42, 3739-3756.	2.5	74
94	Entropy generation minimization in parallel-plates counterflow heat exchangers. International Journal of Energy Research, 2000, 24, 843-864.	2.2	74
95	Tree-shaped insulated designs for the uniform distribution of hot water over an area. International Journal of Heat and Mass Transfer, 2001, 44, 3111-3123.	2.5	74
96	Heterogeneous porous media as multiscale structures for maximum flow access. Journal of Applied Physics, 2006, 100, 114909.	1.1	74
97	Heat transfer across a vertical impermeable partition imbedded in porous medium. International Journal of Heat and Mass Transfer, 1981, 24, 1237-1245.	2.5	73
98	Constructal trees of circular fins for conductive and convective heat transfer. International Journal of Heat and Mass Transfer, 1999, 42, 3585-3597.	2.5	73
99	Thermodynamic Optimization of Flow Geometry in Mechanical and Civil Engineering. Journal of Non-Equilibrium Thermodynamics, 2001, 26, .	2.4	73
100	Networks of channels for self-healing composite materials. Journal of Applied Physics, 2006, 100, 033528.	1.1	73
101	Heat transfer through single and double vertical walls in natural convection: Theory and experiment. International Journal of Heat and Mass Transfer, 1981, 24, 1611-1620.	2.5	71
102	THE Ra-Pr DOMAIN OF LAMINAR NATURAL CONVECTION IN AN ENCLOSURE HEATED FROM THE SIDE. Numerical Heat Transfer; Part A: Applications, 1991, 19, 21-41.	1.2	71
103	Optimal Spacing Between Pin Fins With Impinging Flow. Journal of Heat Transfer, 1996, 118, 570-577.	1.2	71
104	Streets tree networks and urban growth: Optimal geometry for quickest access between a finite-size volume and one point. Physica A: Statistical Mechanics and Its Applications, 1998, 255, 211-217.	1.2	70
105	Deterministic Tree Networks for River Drainage Basins. Fractals, 1998, 06, 245-261.	1.8	70
106	Heat sinks with sloped plate fins in natural and forced convection. International Journal of Heat and Mass Transfer, 1996, 39, 1773-1783.	2.5	68
107	Thermodynamic Optimization of a Gas Turbine Power Plant With Pressure Drop Irreversibilities. Journal of Energy Resources Technology, Transactions of the ASME, 1998, 120, 233-240.	1.4	68
108	Constructal multi-scale structure for maximal heat transfer density in natural convection. International Journal of Heat and Fluid Flow, 2005, 26, 34-44.	1.1	68

#	Article	IF	CITATIONS
109	The constructal unification of biological and geophysical design. Physics of Life Reviews, 2009, 6, 85-102.	1.5	68
110	Evaluation of heat transfer augmentation techniques based on their impact on entropy generation. Letters in Heat and Mass Transfer, 1980, 7, 97-106.	0.3	67
111	From Heat Transfer Principles to Shape and Structure in Nature: Constructal Theory. Journal of Heat Transfer, 2000, 122, 430-449.	1.2	67
112	Equipartition, optimal allocation, and the constructal approach to predicting organization in nature. International Journal of Thermal Sciences, 1998, 37, 165-180.	0.2	66
113	Natural convection in vertically and horizontally layered porous media heated from the side. International Journal of Heat and Mass Transfer, 1983, 26, 1805-1814.	2.5	65
114	Vortex tube optimization theory. Energy, 1999, 24, 931-943.	4.5	65
115	Experimental study of high-Rayleigh-number convection in a horizontal cavity with different end temperatures. Journal of Fluid Mechanics, 1981, 109, 283-299.	1.4	64
116	Constructal flow structure for a PEM fuel cell. International Journal of Heat and Mass Transfer, 2004, 47, 4177-4193.	2.5	64
117	Distribution of heat sources in vertical open channels with natural convection. International Journal of Heat and Mass Transfer, 2005, 48, 1462-1469.	2.5	64
118	Constructal tree-shaped flow structures. Applied Thermal Engineering, 2007, 27, 755-761.	3.0	64
119	Constructal multi-scale pin–fins. International Journal of Heat and Mass Transfer, 2010, 53, 2773-2779.	2.5	63
120	Complexity, organization, evolution, and constructal law. Journal of Applied Physics, 2016, 119, .	1.1	63
121	Constructal theory: from thermodynamic and geometric optimization to predicting shape in nature. Energy Conversion and Management, 1998, 39, 1705-1718.	4.4	62
122	Natural Convection in a Horizontal Porous Medium Subjected to an End-to-End Temperature Difference. Journal of Heat Transfer, 1978, 100, 191-198.	1.2	61
123	Transient natural convection in a rectangular enclosure with one heated side wall. International Journal of Heat and Fluid Flow, 1988, 9, 396-404.	1.1	61
124	A general variational principle for thermal insulation system design. International Journal of Heat and Mass Transfer, 1979, 22, 219-228.	2.5	60
125	Designed porous media: maximal heat transfer density at decreasing length scales. International Journal of Heat and Mass Transfer, 2004, 47, 3073-3083.	2.5	60
126	Natural convection heat transfer in a porous layer with internal flow obstructions. International Journal of Heat and Mass Transfer, 1983, 26, 815-822.	2.5	59

#	Article	IF	CITATIONS
127	Cylindrical trees of pin fins. International Journal of Heat and Mass Transfer, 2000, 43, 4285-4297.	2.5	59
128	The Prandtl Number Effect on the Transition in Natural Convection Along a Vertical Surface. Journal of Heat Transfer, 1990, 112, 787-790.	1.2	58
129	Constructal multi-scale cylinders in cross-flow. International Journal of Heat and Mass Transfer, 2005, 48, 1373-1383.	2.5	58
130	Thermodynamic optimization of tree-shaped flow geometries. International Journal of Heat and Mass Transfer, 2006, 49, 1619-1630.	2.5	58
131	Mass and heat transfer by natural convection in a vertical cavity. International Journal of Heat and Fluid Flow, 1985, 6, 149-159.	1.1	57
132	The departure from Darcy flow in natural convection in a vertical porous layer. Physics of Fluids, 1985, 28, 3477.	1.4	57
133	Thermodynamic Optimization of Phase-Change Energy Storage Using Two or More Materials. Journal of Energy Resources Technology, Transactions of the ASME, 1992, 114, 84-90.	1.4	57
134	Natural convection in an infinite porous medium with a concentrated heat source. Journal of Fluid Mechanics, 1978, 89, 97-107.	1.4	56
135	Constructal multi-scale structure for maximal heat transfer density. Acta Mechanica, 2003, 163, 39-49.	1.1	56
136	Tree-shaped networks with loops. International Journal of Heat and Mass Transfer, 2005, 48, 573-583.	2.5	56
137	Constructal tree-shaped parallel flow heat exchangers. International Journal of Heat and Mass Transfer, 2006, 49, 4558-4566.	2.5	56
138	"Entransy,―and Its Lack of Content in Physics. Journal of Heat Transfer, 2014, 136, .	1.2	56
139	Constructal Theory of Social Dynamics. , 2007, , .		56
140	Vascularized networks with two optimized channel sizes. Journal Physics D: Applied Physics, 2006, 39, 3086-3096.	1.3	55
141	The constructal law origin of the logistics S curve. Journal of Applied Physics, 2011, 110, .	1.1	55
142	High Rayleigh number convection in a fluid overlaying a porous bed. International Journal of Heat and Fluid Flow, 1986, 7, 109-116.	1.1	54
143	Natural Convection With Radiation in a Cavity With Open Top End. Journal of Heat Transfer, 1992, 114, 479-486.	1.2	53
144	Thermodynamic optimization of geometry in engineering flow systems. Exergy an International Journal, 2001, 1, 269-277.	0.7	53

#	Article	IF	CITATIONS
145	Constructal heat trees at micro and nanoscales. Journal of Applied Physics, 2004, 96, 5852-5859.	1.1	53
146	Constructal multi-scale cylinders with natural convection. International Journal of Heat and Mass Transfer, 2005, 48, 4300-4306.	2.5	53
147	Transient Natural Convection Experiments in Shallow Enclosures. Journal of Heat Transfer, 1982, 104, 533-538.	1.2	52
148	Constructal PEM fuel cell stack design. International Journal of Heat and Mass Transfer, 2005, 48, 4410-4427.	2.5	52
149	Phase change heat storage in an enclosure with vertical pipe in the center. International Journal of Heat and Mass Transfer, 2014, 72, 329-335.	2.5	52
150	The optimal cooling of a stack of heat generating boards with fixed pressure drop, flowrate or pumping power. International Journal of Heat and Mass Transfer, 1993, 36, 3677-3686.	2.5	51
151	Theory of organization in nature: pulsating physiological processes. International Journal of Heat and Mass Transfer, 1997, 40, 2097-2104.	2.5	51
152	Constructing Animal Locomotion from New Thermodynamics Theory. American Scientist, 2006, 94, 342.	0.1	51
153	Thermodynamic optimization of mechanical supports for cryogenic apparatus. Cryogenics, 1974, 14, 158-163.	0.9	50
154	MAXIMAL HEAT TRANSFER DENSITY IN VERTICAL MORPHING CHANNELS WITH NATURAL CONVECTION. Numerical Heat Transfer; Part A: Applications, 2004, 45, 135-152.	1.2	50
155	Constructal theory of pattern formation. Hydrology and Earth System Sciences, 2007, 11, 753-768.	1.9	50
156	Constructal design of latent thermal energy storage with vertical spiral heaters. International Journal of Heat and Mass Transfer, 2015, 81, 283-288.	2.5	50
157	Natural Convection on Both Sides of a Vertical Wall Separating Fluids at Different Temperatures. Journal of Heat Transfer, 1980, 102, 630-635.	1.2	49
158	Melting in an enclosure heated at constant rate. International Journal of Heat and Mass Transfer, 1989, 32, 1063-1076.	2.5	49
159	Combined `flow and strength' geometric optimization: internal structure in a vertical insulating wall with air cavities and prescribed strength. International Journal of Heat and Mass Transfer, 2002, 45, 3313-3320.	2.5	49
160	Disc cooled with high-conductivity inserts that extend inward from the perimeter. International Journal of Heat and Mass Transfer, 2004, 47, 4257-4263.	2.5	49
161	Tree networks for minimal pumping power. International Journal of Thermal Sciences, 2005, 44, 53-63.	2.6	49
162	The evolution of airplanes. Journal of Applied Physics, 2014, 116, .	1.1	49

#	Article	IF	Citations
163	Extraction of exergy from solar collectors under time-varying conditions. International Journal of Heat and Fluid Flow, 1982, 3, 67-72.	1.1	47
164	Natural convection near $4\hat{A}^{\circ}C$ in a water saturated porous layer heated from below. International Journal of Heat and Mass Transfer, 1984, 27, 2355-2364.	2.5	47
165	Thermodynamics of Energy Storage by Melting Due to Conduction or Natural Convection. Journal of Solar Energy Engineering, Transactions of the ASME, 1990, 112, 110-116.	1.1	47
166	Thermodynamic optimization of internal structure in a fuel cell. International Journal of Energy Research, 2004, 28, 319-339.	2.2	47
167	Tree-shaped flow structures with local junction losses. International Journal of Heat and Mass Transfer, 2006, 49, 2957-2964.	2.5	47
168	The problem of time-dependent natural convection melting with conduction in the solid. International Journal of Heat and Mass Transfer, 1989, 32, 2447-2457.	2.5	46
169	The Optimal Spacing for Cylinders in Crossflow Forced Convection. Journal of Heat Transfer, 1995, 117, 767-770.	1.2	45
170	Integrative thermodynamic optimization of the environmental control system of an aircraft. International Journal of Heat and Mass Transfer, 2001, 44, 3907-3917.	2.5	45
171	Design in Nature. Mechanical Engineering, 2012, 134, 42-47.	0.0	45
172	The golden ratio predicted: vision, cognition and locomotion as a single design in nature. International Journal of Design and Nature and Ecodynamics, 2009, 4, 97-104.	0.3	45
173	The Fundamentals of Sliding Contact Melting and Friction. Journal of Heat Transfer, 1989, 111, 13-20.	1.2	44
174	Heatline visualization of forced convection in porous media. International Journal of Heat and Fluid Flow, 1994, 15, 42-47.	1.1	44
175	Contact Melting Heat Transfer and Lubrication. Advances in Heat Transfer, 1994, 24, 1-38.	0.4	44
176	Free stream cooling of a stack of parallel plates. International Journal of Heat and Mass Transfer, 1995, 38, 519-531.	2.5	44
177	Maximum power from a hot stream. International Journal of Heat and Mass Transfer, 1998, 41, 2025-2035.	2.5	44
178	Constructal tree networks for the time-dependent discharge of a finite-size volume to one point. Journal of Applied Physics, 1998, 84, 3042-3050.	1,1	44
179	Tree-shaped vascular wall designs for localized intense cooling. International Journal of Heat and Mass Transfer, 2009, 52, 4535-4544.	2.5	44
180	Why the bigger live longer and travel farther: animals, vehicles, rivers and the winds. Scientific Reports, 2012, 2, 594.	1.6	44

#	Article	IF	CITATIONS
181	Mass Transfer to Natural Convection Boundary Layer Flow Driven by Heat Transfer. Journal of Heat Transfer, 1985, 107, 979-981.	1.2	43
182	Constructal Optimization of Internal Flow Geometry in Convection. Journal of Heat Transfer, 1998, 120, 357-364.	1.2	43
183	Constructal theory of particle agglomeration and design of air-cleaning devices. Journal Physics D: Applied Physics, 2006, 39, 2311-2318.	1.3	43
184	Steam generator structure: Continuous model and constructal design. International Journal of Energy Research, 2011, 35, 336-345.	2.2	43
185	The physics of spreading ideas. International Journal of Heat and Mass Transfer, 2012, 55, 802-807.	2.5	43
186	Three-dimensional tree constructs of "constant―thermal resistance. Journal of Applied Physics, 1999, 86, 7107-7115.	1.1	42
187	Minimum power requirement for environmental control of aircraft. Energy, 2003, 28, 1183-1202.	4.5	42
188	Designed porous media: Optimally nonuniform flow structures connecting one point with more points. International Journal of Thermal Sciences, 2003, 42, 857-870.	2.6	42
189	Thermodynamic optimization of tree-shaped flow geometries with constant channel wall temperature. International Journal of Heat and Mass Transfer, 2006, 49, 4839-4849.	2.5	42
190	Optimal temperature distribution in a 3D triple-layered skin structure embedded with artery and vein vasculature and induced by electromagnetic radiation. International Journal of Heat and Mass Transfer, 2007, 50, 1843-1854.	2.5	42
191	Constructal multi-tube configuration for natural and forced convection in cross-flow. International Journal of Heat and Mass Transfer, 2010, 53, 5121-5128.	2.5	42
192	Heatlines (1983) versus synergy (1998). International Journal of Heat and Mass Transfer, 2015, 81, 654-658.	2.5	42
193	Conservation of available work (exergy) by using promoters of swirl flow in forced convection heat transfer. Energy, 1980, 5, 587-596.	4.5	41
194	Forced convection in banks of inclined cylinders at low Reynolds numbers. International Journal of Heat and Fluid Flow, 1994, 15, 90-99.	1.1	41
195	Optimal Geometric Arrangement of Staggered Vertical Plates in Natural Convection. Journal of Heat Transfer, 1997, 119, 700-708.	1.2	41
196	Thermodynamic optimization of geometric structure in the counterflow heat exchanger for an environmental control system. Energy, 2001, 26, 493-512.	4.5	41
197	Development of tree-shaped flows by adding new users to existing networks of hot water pipes. International Journal of Heat and Mass Transfer, 2002, 45, 723-733.	2.5	41
198	Maximal heat transfer density: Plates with multiple lengths in forced convection. International Journal of Thermal Sciences, 2004, 43, 1181-1186.	2.6	41

#	Article	IF	CITATIONS
199	The effect of size on efficiency: Power plants and vascular designs. International Journal of Heat and Mass Transfer, 2011, 54, 1475-1481.	2.5	41
200	Experimental study of natural convection in a horizontal cylinder with different end temperatures. International Journal of Heat and Mass Transfer, 1980, 23, 1117-1126.	2.5	40
201	Maximum power from fluid flow. International Journal of Heat and Mass Transfer, 1996, 39, 1175-1181.	2.5	40
202	Constructal Trees of Convective Fins. Journal of Heat Transfer, 1999, 121, 675-682.	1.2	40
203	Constructal multi-scale and multi-objective structures. International Journal of Energy Research, 2005, 29, 689-710.	2.2	40
204	Natural convection in a differentially heated corner region. Physics of Fluids, 1985, 28, 2980.	1.4	39
205	Ernst Schmidt's approach to fin optimization: an extension to fins with variable conductivity and the design of ducts for fluid flow. International Journal of Heat and Mass Transfer, 1988, 31, 1635-1644.	2.5	39
206	Thermodynamic optimization of cooling techniques for electronic packages. International Journal of Heat and Mass Transfer, 1996, 39, 1213-1221.	2.5	39
207	Constructal theory of economics structure generation in space and time. Energy Conversion and Management, 2000, 41, 1429-1451.	4.4	39
208	Entropy Generation Minimization, Exergy Analysis, and the Constructal Law. Arabian Journal for Science and Engineering, 2013, 38, 329-340.	1.1	39
209	Thermodynamic Optimization of Solar-Driven Refrigerators. Journal of Solar Energy Engineering, Transactions of the ASME, 1996, 118, 130-135.	1.1	38
210	Medical imaging dose optimisation from ground up: expert opinion of an international summit. Journal of Radiological Protection, 2018, 38, 967-989.	0.6	38
211	The "flow of stresses―concept: The analogy between mechanical strength and heat convection. International Journal of Heat and Mass Transfer, 2010, 53, 2963-2968.	2.5	37
212	Predicting the Pool Fire Vortex Shedding Frequency. Journal of Heat Transfer, 1991, 113, 261-263.	1.2	36
213	Single correlation for theoretical contact melting results in various geometries. International Communications in Heat and Mass Transfer, 1992, 19, 473-483.	2.9	36
214	Two Constructal Routes to Minimal Heat Flow Resistance via Greater Internal Complexity. Journal of Heat Transfer, 1999, 121, 6-14.	1.2	36
215	Constructal theory of economics. Applied Energy, 2000, 67, 37-60.	5.1	36
216	Dendritic fins optimization for a coaxial two-stream heat exchanger. International Journal of Heat and Mass Transfer, 2004, 47, 111-124.	2.5	36

#	Article	IF	Citations
217	Constructal theory of droplet impact geometry. International Journal of Heat and Mass Transfer, 2006, 49, 2412-2419.	2.5	36
218	Vascularization with trees matched canopy to canopy: Diagonal channels with multiple sizes. International Journal of Heat and Mass Transfer, 2008, 51, 2029-2040.	2.5	36
219	Current trends in constructal law and evolutionary design. Heat Transfer - Asian Research, 2019, 48, 3574-3589.	2.8	36
220	Theory of Heat Transfer From a Surface Covered With Hair. Journal of Heat Transfer, 1990, 112, 662-667.	1.2	35
221	Efficiency of transient contaminant removal from a slot ventilated enclosure. International Journal of Heat and Mass Transfer, 1991, 34, 2603-2615.	2.5	35
222	Two design aspects of defrosting refrigerators. International Journal of Refrigeration, 1995, 18, 76-86.	1.8	35
223	Optimal geometric arrangement of staggered plates in forced convection. International Journal of Heat and Mass Transfer, 1997, 40, 1795-1805.	2.5	35
224	Optimization of tree-shaped flow distribution structures over a disc-shaped area. International Journal of Energy Research, 2003, 27, 715-723.	2.2	35
225	The emergence of vascular design in three dimensions. Journal of Applied Physics, 2008, 103, .	1.1	35
226	Morphing tree structures for latent thermal energy storage. Journal of Applied Physics, 2015, 117, .	1.1	35
227	Horizontal extent of the urban heat dome flow. Scientific Reports, 2017, 7, 11681.	1.6	35
228	Freedom and Evolution. , 2020, , .		35
229	Natural Convection at the Interface Between a Vertical Porous Layer and an Open Space. Journal of Heat Transfer, 1983, 105, 124-129.	1.2	34
230	Scales of Melting in the Presence of Natural Convection in a Rectangular Cavity Filled With Porous Medium. Journal of Heat Transfer, 1988, 110, 526-529.	1.2	34
231	How nature takes shape: extensions of constructural theory to ducts, rivers, turbulence, cracks, dendritic crystals and spatial economics. International Journal of Thermal Sciences, 1999, 38, 653-663.	2.6	34
232	Integrative Thermodynamic Optimization of the Crossflow Heat Exchanger for an Aircraft Environmental Control System. Journal of Heat Transfer, 2001, 123, 760-769.	1.2	34
233	Constructal tree-shaped microchannel networks for maximizing the saturated critical heat flux. International Journal of Thermal Sciences, 2009, 48, 342-352.	2.6	34
234	The evolution of speed in athletics: Why the fastest runners are black and swimmers white. International Journal of Design and Nature and Ecodynamics, 2010, 5, 199-211.	0.3	34

#	Article	IF	Citations
235	Natural Convection in a Vertical Enclosure Filled With Water Near 4°C. Journal of Heat Transfer, 1986, 108, 755-763.	1.2	33
236	Natural Convection in a Vertical Enclosure With Internal Permeable Screen. Journal of Heat Transfer, 1991, 113, 377-383.	1.2	33
237	Constructal Theory: Tree-Shaped Flows and Energy Systems for Aircraft. Journal of Aircraft, 2003, 40, 43-48.	1.7	33
238	Constructal steam generator architecture. International Journal of Heat and Mass Transfer, 2009, 52, 2362-2369.	2.5	33
239	Vascularization for cooling and mechanical strength. International Journal of Heat and Mass Transfer, 2011, 54, 2774-2781.	2.5	32
240	Maxwell's Demons Everywhere: Evolving Design as the Arrow of Time. Scientific Reports, 2014, 4, 4017.	1.6	32
241	Natural convection in a vertical cylindrical well filled with porous medium. International Journal of Heat and Mass Transfer, 1980, 23, 726-729.	2.5	31
242	Contact melting during sliding on ice. International Journal of Heat and Mass Transfer, 1993, 36, 1171-1179.	2.5	31
243	Constructal multi-scale structures for maximal heat transfer density. Energy, 2006, 31, 620-635.	4.5	31
244	Vascularized materials with heating from one side and coolant forced from the other side. International Journal of Heat and Mass Transfer, 2007, 50, 3498-3506.	2.5	31
245	The horizontal spreading of thermal and chemical deposits in a porous medium. International Journal of Heat and Mass Transfer, 1987, 30, 2289-2303.	2.5	30
246	Removal of contaminant generated by a discrete source in a slot ventilated enclosure. International Journal of Heat and Mass Transfer, 1992, 35, 1169-1180.	2.5	30
247	How to distribute a finite amount of insulation on a wall with nonuniform temperature. International Journal of Heat and Mass Transfer, 1993, 36, 49-56.	2.5	30
248	Plate fins with variable thickness and height for air-cooled electronic modules. International Journal of Heat and Mass Transfer, 1994, 37, 433-445.	2.5	30
249	Thermodynamic optimization of the match between two streams with phase change. Energy, 2000, 25, 15-33.	4.5	30
250	Constructal tree-shaped two-phase flow for cooling a surface. International Journal of Heat and Mass Transfer, 2003, 46, 2785-2797.	2.5	30
251	Natural constructal emergence of vascular design with turbulent flow. Journal of Applied Physics, 2010, 107, .	1.1	30
252	Mechanism for transition to turbulence in buoyant plume flow. International Journal of Heat and Mass Transfer, 1983, 26, 1515-1532.	2.5	29

#	Article	IF	Citations
253	Thermodynamics of Phase-Change Energy Storage: The Effects of Liquid Superheating During Melting, and Irreversibility During Solidification. Journal of Solar Energy Engineering, Transactions of the ASME, 1991, 113, 2-10.	1.1	29
254	Constructal Three-Dimensional Trees for Conduction Between a Volume and One Point. Journal of Heat Transfer, 1998, 120, 977-984.	1.2	29
255	Tree-Shaped Flow Architectures: Strategies for Increasing Optimization Speed and Accuracy. Numerical Heat Transfer; Part A: Applications, 2005, 48, 731-744.	1.2	29
256	Dendritic counterflow heat exchanger experiments. International Journal of Thermal Sciences, 2006, 45, 860-869.	2.6	29
257	Vascular design of constructal structures with low flow resistance and nonuniformity. International Journal of Thermal Sciences, 2010, 49, 2309-2318.	2.6	29
258	Design, additive manufacturing, and performance of heat exchanger with a novel flow-path architecture. Applied Thermal Engineering, 2020, 180, 115775.	3.0	29
259	Natural convection in a porous layer heated and cooled along one vertical side. International Journal of Heat and Mass Transfer, 1984, 27, 1879-1891.	2.5	28
260	Fitting the duct to the "body―of the convective flow. International Journal of Heat and Mass Transfer, 2003, 46, 1693-1701.	2.5	28
261	Constructal multi-scale structures with asymmetric heat sources of finite thickness. International Journal of Heat and Mass Transfer, 2005, 48, 2662-2672.	2.5	28
262	A Constructal Approach to the Optimal Design of Photovoltaic Cells. International Journal of Green Energy, 2005, 2, 233-242.	2.1	28
263	Distribution of size in steam turbine power plants. International Journal of Energy Research, 2009, 33, 989-998.	2.2	28
264	Fluid flow and heat transfer in vascularized cooling plates. International Journal of Heat and Mass Transfer, 2010, 53, 3607-3614.	2.5	28
265	Evolution: Why all plumes and jets evolve to round cross sections. Scientific Reports, 2014, 4, 4730.	1.6	28
266	Penetration of free convection into a lateral cavity. Journal of Fluid Mechanics, 1981, 103, 465.	1.4	27
267	Numerical Study of Transient High Rayleigh Number Convection in an Attic-Shaped Porous Layer. Journal of Heat Transfer, 1983, 105, 476-484.	1.2	27
268	Natural convection near 4 °C in a horizontal water layer heated from below. Physics of Fluids, 1984, 27, 2608.	1.4	27
269	The optimal spacing of a stack of plates cooled by turbulent forced convection. International Journal of Heat and Mass Transfer, 1994, 37, 1045-1048.	2.5	27
270	Geometric Optimization of Periodic Flow and Heat Transfer in a Volume Cooled by Parallel Tubes. Journal of Heat Transfer, 2001, 123, 233-239.	1.2	27

#	Article	IF	Citations
271	Constructal tree shaped networks for the distribution of electrical power. Energy Conversion and Management, 2003, 44, 867-891.	4.4	27
272	Optimal Internal Structure of Volumes Cooled by Single-Phase Forced and Natural Convection. Journal of Electronic Packaging, Transactions of the ASME, 2003, 125, 200-207.	1.2	27
273	Thermodynamic optimization of global circulation and climate. International Journal of Energy Research, 2005, 29, 303-316.	2.2	27
274	Vascularization with trees that alternate with upside-down trees. Journal of Applied Physics, 2007, 101, 094904.	1.1	27
275	Unsteady natural convection in a porous layer. Physics of Fluids, 1983, 26, 1183.	1.4	26
276	Engineering advances on finiteâ€time thermodynamics. American Journal of Physics, 1994, 62, 11-12.	0.3	26
277	The Equivalence of Maximum Power and Minimum Entropy Generation Rate in the Optimization of Power Plants. Journal of Energy Resources Technology, Transactions of the ASME, 1996, 118, 98-101.	1.4	26
278	Constructal theory of natural crack pattern formation for fastest cooling. International Journal of Heat and Mass Transfer, 1998, 41, 1945-1954.	2.5	26
279	Emergence of asymmetry in constructal tree flow networks. Journal of Applied Physics, 2005, 98, 104903.	1.1	26
280	Constructal dendritic configuration for the radiation heating of a solid stream. Journal of Applied Physics, 2010, 107, .	1.1	26
281	The constructal-law origin of the wheel, size, and skeleton in animal design. American Journal of Physics, 2010, 78, 692-699.	0.3	26
282	Entrance-length dendritic plate heat exchangers. International Journal of Heat and Mass Transfer, 2017, 114, 1350-1356.	2.5	26
283	Tree Networks for Flows in Composite Porous Media. Journal of Porous Media, 1999, 2, 1-17.	1.0	26
284	On the buckling property of inviscid jets and the origin of turbulence. Letters in Heat and Mass Transfer, 1981, 8, 187-194.	0.3	25
285	Theory of Melting With Natural Convection in an Enclosed Porous Medium. Journal of Heat Transfer, 1989, 111, 407-415.	1.2	25
286	Film condensation on an upward facing plate with free edges. International Journal of Heat and Mass Transfer, 1991, 34, 578-582.	2.5	25
287	OPTIMAL SPACING OF PARALLEL BOARDS WITH DISCRETE HEAT SOURCES COOLED BY LAMINAR FORCED CONVECTION. Numerical Heat Transfer; Part A: Applications, 1994, 25, 373-392.	1.2	25
288	Nonsimilar solutions for mixed convection on a wedge embedded in a porous medium. International Journal of Heat and Fluid Flow, 1995, 16, 211-216.	1.1	25

#	Article	IF	Citations
289	Constructal tree-shaped paths for conduction and convection. International Journal of Energy Research, 2003, 27, 283-299.	2.2	25
290	Constructal thermal optimization of an electromagnet. International Journal of Thermal Sciences, 2004, 43, 331-338.	2.6	25
291	Vascularization with grids of channels: multiple scales, loops and body shapes. Journal Physics D: Applied Physics, 2007, 40, 4740-4749.	1.3	25
292	Why solidification has an S-shaped history. Scientific Reports, 2013, 3, .	1.6	25
293	Thermodynamics today. Energy, 2018, 160, 1208-1219.	4.5	25
294	Effect of axial conduction and metal-helium heat transfer on the local stability of superconducting composite media. Cryogenics, 1978, 18, 433-441.	0.9	24
295	The Melting of an Ice Shell on a Heated Horizontal Cylinder. Journal of Heat Transfer, 1994, 116, 702-708.	1.2	24
296	The principle that generates dissimilar patterns inside aggregates of organisms. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 727-731.	1.2	24
297	Constructal distribution of multi-layer insulation. International Journal of Energy Research, 2013, 37, 153-160.	2.2	24
298	Cerebral oxygenation and optimal vascular brain organization. Journal of the Royal Society Interface, 2015, 12, 20150245.	1.5	24
299	Constructal design for convection melting of a phase change body. International Journal of Heat and Mass Transfer, 2016, 99, 762-769.	2.5	24
300	The evolution of air and maritime transport. Applied Physics Reviews, 2019, 6, .	5 . 5	24
301	Natural Convection Near a Cold Plate Facing Upward in a Porous Medium. Journal of Heat Transfer, 1985, 107, 819-825.	1.2	23
302	Correlation of optimal sizes of bodies with external forced convection heat transfer. International Communications in Heat and Mass Transfer, 1994, 21, 17-27.	2.9	23
303	When to defrost a refrigerator, and when to remove the scale from the heat exchanger of a power plant. International Journal of Heat and Mass Transfer, 1994, 37, 523-532.	2.5	23
304	Thermodynamic optimization alternatives: minimization of physical size subject to fixed power. International Journal of Energy Research, 1999, 23, 1111-1121.	2.2	23
305	Power extraction from a hot stream in the presence of phase change. International Journal of Heat and Mass Transfer, 2000, 43, 191-201.	2.5	23
306	Tree-shaped flow structures: are both thermal-resistance and flow-resistance minimisations necessary?. International Journal of Exergy, 2004, $1, 2$.	0.2	23

#	Article	IF	CITATIONS
307	Dendritic vascularization for countering intense heating from the side. International Journal of Heat and Mass Transfer, 2008, 51, 5877-5886.	2.5	23
308	Constructal Distribution of Solar Chimney Power Plants: Few Large and Many Small. International Journal of Green Energy, 2010, 7, 577-592.	2.1	23
309	Constructal flow orientation in conjugate cooling channels with internal heat generation. International Journal of Heat and Mass Transfer, 2013, 57, 241-249.	2.5	23
310	Natural Convection in Horizontal Duct Connecting Two Fluid Reservoirs. Journal of Heat Transfer, 1981, 103, 108-113.	1.2	22
311	Natural Convection in an Attic-Shaped Space Filled With Porous Material. Journal of Heat Transfer, 1982, 104, 241-247.	1.2	22
312	Penetrative convection in porous medium bounded by a horizontal wall with hot and cold spots. International Journal of Heat and Mass Transfer, 1984, 27, 1749-1757.	2.5	22
313	Optimal temperature distribution in a three dimensional triple-layered skin structure with embedded vasculature. Journal of Applied Physics, 2006, 99, 104702.	1.1	22
314	The Constructal Law and the Design of the Biosphere: Nature and Globalization. Journal of Heat Transfer, 2011, 133, .	1.2	22
315	The robustness of the permeability of constructal tree-shaped fissures. International Journal of Heat and Mass Transfer, 2015, 90, 259-265.	2.5	22
316	Optimum flowrate history for cooldown and energy storage processes. International Journal of Heat and Mass Transfer, 1982, 25, 1087-1092.	2.5	21
317	Heat transfer correlation for benard convection in a fluid saturated porous layer. International Communications in Heat and Mass Transfer, 1987, 14, 617-626.	2.9	21
318	The Method of Entropy Generation Minimization. Environmental Science and Technology Library, 1999, , 11-22.	0.1	21
319	Optimal Temperature Distribution in a Three-Dimensional Triple-Layered Skin Structure Embedded with Artery and Vein Vasculature. Numerical Heat Transfer; Part A: Applications, 2006, 50, 809-834.	1.2	21
320	Vascular materials cooled with grids and radial channels. International Journal of Heat and Mass Transfer, 2009, 52, 1230-1239.	2.5	21
321	Thermal analysis in a triple-layered skin structure with embedded vasculature, tumor, and gold nanoshells. International Journal of Heat and Mass Transfer, 2017, 111, 677-695.	2.5	21
322	Wealth inequality: The physics basis. Journal of Applied Physics, 2017, 121, .	1.1	21
323	The constructal size of a heat exchanger. Journal of Applied Physics, 2017, 122, .	1.1	21
324	Vascularized Smart Materials: Designed Porous Media for Self-Healing and Self-Cooling. Journal of Porous Media, 2009, 12, 1-18.	1.0	21

#	Article	IF	CITATIONS
325	Few large and many small: Hierarchy in movement on earth. International Journal of Design and Nature and Ecodynamics, 2010, 5, 254-267.	0.3	21
326	The basic scales of natural convection heat and mass transfer in fluids and fluid-saturated porous media. International Communications in Heat and Mass Transfer, 1987, 14, 107-123.	2.9	20
327	Theory of Rolling Contact Heat Transfer. Journal of Heat Transfer, 1989, 111, 257-263.	1.2	20
328	The effect of shrinkage on the cooking of meat. International Journal of Heat and Fluid Flow, 1991, 12, 375-383.	1.1	20
329	The Pressure Melting of Ice Under a Body With Flat Base. Journal of Heat Transfer, 1992, 114, 529-531.	1.2	20
330	On the Thermodynamic Optimization of Power Plants With Heat Transfer and Fluid Flow Irreversibilities. Journal of Solar Energy Engineering, Transactions of the ASME, 1998, 120, 139-144.	1,1	20
331	Optimal Spacings for Mixed Convection. Journal of Heat Transfer, 2004, 126, 956-962.	1.2	20
332	Combined `heat flow and strength' optimization of geometry: mechanical structures most resistant to thermal attack. International Journal of Heat and Mass Transfer, 2004, 47, 3477-3489.	2.5	20
333	Leaflike architecture for cooling a flat body. Journal of Applied Physics, 2009, 106, .	1.1	20
334	Transient behavior of vascularized walls exposed to sudden heating. International Journal of Thermal Sciences, 2009, 48, 2046-2052.	2.6	20
335	Constructal architecture for heating a stream by convection. International Journal of Heat and Mass Transfer, 2010, 53, 2248-2255.	2.5	20
336	Freely morphing tree structures in a conducting body. International Journal of Heat and Mass Transfer, 2012, 55, 4744-4753.	2.5	20
337	Trees and serpentines in a conducting body. International Journal of Heat and Mass Transfer, 2013, 56, 488-494.	2.5	20
338	Economies of scale: The physics basis. Journal of Applied Physics, 2017, 121, .	1,1	20
339	Constructal Placement of High-Conductivity Inserts in a Slab: Optimal Design of "Roughness― Journal of Heat Transfer, 2001, 123, 1184-1189.	1.2	20
340	Simple methods for convection in porous media: scale analysis and the intersection of asymptotes. International Journal of Energy Research, 2003, 27, 859-874.	2.2	19
341	MAXIMUM HEAT TRANSFER RATE DENSITY IN TWO-DIMENSIONAL MINICHANNELS AND MICROCHANNELS. Microscale Thermophysical Engineering, 2004, 8, 225-237.	1.2	19
342	Vascular structures with flow uniformity and small resistance. International Journal of Heat and Mass Transfer, 2009, 52, 1761-1768.	2.5	19

#	Article	IF	Citations
343	Constructal ducts with wrinkled entrances. International Journal of Heat and Mass Transfer, 2009, 52, 3628-3633.	2.5	19
344	Tree-shaped fluid flow and heat storage in a conducting solid. Journal of Applied Physics, 2012, 111, .	1.1	19
345	Heat Transfer Through a Porous Medium. , 2013, , 31-46.		19
346	Ecohydrological flow networks in the subsurface. Ecohydrology, 2014, 7, 1073-1078.	1.1	19
347	Vascularization for cooling and reduced thermal stresses. International Journal of Heat and Mass Transfer, 2015, 80, 858-864.	2.5	19
348	The evolution of helicopters. Journal of Applied Physics, 2016, 120, .	1.1	19
349	The evolutionary design of cooling a plate with one stream. International Journal of Heat and Mass Transfer, 2018, 116, 9-15.	2.5	19
350	Natural convection in horizontal space bounded by two concentric cylinders with different end temperatures. International Journal of Heat and Mass Transfer, 1979, 22, 919-927.	2.5	18
351	Analysis of melting by natural convection in an enclosure. International Journal of Heat and Fluid Flow, 1989, 10, 245-252.	1.1	18
352	Maximum work from an electric battery model. Energy, 1997, 22, 93-102.	4.5	18
353	Vascularization with line-to-line trees in counterflow heat exchange. International Journal of Heat and Mass Transfer, 2009, 52, 4327-4342.	2.5	18
354	Hybrid grid and tree structures for cooling and mechanical strength. Journal of Applied Physics, 2011, 110, .	1,1	18
355	The constructal-law physics of why swimmers must spread their fingers and toes. Journal of Theoretical Biology, 2012, 308, 141-146.	0.8	18
356	Constructal design of a comb-like channel network for self-healing and self-cooling. International Journal of Heat and Mass Transfer, 2013, 66, 898-905.	2.5	18
357	Constructal design of salt-gradient solar pond fields. International Journal of Energy Research, 2016, 40, 1428-1446.	2.2	18
358	Al and freedom for evolution in energy science. Energy and Al, 2020, 1, 100001.	5.8	18
359	Second-Law Analysis of Solar Collectors With Energy Storage Capability. Journal of Solar Energy Engineering, Transactions of the ASME, 1985, 107, 244-251.	1.1	17
360	Science and technology as evolving flow architectures. International Journal of Energy Research, 2009, 33, 112-125.	2.2	17

#	Article	IF	CITATIONS
361	Vascular Countercurrent Network for 3-D Triple-Layered Skin Structure with Radiation Heating. Numerical Heat Transfer; Part A: Applications, 2010, 57, 369-391.	1.2	17
362	Vascular design for reducing hot spots and stresses. Journal of Applied Physics, 2014, 115, .	1.1	17
363	Counterflow heat exchanger with core and plenums at both ends. International Journal of Heat and Mass Transfer, 2016, 99, 622-629.	2.5	17
364	Comment on "Study on the consistency between field synergy principle and entransy dissipation extremum principle― International Journal of Heat and Mass Transfer, 2018, 120, 1187-1188.	2.5	17
365	Human evolution is biological & Echnological evolution. BioSystems, 2020, 195, 104156.	0.9	17
366	Discrete cooling of low heat leak supports to 4.2 K. Cryogenics, 1975, 15, 290-292.	0.9	16
367	Criterion for burn-up conditions in gas-cooled cryogenic current leads. Cryogenics, 1976, 16, 515-518.	0.9	16
368	Constructal design of evacuation from a three-dimensional living space. Physica A: Statistical Mechanics and Its Applications, 2015, 422, 47-57.	1.2	16
369	Purpose in Thermodynamics. Energies, 2021, 14, 408.	1.6	16
370	Solidification in the presence of high Rayleigh number convection in an enclosure cooled from the side. International Journal of Heat and Mass Transfer, 1990, 33, 661-671.	2.5	15
371	Cooling of stacks of plates shielded by porous screens. International Journal of Heat and Fluid Flow, 1995, 16, 16-24.	1.1	15
372	Transient cooling response of smart vascular materials for self-cooling. Journal of Applied Physics, 2009, 105, 064904.	1.1	15
373	Serpentine thermal coupling between a stream and a conducting body. Journal of Applied Physics, 2012, 111, .	1.1	15
374	Technology evolution, from the constructal law: heat transfer designs. International Journal of Energy Research, 2015, 39, 919-928.	2.2	15
375	BUCKLING FLOWS: A NEW FRONTIER IN FLUID MECHANICS. Annual Review of Heat Transfer, 1987, 1, 262-304.	0.3	15
376	Two hierarchies in science: the free flow of ideas and the academy. International Journal of Design and Nature and Ecodynamics, 2010, 4, 386-394.	0.3	15
377	Discipline in Thermodynamics. Energies, 2020, 13, 2487.	1.6	15
378	Refrigeration for rotating superconducting windings of large ac electric machines. Cryogenics, 1976, 16, 153-159.	0.9	14

#	Article	IF	CITATIONS
379	The Prandtl Number Effect on Melting Dominated by Natural Convection. Journal of Heat Transfer, 1992, 114, 784-787.	1.2	14
380	Spaces Filled With Fluid and Fibers Coated With a Phase-Change Material. Journal of Heat Transfer, 1993, 115, 1044-1050.	1.2	14
381	Analogy between electrical machines and heat transfer-irreversible heat engines. International Journal of Heat and Mass Transfer, 1996, 39, 3659-3666.	2.5	14
382	The transient response of vascular composites cooled with grids and radial channels. International Journal of Heat and Mass Transfer, 2009, 52, 4175-4183.	2.5	14
383	Constructal design of distributed cooling on the landscape. International Journal of Energy Research, 2011, 35, 805-812.	2.2	14
384	Climate change, in the framework of the Constructal Law. International Journal of Global Warming, 2012, 4, 242.	0.2	14
385	The steepest S curve of spreading and collecting flows: Discovering the invading tree, not assuming it. Journal of Applied Physics, 2012, 111, 114903.	1.1	14
386	Constructal design for pedestrian movement in living spaces: Evacuation configurations. Journal of Applied Physics, 2012, 111, 054903.	1.1	14
387	XB. Liu, Q. Chen, M. Wang, N. Pan and ZY. Guo, Multi-dimensional effect on optimal network structure for fluid distribution, Chemical Engineering and Processing 49 (2010) 1038–1043. Chemical Engineering and Processing: Process Intensification, 2012, 56, 34.	1.8	14
388	Constructal design of distributed energy systems: Solar power and water desalination. International Journal of Heat and Mass Transfer, 2012, 55, 2213-2218.	2.5	14
389	Assemblies of heat pumps served by a single underground heat exchanger. International Journal of Heat and Mass Transfer, 2014, 75, 327-336.	2.5	14
390	The physics origin of the hierarchy of bodies in space. Journal of Applied Physics, 2016, 119, .	1.1	14
391	Life and evolution as physics. Communicative and Integrative Biology, 2016, 9, e1172159.	0.6	14
392	Optimum hair strand diameter for minimum free-convection heat transfer from a surface covered with hair. International Journal of Heat and Mass Transfer, 1990, 33, 206-209.	2.5	13
393	The Pressure Melting of Ice Due to an Embedded Cylinder. Journal of Heat Transfer, 1992, 114, 532-535.	1.2	13
394	The Prandtl number effect near the onset of $B\tilde{A}$ ©nard convection in a porous medium. International Journal of Heat and Fluid Flow, 1992, 13, 408-411.	1.1	13
395	The optimal thickness of a wall with convection on one side. International Journal of Heat and Mass Transfer, 1992, 35, 1673-1679.	2.5	13
396	Two Fundamental Problems of Refrigerator Thermal Insulation Design. Heat Transfer Engineering, 1994, 15, 35-41.	1.2	13

#	Article	IF	CITATIONS
397	A model for heat transfer in a honey bee swarm. Chemical Engineering Science, 1996, 51, 387-400.	1.9	13
398	Exergy analysis of energy conversion during the thermal interaction between hot particles and water. Energy, 1998, 23, 913-928.	4.5	13
399	Constructal theory of energy-system and environment flow configurations. International Journal of Exergy, 2005, 2, 335.	0.2	13
400	Tree-shaped structures for cold storage. International Journal of Refrigeration, 2005, 28, 231-241.	1.8	13
401	Dendritic solidification morphology viewed from the perspective of constructal theory. Journal Physics D: Applied Physics, 2006, 39, 5252-5266.	1.3	13
402	Parabolic scaling of tree-shaped constructal network. Physica A: Statistical Mechanics and Its Applications, 2007, 384, 719-724.	1.2	13
403	Vascular structures for volumetric cooling and mechanical strength. Journal of Applied Physics, 2010, 107, 044901.	1.1	13
404	Vascularization for cooling a plate heated by a randomly moving source. Journal of Applied Physics, 2012, 112, 084906.	1.1	13
405	Power from a hot gas stream with multiple superheaters and reheaters. International Journal of Heat and Mass Transfer, 2013, 67, 153-158.	2.5	13
406	Comment on "Application of Entransy Analysis in Self-Heat Recuperation Technology― Industrial & Engineering Chemistry Research, 2014, 53, 18352-18353.	1.8	13
407	The S curve of energy storage by melting. Journal of Applied Physics, 2014, 116, .	1.1	13
408	Rolling stones and turbulent eddies: why the bigger live longer and travel farther. Scientific Reports, 2016, 6, 21445.	1.6	13
409	Why the Days Seem Shorter as We Get Older. European Review, 2019, 27, 187-194.	0.4	13
410	Thermodynamics of heating. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180820.	1.0	13
411	CONSTRUCTAL DESIGN AND THERMODYNAMIC OPTIMIZATION. Annual Review of Heat Transfer, 2005, 14, 511-527.	0.3	13
412	Constructal thermodynamics. International Journal of Heat and Technology, 2016, 34, S1-S8.	0.3	13
413	Natural Convection in a Stably Heated Corner Filled With Porous Medium. Journal of Heat Transfer, 1985, 107, 293-298.	1.2	12
414	Constructal geometry and operation of adsorption processes. International Journal of Thermal Sciences, 2003, 42, 983-994.	2.6	12

#	Article	IF	CITATIONS
415	Constructal design of underground heat sources or sinks for the annual cycle. International Journal of Heat and Mass Transfer, 2012, 55, 7832-7837.	2.5	12
416	Mechanics of Fluid Flow Through a Porous Medium. , 2013, , 1-29.		12
417	Effect of size on ground-coupled heat pump performance. International Journal of Heat and Mass Transfer, 2013, 64, 115-121.	2.5	12
418	One underground heat exchanger for multiple heat pumps. International Journal of Heat and Mass Transfer, 2013, 65, 727-738.	2.5	12
419	Heat sinks with minichannels and flow distributors based on constructal law. International Communications in Heat and Mass Transfer, 2021, 125, 105122.	2.9	12
420	Material selection for the torque tubes of large superconducting rotating machinery. Cryogenics, 1974, 14, 313-315.	0.9	11
421	Lateral Intrusion of Natural Convection into a Horizontal Porous Structure. Journal of Heat Transfer, 1981, 103, 237-241.	1.2	11
422	CONVECTION DRIVEN BY THE NONUNIFORM ABSORPTION OF THERMAL RADIATION AT THE FREE SURFACE OF A STAGNANT POOL. Numerical Heat Transfer, 1986, 10, 483-506.	0.5	11
423	Sliding Contact Melting: The Effect of Heat Transfer in the Solid Parts. Journal of Heat Transfer, 1990, 112, 808-812.	1.2	11
424	Natural convection from a vertical surface covered with hair. International Journal of Heat and Fluid Flow, 1991, 12, 46-53.	1.1	11
425	Forced convection from a surface covered with flexible fibers. International Journal of Heat and Mass Transfer, 1995, 38, 767-777.	2.5	11
426	Integral measures of electric power distribution networks: load–length curves and line-network multipliers. Energy Conversion and Management, 2003, 44, 1039-1051.	4.4	11
427	Vascular design for thermal management of heated structures. Aeronautical Journal, 2009, 113, 397-407.	1.1	11
428	Constructal design of regenerators. International Journal of Energy Research, 2013, 37, 1509-1518.	2.2	11
429	Constructal design of pedestrian evacuation from an area. Journal of Applied Physics, 2013, 113, 034904.	1.1	11
430	The evolutionary design of condensers. Journal of Applied Physics, 2015, 117, .	1.1	11
431	Evolution of Airplanes, and What Price Speed?. AIAA Journal, 2016, 54, 1120-1123.	1.5	11
432	Counter cross-flow evaporator geometries for supercritical organic Rankine cycles. International Journal of Heat and Mass Transfer, 2019, 135, 425-435.	2.5	11

#	Article	IF	CITATIONS
433	Freedom and evolution in the dynamics of social systems. BioSystems, 2020, 195, 104158.	0.9	11
434	Evolutionary Aeroelastic Design of Flying-Wing Cross Section. AIAA Journal, 2022, 60, 913-924.	1.5	11
435	The Optimal Shape of the Interface Between Two Conductive Bodies With Minimal Thermal Resistance. Journal of Heat Transfer, 2002, 124, 1218-1221.	1.2	11
436	Convection From a Periodically Stretching Plane Wall. Journal of Heat Transfer, 1990, 112, 92-99.	1.2	10
437	Fundamentals of ice making by convection cooling followed by contact melting. International Journal of Heat and Mass Transfer, 1995, 38, 2833-2841.	2.5	10
438	Fundamentals of tree-shaped networks of insulated pipes for hot water and exergy. Exergy an International Journal, 2002, 2, 227-236.	0.7	10
439	Constructal Underground Designs for Ground-Coupled Heat Pumps. Journal of Solar Energy Engineering, Transactions of the ASME, 2014, 136, .	1.1	10
440	Constructal design of thermoelectric power packages. International Journal of Heat and Mass Transfer, 2014, 79, 291-299.	2.5	10
441	Sustainability: The Water and Energy Problem, and the Natural Design Solution. European Review, 2015, 23, 481-488.	0.4	10
442	Why humans build fires shaped the same way. Scientific Reports, 2015, 5, 11270.	1.6	10
443	Arrays of flow channels with heat transfer embedded in conducting walls. International Journal of Heat and Mass Transfer, 2016, 99, 504-511.	2.5	10
444	Letter to the editor on "Temperature-heat diagram analysis method for heat recovery physical adsorption refrigeration cycle—Taking multi stage cycle as an example―by S. Z. Xu et al., vol. 74, 2017, pp. 254–268. International Journal of Refrigeration, 2018, 90, 277-279.	1.8	10
445	Constructal Design of Aircraft: Flow of Stresses and Aeroelastic Stability. AIAA Journal, 2019, 57, 4393-4405.	1.5	10
446	Numerische Berechnung der nat $\tilde{A}\frac{1}{4}$ rlichen Konvektion in einem waagerechten Kanal mit ungleichen Endtemperaturen. Heat and Mass Transfer, 1980, 14, 269-280.	0.2	9
447	Transient forced convection near a suddenly heated plate in a porous medium. International Communications in Heat and Mass Transfer, 1991, 18, 83-91.	2.9	9
448	Thermodynamics of an â€~isothermal' flow: the two-dimensional turbulent jet. International Journal of Heat and Mass Transfer, 1991, 34, 407-413.	2.5	9
449	Thermodynamics of energy extraction from fractured hot dry rock. International Journal of Heat and Fluid Flow, 1992, 13, 71-77.	1.1	9
450	Optimization of pulsating heaters in forced convection. International Journal of Heat and Mass Transfer, 1995, 38, 2925-2934.	2.5	9

#	Article	IF	CITATIONS
451	Thermodynamic optimization of heat-transfer equipment configuration in an environmental control system. International Journal of Energy Research, 2001, 25, 1127-1150.	2.2	9
452	Constructal comment on a Fermat-type principle for heat flow. International Journal of Heat and Mass Transfer, 2003, 46, 1885-1886.	2.5	9
453	System-level optimization of the sizes of organs for heat and fluid flow systems. International Journal of Thermal Sciences, 2003, 42, 335-342.	2.6	9
454	Optimal Ground Tube Length for Cooling of Electronics Shelters. Heat Transfer Engineering, 2005, 26, 8-20.	1.2	9
455	Optimal distribution of cooling during gas compression. Energy, 2006, 31, 409-424.	4.5	9
456	Constructal Theory and its Relevance to Green Energy. International Journal of Green Energy, 2007, 4, 105-117.	2.1	9
457	Distributed energy tapestry for heating the landscape. Journal of Applied Physics, 2010, 108, .	1.1	9
458	Letter to the editor of renewable and sustainable energy reviews. Renewable and Sustainable Energy Reviews, 2016, 53, 1636-1637.	8.2	9
459	Hierarchy in air travel: Few large and many small. Journal of Applied Physics, 2017, 122, .	1.1	9
460	Morphing the design to go with the times. International Communications in Heat and Mass Transfer, 2021, 120, 104837.	2.9	9
461	Constructal thermodynamics. International Journal of Heat and Technology, 2016, 34, S1-S8.	0.3	9
462	Flow instabilities in gas-cooled cryogenic current leads. IEEE Transactions on Magnetics, 1975, 11, 573-575.	1.2	8
463	Refrigerator-recirculator systems for large forced-cooled superconducting magnets. Cryogenics, 1977, 17, 97-105.	0.9	8
464	A supply-side approach to energy policy. Energy Policy, 1982, 10, 153-157.	4.2	8
465	Melting around a shaft rotating in a phase-change material. International Journal of Heat and Mass Transfer, 1993, 36, 2499-2509.	2.5	8
466	The cooling of a heat-generating board inside a parallel-plate channel. International Journal of Heat and Fluid Flow, 1993, 14, 170-176.	1.1	8
467	Optimization Principle for Natural Convection Pulsating Heating. Journal of Heat Transfer, 1995, 117, 942-947.	1.2	8
468	Constructing a Theory for Scaling and More. Physics Today, 2005, 58, 20-20.	0.3	8

#	Article	IF	CITATIONS
469	Thermal coupling between a spiral pipe and a conducting volume. International Journal of Heat and Mass Transfer, 2014, 77, 202-207.	2.5	8
470	Constructal design of gas-cooled electric power generators, self-pumping and atmospheric circulation. International Journal of Heat and Mass Transfer, 2015, 91, 647-655.	2.5	8
471	The fastest animals and vehicles are neither the biggest nor the fastest over lifetime. Scientific Reports, 2018, 8, 12925.	1.6	8
472	Social organization: The thermodynamic basis. International Journal of Energy Research, 2018, 42, 3770-3779.	2.2	8
473	Why university rankings do not change: education as a natural hierarchical flow architecture. International Journal of Design and Nature, 2008, 2, 319-327.	0.0	8
474	Heat Transfer by Forced and Free Convection in a Horizontal Channel with Differentially Heated Ends. Journal of Heat Transfer, 1979, 101, 417-421.	1.2	7
475	End-use matching of solar energy systems. Energy, 1980, 5, 875-890.	4.5	7
476	The nonaxisymmetric (buckling) flow regime of fast capillary jets. Physics of Fluids, 1982, 25, 1506.	1.4	7
477	The meandering fall of paper ribbons. Physics of Fluids, 1982, 25, 741.	1.4	7
478	Theoretical considerations of transition to turbulance in natural convection near a vertical wall. International Journal of Heat and Fluid Flow, 1983, 4, 131-139.	1.1	7
479	The horizontal intrusion layer of melt in a saturated porous medium. International Journal of Heat and Fluid Flow, 1990, 11, 284-289.	1.1	7
480	On the effect of the Prandtl number on the onset of Bénard convection. International Journal of Heat and Fluid Flow, 1991, 12, 184-188.	1.1	7
481	Elemental T and Y Shapes of Tree Networks of Ducts with Various Cross-Sectional Shapes. Journal of Hydraulic Engineering, 2009, 135, 132-139.	0.7	7
482	Constructal Design of Vascular Porous Materials and Electrokinetic Mass Transfer. Transport in Porous Media, 2009, 77, 305-322.	1.2	7
483	The S-Curves are Everywhere. Mechanical Engineering, 2012, 134, 44-47.	0.0	7
484	Why we want power: Economics is physics. International Journal of Heat and Mass Transfer, 2012, 55, 4929-4935.	2.5	7
485	Technology Evolution, from the Constructal Law. Advances in Heat Transfer, 2013, 45, 183-207.	0.4	7
486	Mechanics of Fluid Flow Through a Porous Medium. , 2017, , 1-35.		7

#	Article	IF	CITATIONS
487	Evolution as Physics: The Human & Machine Species. European Review, 2017, 25, 140-149.	0.4	7
488	Novel evaporator architecture with entrance-length crossflow-paths for supercritical Organic Rankine Cycles. International Journal of Heat and Mass Transfer, 2018, 119, 208-222.	2.5	7
489	Evolutionary design of conducting layers with fins and freedom. International Journal of Heat and Mass Transfer, 2018, 126, 926-934.	2.5	7
490	Constructal Theory in Heat Transfer. , 2018, , 329-360.		7
491	Energy theory of periodic economic growth. International Journal of Energy Research, 2020, 44, 5231-5242.	2.2	7
492	Inflected wings in flight: Uniform flow of stresses makes strong and light wings for stable flight. Journal of Theoretical Biology, 2021, 508, 110452.	0.8	7
493	Evolutionary design of composite structures for thermal conductance and strength. International Communications in Heat and Mass Transfer, 2021, 125, 105293.	2.9	7
494	Constructal Conjugate Heat Transfer in Three-Dimensional Cooling Channels. Journal of Enhanced Heat Transfer, 2007, 14, 279-293.	0.5	7
495	On the thermodynamic efficiency of energy conversion during the expansion of a mixture of hot particles, steam and liquid water. Energy, 1997, 22, 1119-1133.	4.5	6
496	Flows in environmental fluids and porous media. International Journal of Energy Research, 2003, 27, 825-846.	2.2	6
497	The constructal law makes biology and economics be like physics. Physics of Life Reviews, 2011, 8, 261-263.	1.5	6
498	Configuration of heat sources or sinks in a finite volume. Journal of Applied Physics, 2011, 110, 023502.	1.1	6
499	Distribution of size in multi-evaporator air conditioning systems. International Journal of Energy Research, 2014, 38, 652-657.	2.2	6
500	Power from a hot gas stream with superheater and reheater in parallel. International Journal of Heat and Mass Transfer, 2014, 73, 29-32.	2.5	6
501	Boundary layers from constructal law. International Communications in Heat and Mass Transfer, 2020, 117, 104672.	2.9	6
502	Cell and extracellular matrix growth theory and its implications for tumorigenesis. BioSystems, 2021, 201, 104331.	0.9	6
503	The Constructal Law in Nature and Society. , 2007, , 1-33.		6
504	Internal Natural Convection: Heating from Below. , 1999, , 175-260.		6

#	Article	IF	CITATIONS
505	Heat Transfer from A Surface Covered with Hair. , 1991, , 823-845.		6
506	Constructal theory of design in engineering and nature. Thermal Science, 2006, 10, 9-18.	0.5	6
507	Evolution, physics, and education. BioSystems, 2022, 215-216, 104663.	0.9	6
508	Transition to Meandering Rivulet Flow in Vertical Parallel-Plate Channels. Journal of Fluids Engineering, Transactions of the ASME, 1986, 108, 269-272.	0.8	5
509	Transient Natural Convection Between Two Zones in an Insulated Enclosure. Journal of Heat Transfer, 1988, 110, 116-125.	1.2	5
510	Numerical study of forced convection near a surface covered with hair. International Journal of Heat and Fluid Flow, 1990, 11, 242-248.	1.1	5
511	Convection in the Cavity Formed Between Two Cylindrical Rollers. Journal of Heat Transfer, 1990, 112, 625-631.	1.2	5
512	Fundamental Optima in Thermal Science. International Journal of Mechanical Engineering Education, 1997, 25, 33-47.	0.6	5
513	Conditionally-Sampled Turbulent and Nonturbulent Measurements of Entropy Generation Rate in the Transition Region of Boundary Layers. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 659-664.	0.8	5
514	Energy design for dense neighborhoods: One heat pump rejects heat, the other absorbs heat from the same loop. International Journal of Thermal Sciences, 2015, 96, 227-235.	2.6	5
515	Distributed energy storage: Time-dependent tree flow design. Journal of Applied Physics, 2016, 119, .	1.1	5
516	Convergent Evolution of Boats with Sails. Scientific Reports, 2020, 10, 2703.	1.6	5
517	The constructal evolution of sports with throwing motion: baseball, golf, hockey and boxing. International Journal of Design and Nature and Ecodynamics, 2013, 8, 1-16.	0.3	5
518	Exergy conservation in parallel thermal insulation systems. International Journal of Heat and Mass Transfer, 1983, 26, 335-340.	2.5	4
519	Research into the origins of engineering thermodynamics. International Communications in Heat and Mass Transfer, 1988, 15, 571-580.	2.9	4
520	Heat Transfer-Based Reconstruction of the Concepts and Laws of Classical Thermodynamics. Journal of Heat Transfer, 1988, 110, 243-249.	1.2	4
521	Questions in Fluid Mechanics: Natural Tree-Shaped Flows. Journal of Fluids Engineering, Transactions of the ASME, 1998, 120, 429-430.	0.8	4
522	Optimisation of film condensation with periodic wall cleaning. International Journal of Thermal Sciences, 1999, 38, 113-120.	2.6	4

#	Article	IF	Citations
523	The First NATO Advanced Study Institute on Thermodynamic Optimization (Neptun, Romania, 1998). Energy, 1999, 24, 753-759.	4.5	4
524	Methane Hydrates in Porous Layers: Gas Formation and Convection. , 2002, , 365-396.		4
525	Thermodynamic Optimization of Flow Architecture: Dendritic Structures and Optimal Sizes of Components., 2002,, 83.		4
526	Thermodynamic Formulation of the Constructal Law. , 2003, , 163.		4
527	Exergy Analysis, Entropy Generation Minimization, and Constructal Theory. , 2006, , 117-143.		4
528	Design in nature, thermodynamics, and the constructal law. Physics of Life Reviews, 2010, 7, 467-470.	1.5	4
529	Double tree structure in a conducting body. International Journal of Heat and Mass Transfer, 2014, 77, 140-146.	2.5	4
530	Thermal coupling between a helical pipe and a conducting volume. International Journal of Heat and Mass Transfer, 2015, 83, 762-767.	2.5	4
531	University Rankings: Quality, Size and Permanence. European Review, 2020, 28, 537-558.	0.4	4
532	Nationalism and forgetfulness in the spreading of thermal sciences. International Journal of Thermal Sciences, 2021, 163, 106802.	2.6	4
533	Designed Porous Media., 2004,, 337-349.		4
534	The natural design of hierarchy: basketball versus academics. International Journal of Design and Nature and Ecodynamics, 2012, 7, 14-26.	0.3	4
535	MITâ€"EEI Superconducting Synchronous Machine. , 1973, , 372-381.		4
536	Laminar Free Convection Heat Transfer through Horizontal Duct Connecting Two Fluid Reservoirs at Different Temperatures. Journal of Heat Transfer, 1978, 100, 725-727.	1.2	3
537	The effect of hydrogen bubbles on the thymol blue velocity measurement technique. International Journal of Heat and Fluid Flow, 1980, 2, 201-204.	1.1	3
538	Comments on â€~â€~Viscous buckling of thin fluid layers''. Physics of Fluids, 1981, 24, 1764.	1.4	3
539	Buckling of a turbulent jet surrounded by a highly flexible duct. Physics of Fluids, 1983, 26, 3193.	1.4	3
540	The Buckling of a Vertical Liquid Column. Journal of Fluids Engineering, Transactions of the ASME, 1983, 105, 469-473.	0.8	3

#	Article	IF	Citations
541	The process of melting by rolling contact. International Journal of Heat and Mass Transfer, 1988, 31, 2273-2283.	2.5	3
542	The contact heating and lubricating flow of a body of glass. International Journal of Heat and Mass Transfer, 1989, 32, 751-760.	2.5	3
543	Discussion: "Natural Convection From L-Shaped Corners With Adiabatic and Cold Isothermal Horizontal Walls―(Angirasa, D., and Mahajan, R. L., 1993, ASME J. Heat Transfer, 115, pp. 149–157). Journal of Heat Transfer, 1994, 116, 519-520.	1.2	3
544	Cooling of a two-dimensional space with one or more streams making one or more passes. International Journal of Heat and Fluid Flow, 1996, 17, 78-88.	1.1	3
545	TIME-DEPENDENT INTERACTION BETWEEN WATER AT SUPERCRITICAL PRESSURES AND A HOT SURFACE. Numerical Heat Transfer; Part A: Applications, 1996, 30, 535-553.	1.2	3
546	Constructal law: Pleasure, golden ratio, animal locomotion and the design of pedestrian evacuation. Physics of Life Reviews, 2013, 10, 199-201.	1.5	3
547	Internal Natural Convection: Heating from Below. , 2017, , 241-361.		3
548	Heat tubes: Conduction and convection. International Journal of Heat and Mass Transfer, 2019, 137, 1258-1262.	2.5	3
549	Double-Diffusive Convection. , 1999, , 345-378.		3
550	Constructal Theory in Heat Transfer. , 2017, , 1-32.		3
551	THERMODYNAMIC OPTIMIZATION OF PHASE-CHANGE ENERGY STORAGE USING TWO OR MORE MATERIALS. , 1992, , 605-616.		3
552	How nature takes shape: extensions of constructal theory to ducts, rivers, turbulence, cracks, dendritic crystals and spatial economics. International Journal of Thermal Sciences, 1999, 38, 653-663.	0.2	3
553	ENTROPY GENERATION MINIMIZATION: THE METHOD AND ITS APPLICATIONS. , 2000, , .		3
554	Convection with Phase Change During Gas Formation from Methane Hydrates via Depressurization of Porous Layers. Journal of Porous Media, 2001, 4, 14.	1.0	3
555	Constructal self-organization of research: empire building versus the individual investigator. International Journal of Design and Nature and Ecodynamics, 2008, 3, 177-189.	0.3	3
556	The evolution of long distance running and swimming. International Journal of Design and Nature and Ecodynamics, 2013, 8, 17-28.	0.3	3
557	A Role for Exergy Analysis and Optimization in Aircraft Energy-System Design. , 1999, , .		3
558	Transient Heat Conduction in Cryogenic Current Cables Following a Loss-of-Coolant Accident. Journal of Heat Transfer, 1977, 99, 689-691.	1.2	2

#	Article	IF	CITATIONS
559	Method for estimating the refrigeration costs of supercritical helium cooled cable superconductors. IEEE Transactions on Magnetics, 1977, 13, 686-689.	1.2	2
560	Thermal performance of the rotor of the MIT-EPRI 3 MVA superconducting alternator. IEEE Transactions on Magnetics, 1977, 13, 763-766.	1,2	2
561	Optimization criteria for irreversible thermal processes (criterii de optimizare a proceselor termice) Tj ${\sf ETQq1~1~0.7}$	784314 rş 2.5	gBT ₂ /Overlock
562	Discussion: "A Parametric Analysis of the Performance of Internally Finned Tubes for Heat Exchanger Application―(Webb, R. L., and Scott, M. J., 1980, ASME J. Heat Transfer, 102, pp. 38–43). Journal of Heat Transfer, 1980, 102, 586-587.	1.2	2
563	Theoretical explanation for the incipient formation of meanders in straight rivers. Geophysical Research Letters, 1982, 9, 831-834.	1.5	2
564	Theory of instantaneous sinuous structure in turbulent buoyant plumes. Heat and Mass Transfer, 1982, 16, 237-242.	0.2	2
565	Experiments on the Buckling of Thin Fluid Layers Undergoing End-Compression. Journal of Fluids Engineering, Transactions of the ASME, 1984, 106, 74-78.	0.8	2
566	The Instability of a Round Jet Surrounded by an Annular Shear Layer. Journal of Fluids Engineering, Transactions of the ASME, 1985, 107, 258-263.	0.8	2
567	Blending geometry with numerical computation: Charts for the enthalpy, absolute entropy, and flow exergy of 12 gases at low pressures. International Journal of Heat and Fluid Flow, 1988, 9, 251-253.	1.1	2
568	Transient natural convection heat transfer in a large-diameter cylinder. Experimental Thermal and Fluid Science, 1988, 1, 267-274.	1.5	2
569	Convection in the Cavity Between Two Rollers: the Effect of Thermal Boundary Conditions. Journal of Heat Transfer, 1991, 113, 249-251.	1.2	2
570	Comments on "Coupled heat and mass transfer by natural convection from vertical surfaces in porous media― International Journal of Heat and Mass Transfer, 1992, 35, 3498.	2.5	2
571	Thermal Contact Resistance Between Two Flat Surfaces That Squeeze a Film of Lubricant. Journal of Heat Transfer, 1993, 115, 763-767.	1.2	2
572	Optimization of Pulsating Heating in Pool Boiling. Journal of Heat Transfer, 1997, 119, 298-304.	1.2	2
573	Architecture from exergy-based global optimization - Tree-shaped flows and energy systems for aircraft. , 2000, , .		2
574	Maximum Heat Transfer Rate Density in Two-Dimensional Minichannels and Microchannels., 2003,, 765.		2
575	Numerical Analysis of a Tree-Shaped Cooling Structure for a 2-D Slab: A Validation of a "Constructally Optimal―Configuration., 2006,, 413.		2
576	Design in Nature: Tinkering and the Constructal LawA review of The Tinkerer's Accomplice: How Design Emerges from Life Itself. By J Scott Turner . Cambridge (Massachusetts): Harvard University Press. \$27.95. ix + 282 p; ill.; index. ISBN: 0-674-02353-6. 2007 Quarterly Review of Biology, 2008, 83, 91-94.	0.0	2

#	Article	IF	Citations
577	Vascularized Multi-Functional Materials and Structures. Advanced Materials Research, 0, 47-50, 511-514.	0.3	2
578	Design With Constructal Theory: Vascularized Composites for Volumetric Cooling. , 2008, , .		2
579	Stressing the Science of Engineering. Mechanical Engineering, 2011, 133, 40-43.	0.0	2
580	Underground heat flow patterns for dense neighborhoods with heat pumps. International Journal of Heat and Mass Transfer, 2013, 62, 632-637.	2.5	2
581	External Natural Convection., 2013,, 145-220.		2
582	Response to "Comment on â€~Economies of scale: The physics basis'―[J. Appl. Phys. 121, 206101 (2017) Journal of Applied Physics, 2017, 121, .)] _{1.1}	2
583	Mass Transfer in a Porous Medium: Multicomponent and Multiphase Flows. , 2017, , 57-84.		2
584	Evolutionary design with freedom: Time dependent heat spreading. International Communications in Heat and Mass Transfer, 2019, 108, 104335.	2.9	2
585	Tree flows through hierarchical slits and orifices. International Communications in Heat and Mass Transfer, 2021, 128, 105589.	2.9	2
586	A Course on Flow-System Configuration and Multi-Scale Design. , 2004, , .		2
587	Heat Exchangers for Vapor-Cooled Conducting Supports of Cryostats. , 1960, , 247-256.		2
588	Virus spreading and heat spreading. International Journal of Thermal Sciences, 2022, 174, 107433.	2.6	2
589	Aeroelastic Stability and Flow of Stresses in Wing Cross-Section. , 2022, , .		2
590	Evolutionary design: Heat and fluid flow together. International Communications in Heat and Mass Transfer, 2022, 132, 105924.	2.9	2
591	Reply to "comments on â€~a synthesis of analytical results for natural convection heat transfer across rectangular enclosures'― International Journal of Heat and Mass Transfer, 1981, 24, 1557-1558.	2.5	1
592	Second Law Aspects of Solar Energy Conversion. , 1987, , 145-187.		1
593	Thermodynamic optimization of heat transfer and fluid flow processes., 1997,, 173-202.		1
594	EVOLUTION OF A MIXTURE OF HOT PARTICLES. STEAM, AND WATER IMMERSED IN A WATER POOL. Numerical Heat Transfer; Part A: Applications, 1998, 34, 463-478.	1.2	1

#	Article	IF	CITATIONS
595	Constructal theory of economics. , 2000, , 37-60.		1
596	The extraction of power from a hot stream. International Journal of Energy Research, 2001, 25, 507-518.	2.2	1
597	Multiple Length Scales for Maximal Heat Transfer Density in Forced and Natural Convection. , 2004, , 133.		1
598	Constructal Design: The Generation of Multi-Scale Heat and Fluid Flow Structures. Journal of Heat Transfer, 2005, 127, 799-799.	1.2	1
599	Application of Constructal Theory to Prediction of Boundary Layer Transition Onset. , 2006, , 1251.		1
600	Thermodynamics Fundamentals. , 2006, , 94-116.		1
601	Natural Design with Constructal Theory. Mechanical Engineering, 2009, 131, 44-48.	0.0	1
602	Animals Spinning their Wheels. Mechanical Engineering, 2011, 133, 44-46.	0.0	1
603	Constructal paddle design with "fingers― Journal of Applied Physics, 2013, 113, 194902.	1.1	1
604	Stepping on the Water. Mechanical Engineering, 2013, 135, 38-41.	0.0	1
605	Every Snowflake is Not Unique. Mechanical Engineering, 2015, 137, 40-41.	0.0	1
606	External Natural Convection., 2017,, 161-239.		1
607	Forced Convection. , 2017, , 85-160.		1
608	Without Engineering, Civilization does not Exist. Mechanical Engineering, 2018, 140, 42-47.	0.0	1
609	Thermodynamics Fundamentals. , 0, , 802-817.		1
610	Forced Convection., 1999,, 51-104.		1
611	Mixed Convection. , 1999, , 321-343.		1
612	The Optimal Shape for a Unit PEM Fuel Cell., 2005, , .		1

#	Article	IF	Citations
613	HETEROGENEOUS POROUS MEDIA AS MULTISCALE STRUCTURES FOR MAXIMUM FLOW ACCESS., 2006, , .		1
614	CONSTRUCTAL THEORY: FROM ENGINEERING DESIGN TO PREDICTING SHAPE AND STRUCTURE IN NATURE. Revista De Engenharia TÃ@rmica, 2002, 1, .	0.0	1
615	Sveltness, Freedom to Morph, and the Constructal Design of Multi-Scale Flow Structures., 2005, , .		1
616	OPTIMIZATION OF ELEMENTAL FLOW PASSAGES OF FLUID FLOW NETWORKS. , 2006, , .		1
617	Internal Natural Convection: Heating from Below. , 2013, , 221-329.		1
618	Melting in The Presence of Natural Convection in A Saturated Porous Medium., 1991,, 739-772.		1
619	Geometric Optimization of Cooling Techniques. , 2020, , 1-46.		1
620	The natural design of hierarchy: basketball versus academics. International Journal of Design and Nature and Ecodynamics, 2012, 7, 14-25.	0.3	1
621	Theory of Unsteady Laminar Boundary Layer Flow. International Journal of Heat and Mass Transfer, 1985, 28, 1241.	2.5	O
622	The geometric similarity of the laminar sections of boundary layer-type flows. International Communications in Heat and Mass Transfer, 1990, 17, 465-475.	2.9	0
623	Comment on "Natural Convection from Isothermal Plates Embedded in Thermally Stratified Porous Media". Journal of Thermophysics and Heat Transfer, 1992, 6, 574-575.	0.9	O
624	Comments on "Analysis of close-contact melting for octadecane and ice inside isothermally heated horizontal rectangular capsule†International Journal of Heat and Mass Transfer, 1993, 36, 832.	2.5	0
625	Closure to "Discussion of â€~Natural Convection With Radiation in a Cavity With Open Top End'―(1993,)	Tj_ETQq1 1:2	1 0.7843 <u>1</u>
626	Heat Transfer as a Design-Oriented Course: Mechanical Supports as Thermal Insulators. International Journal of Mechanical Engineering Education, 1994, 22, 29-41.	0.6	O
627	Professor W. J. Minkowycz on his 60th birthday and his 30th year as editor of the International Journal of Heat and Mass Transfer. International Journal of Heat and Mass Transfer, 1997, 40, 3997-3998.	2.5	O
628	CONSTRUCTAL THEORY: FROM ENGINEERING DESIGN TO PREDICTING SHAPE AND STRUCTURE IN NATURE. Revista De Engenharia TÃ ©rmica, 2001, 1, 27.	0.0	0
629	Constructal Optimization of Tree-Shaped Paths for the Collection and Distribution of Fluid, Electricity, Goods and People., 2002,, 117-134.		O
630	Special issue on heat and mass transfer in porous media. International Journal of Energy Research, 2003, 27, 857-857.	2.2	O

#	Article	IF	CITATIONS
631	Thermodynamic optimization and constructal design. International Journal of Energy Research, 2005, 29, 557-557.	2.2	O
632	Vascularized Materials: Grids of Channels and Trees Matched Canopy to Canopy. , 2006, , 239.		0
633	Vascularized Svelte (Compact) Flow Architectures. , 2007, , 461.		O
634	Constructal Theory and Design of Vascular Structures. , 2008, , .		0
635	The Constructal Law of "Designedness―in Nature. , 2008, , .		O
636	Discussion on "Frontiers of the Second Law― , 2008, , .		0
637	Discussion on "The Second Law and Energy― , 2008, , .		O
638	Maximum Heat Transfer From Multi-Scale Fins Arranged in a Row With Non-Uniform Geometry. , 2010, ,		0
639	Professor Amir Faghri on his 60th birthday. International Journal of Heat and Mass Transfer, 2011, 54, 4459-4461.	2.5	О
640	Professor Bud Peterson on his 60th birthday. International Journal of Heat and Mass Transfer, 2013, 58, 3-5.	2.5	0
641	Culture and the Constructal-Law evolution of the human and machine species. Physics of Life Reviews, 2013, 10, 151-153.	1.5	O
642	Double-Diffusive Convection., 2013,, 425-468.		0
643	Accelerated Evolution. Mechanical Engineering, 2016, 138, 38-43.	0.0	O
644	Prof. Em. DrIng. DrIng. E.h. mult. Franz Mayinger on His 85th Birthday. Journal of Heat Transfer, 2016, 138, .	1.2	0
645	Flow Architectures for Ground-Coupled Heat Pumps. , 2016, , .		O
646	Novel Evaporator Geometries Based on Entrance-Length Flow-Paths for Geothermal Binary Power Plants., 2016,,.		0
647	Response to "Comment on †The physics origin of the hierarchy of bodies in space'―[J. Appl. Phys. 120, 126101 (2016)]. Journal of Applied Physics, 2016, 120, 126102.	1.1	О
648	Professor Arcot R. Balakrishnan on his 65th birthday. International Journal of Heat and Mass Transfer, 2016, 94, 498-499.	2.5	0

#	Article	IF	CITATIONS
649	Internal Natural Convection: Heating from the Side. , 2017, , 363-437.		О
650	Professor John W. Rose BScEng PhD DScEng(Lond) CEng FIMechE FASME on his 80th birthday. International Journal of Heat and Mass Transfer, 2017, 112, 169-170.	2.5	0
651	Geophysical Aspects., 2017,, 595-628.		0
652	Double-Diffusive Convection., 2017,, 473-537.		0
653	Development of Specific Electronic Phenotypes for Severe Cutaneous Adverse Drug Reactions Facilitates Genetic Discovery. Journal of Allergy and Clinical Immunology, 2017, 139, AB381.	1.5	O
654	Mixed Convection., 2017,, 439-471.		0
655	Convection with Change of Phase. , 2017, , 539-593.		O
656	Evolution and the City. Mechanical Engineering, 2017, 139, 44-49.	0.0	0
657	On celebration of Professor Abdulmajeed A. Mohamad's 65th birthday. International Journal of Heat and Mass Transfer, 2018, 126, 1356-1357.	2.5	0
658	Constructal Approach in Aeroelastic Design and Analysis of Flying Wing Aircraft. , 2019, , .		0
659	Professor Yogesh Jaluria on his 70th Birthday. International Journal of Heat and Mass Transfer, 2019, 140, 1106-1107.	2.5	0
660	Professor Sadik Kakaç on His 85th Birthday. Heat and Mass Transfer, 2019, 55, 933-935.	1.2	0
661	In Memoriam Ephraim Sparrow. International Journal of Heat and Mass Transfer, 2020, 148, 118755.	2.5	O
662	Fuel Cells Constructal Optimization and Research Perspectives. , 2004, , .		0
663	Fundamentals of Scale Analysis, Heatline Visualization, and the Intersection of Asymptotes. , 2004, , 13-24.		O
664	OPTIMAL GEOMETRY FOR CONJUGATE HEAT TRANSFER IN A COOLING CHANNEL., 2006,,.		0
665	Global distributed energy systems. , 2009, , .		0
666	Mixed Convection. , 2013, , 397-424.		o

#	Article	lF	Citations
667	Convection with Change of Phase. , 2013, , 469-522.		O
668	Geophysical Aspects., 2013,, 523-553.		0
669	Mass Transfer in a Porous Medium: Multicomponent and Multiphase Flows. , 2013, , 47-68.		0
670	Internal Natural Convection: Heating from the Side. , 2013, , 331-396.		0
671	The Constructal Design of Humanity on the Globe. Understanding Complex Systems, 2013, , 1-20.	0.3	O
672	Superconducting Alternator Test Results. , 1995, , 53-58.		0
673	Internal Natural Convection: Heating from the Side. , 1999, , 261-319.		O
674	Convection with Change of Phase., 1999,, 379-430.		0
675	Constructal Flow Geometry Optimization. , 1999, , 61-72.		0
676	Geophysical Aspects., 1999,, 431-451.		0
677	Thermodynamic Optimization of Inanimate and Animate Flow Systems. , 1999, , 45-60.		0
678	The Physics Law of Evolution. Inference, 2018, 4, .	0.0	0
679	Hierarchy. , 2020, , 21-35.		0
680	Nature and Power., 2020,, 1-12.		0
681	Social Organization and Innovation. , 2020, , 53-64.		O
682	Diminishing Returns., 2020, , 123-134.		0
683	Science and Freedom. , 2020, , 135-145.		O
684	Homage to a Legendary Dynamicist on His Seventy-Fifth Birthday. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .	0.8	0

Adrian Bejan

#	Article	IF	CITATIONS
685	PROFESSOR SOMCHAI WONGWISES ON HIS 60TH BIRTHDAY. Journal of Thermal Engineering, 0, , 438-439.	0.8	O
686	Closure to "Discussion of â€~Experiments on the Buckling of Thin Fluid Layers Undergoing End-Compression'―(1984, ASME J. Fluids Eng., 106, p. 499). Journal of Fluids Engineering, Transactions of the ASME, 1984, 106, 499-499.	0.8	0
687	Constructal self-organization of research: empire building versus the individual investigator. International Journal of Design and Nature and Ecodynamics, 2008, 3, 177-189.	0.3	0