Francesco Zerbetto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3553773/publications.pdf

Version: 2024-02-01

400 papers

19,508 citations

16451 64 h-index 122 g-index

422 all docs 422 docs citations

times ranked

422

16033 citing authors

#	Article	IF	CITATIONS
1	Synthetic Molecular Motors and Mechanical Machines. Angewandte Chemie - International Edition, 2007, 46, 72-191.	13.8	2,428
2	Unidirectional rotation in a mechanically interlocked molecular rotor. Nature, 2003, 424, 174-179.	27.8	862
3	Macroscopic transport by synthetic molecular machines. Nature Materials, 2005, 4, 704-710.	27.5	685
4	Carbon Nanotubes in Electron Donorâ^'Acceptor Nanocomposites. Accounts of Chemical Research, 2005, 38, 871-878.	15.6	453
5	Quantum-chemical investigation of Franck-Condon and Jahn-Teller activity in the electronic spectra of Buckminsterfullerene. Chemical Physics Letters, 1988, 144, 31-37.	2.6	333
6	Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids. Journal of the American Chemical Society, 2006, 128, 11222-11231.	13.7	320
7	Theoretical analysis of spectra of short polyenes. Chemical Reviews, 1991, 91, 867-891.	47.7	309
8	Influencing intramolecular motion with an alternating electric field. Nature, 2000, 406, 608-611.	27.8	223
9	Patterning through Controlled Submolecular Motion: Rotaxane-Based Switches and Logic Gates that Function in Solution and Polymer Films. Angewandte Chemie - International Edition, 2005, 44, 3062-3067.	13.8	210
10	A Generic Basis for Some Simple Light-Operated Mechanical Molecular Machines. Journal of the American Chemical Society, 2004, 126, 12210-12211.	13.7	199
11	Information Storage Using Supramolecular Surface Patterns. Science, 2003, 299, 531-531.	12.6	193
12	Supramolecular self-assembled fullerene nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5075-5080.	7.1	191
13	Remarkable Positional Discrimination in Bistable Light- and Heat-Switchable Hydrogen-Bonded Molecular Shuttles. Angewandte Chemie - International Edition, 2003, 42, 2296-2300.	13.8	187
14	Photoisomerization of a rotaxane hydrogen bonding template: Light-induced acceleration of a large amplitude rotational motion. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10-14.	7.1	185
15	Pentagon adjacency as a determinant of fullerene stability. Physical Chemistry Chemical Physics, 1999, 1, 2913-2918.	2.8	178
16	Ordering Fullerene Materials at Nanometer Dimensions. Accounts of Chemical Research, 2005, 38, 38-43.	15.6	177
17	Interpretation of the vibrational structure of the emission and absorption spectra of C60. Journal of Chemical Physics, 1992, 97, 6496-6503.	3.0	165
18	Parallel (Face-to-Face) Versus Perpendicular (Edge-to-Face) Alignment of Electron Donors and Acceptors in Fullerene Porphyrin Dyads:Â The Importance of Orientation in Electron Transfer. Journal of the American Chemical Society, 2001, 123, 9166-9167.	13.7	157

#	Article	IF	CITATIONS
19	Graphene Can Wreak Havoc with Cell Membranes. ACS Applied Materials & Interfaces, 2015, 7, 4406-4414.	8.0	142
20	Dualâ€Gate Organic Fieldâ€Effect Transistors as Potentiometric Sensors in Aqueous Solution. Advanced Functional Materials, 2010, 20, 898-905.	14.9	136
21	The Devil and Holy Water: Protein and Carbon Nanotube Hybrids. Accounts of Chemical Research, 2013, 46, 2454-2463.	15.6	136
22	Increasing cost of pentagon adjacency for larger fullerenes. Chemical Physics Letters, 1996, 250, 544-548.	2.6	130
23	Kinetics of Place-Exchange Reactions of Thiols on Gold Nanoparticles. Langmuir, 2003, 19, 5172-5174.	3 . 5	119
24	Switching "On―and "Off―the Expression of Chirality in Peptide Rotaxanes. Journal of the American Chemical Society, 2002, 124, 2939-2950.	13.7	118
25	Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2017, 139, 17140-17151.	13.7	118
26	Modulating Charge-Transfer Interactions in Topologically Different Porphyrin–C60 Dyads. Chemistry - A European Journal, 2003, 9, 4968-4979.	3.3	110
27	Baiting Proteins with C ₆₀ . ACS Nano, 2010, 4, 2283-2299.	14.6	104
28	Entropy-Driven Translational Isomerism: A Tristable Molecular Shuttle. Angewandte Chemie - International Edition, 2003, 42, 5886-5889.	13.8	103
29	Extremely Strong and Readily Accessible AAAâ^'DDD Triple Hydrogen Bond Complexes. Journal of the American Chemical Society, 2007, 129, 476-477.	13.7	103
30	Cadiot–Chodkiewicz Active Template Synthesis of Rotaxanes and Switchable Molecular Shuttles with Weak Intercomponent Interactions. Angewandte Chemie - International Edition, 2008, 47, 4392-4396.	13.8	101
31	Singling out the Electrochemistry of Individual Single-Walled Carbon Nanotubes in Solution. Journal of the American Chemical Society, 2008, 130, 7393-7399.	13.7	99
32	A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter, 2011, 7, 9148.	2.7	99
33	C62:  Theoretical Evidence for a Nonclassical Fullerene with a Heptagonal Ring. The Journal of Physical Chemistry, 1996, 100, 15634-15636.	2.9	97
34	Mechanochemistry: targeted delivery of single molecules. Nature Nanotechnology, 2006, 1, 122-125.	31.5	95
35	Theoretical study of the force fields of the three lowest singlet electronic states of linear polyenes. Journal of Chemical Physics, 1988, 89, 3681-3688.	3.0	93
36	C36, a hexavalent building block for fullerene compounds and solids. Chemical Physics Letters, 1999, 300, 369-378.	2.6	93

#	Article	IF	Citations
37	Controlling the Frequency of Macrocyclic Ring Rotation in Benzylic Amide [2]Catenanes. Journal of the American Chemical Society, 1998, 120, 6458-6467.	13.7	92
38	QCFF/PI vibrational frequencies of some spherical carbon clusters. Journal of the American Chemical Society, 1991, 113, 6037-6040.	13.7	87
39	Temperatureâ€Dependent Fluorescence of Cu ₅ Metal Clusters: A Molecular Thermometer. Angewandte Chemie - International Edition, 2012, 51, 9662-9665.	13.8	87
40	Molecular Mechanism of Water Bridge Buildup: Field-Induced Formation of Nanoscale Menisci. Langmuir, 2008, 24, 6116-6120.	3. 5	86
41	Charge-density oscillation on graphite induced by the interference of electron waves. Physical Review B, 2005, 71, .	3.2	85
42	Energetics of Fullerenes with Four-Membered Rings. The Journal of Physical Chemistry, 1996, 100, 6984-6991.	2.9	84
43	Probing the Structure of Lysozyme–Carbonâ€Nanotube Hybrids with Molecular Dynamics. Chemistry - A European Journal, 2012, 18, 4308-4313.	3.3	84
44	The Effect of Mechanical Interlocking on Crystal Packing:  Predictions and Testing. Journal of the American Chemical Society, 2002, 124, 225-233.	13.7	83
45	Effects of Electric Field Stress on a β-Amyloid Peptide. Journal of Physical Chemistry B, 2009, 113, 369-376.	2.6	83
46	Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy. Nature Communications, 2015, 6, 5860.	12.8	82
47	Cyclic Voltammetry and Bulk Electronic Properties of Soluble Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 1646-1647.	13.7	80
48	Stability, Dynamics, and Lubrication of MoS ₂ Platelets and Nanotubes. Langmuir, 2012, 28, 7393-7400.	3 . 5	80
49	Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy. Accounts of Chemical Research, 2018, 51, 3-11.	15.6	78
50	Wrapping Nanotubes with Micelles, Hemimicelles, and Cylindrical Micelles. Small, 2009, 5, 2191-2198.	10.0	77
51	Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayers on metallic substrates. Nanotechnology, 2009, 20, 275602.	2.6	75
52	Vibrational spectrum and harmonic force field of trimethylamine. The Journal of Physical Chemistry, 1993, 97, 581-595.	2.9	74
53	Electronic Absorption Spectra of Some Alkoxyl Radicals. An Experimental and Theoretical Study. Journal of the American Chemical Society, 1995, 117, 2711-2718.	13.7	74
54	Reducing Molecular Shuttling to a Single Dimension. Angewandte Chemie - International Edition, 2000, 39, 350-353.	13.8	74

#	Article	IF	CITATIONS
55	Role of Substrate in Directing the Self-Assembly of Multicomponent Supramolecular Networks at the Liquid–Solid Interface. ACS Nano, 2012, 6, 8381-8389.	14.6	74
56	C ₆₀ @Lysozyme: Direct Observation by Nuclear Magnetic Resonance of a 1:1 Fullerene Protein Adduct. ACS Nano, 2014, 8, 1871-1877.	14.6	70
57	How Do Benzylic Amide [2]Catenane Rings Rotate?. Journal of the American Chemical Society, 1999, 121, 2364-2379.	13.7	69
58	Light-induced oxygen incision of C60. Journal of the Chemical Society Chemical Communications, 1993, , 220.	2.0	67
59	An Experimentally Observed Trimetallofullerene Sm ₃ @ <i>I<i>I<csub>80: Encapsulation of Three Metal Atoms in a Cage without a Nonmetallic Mediator. Journal of the American Chemical Society, 2013, 135, 4187-4190.</csub></i></i>	13.7	67
60	Low-lying electronic excited states of Buckminsterfullerene anions. Journal of the American Chemical Society, 1992, 114, 2909-2913.	13.7	66
61	Modulation of the Reduction Potentials of Fullerene Derivatives. Journal of the American Chemical Society, 2003, 125, 7139-7144.	13.7	66
62	Charging and equilibration of fullerene isomers. Chemical Physics Letters, 1995, 243, 36-41.	2.6	65
63	Energetics of fullerenes with heptagonal rings. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2203.	1.7	65
64	The missing fluorescence of sâ€trans butadiene. Journal of Chemical Physics, 1990, 93, 1235-1245.	3.0	64
65	Electrochemical Monitoring of Valence Bond Isomers Interconversion in Bipyridyl-C61 Anions. Journal of the American Chemical Society, 1995, 117, 6572-6580.	13.7	64
66	TheSO(1Ag)–S1(1B2u) vibronic transition in benzene: Anabinitiostudy. Journal of Chemical Physics, 1994, 100, 2458-2464.	3.0	60
67	Title is missing!. Angewandte Chemie, 2003, 115, 2398-2402.	2.0	60
68	The Erratic Emission of Pyrene on Gold Nanoparticles. ACS Nano, 2008, 2, 77-84.	14.6	60
69	A Carbon Nanoâ€Onion–Ferrocene Donor–Acceptor System: Synthesis, Characterization and Properties. Chemistry - A European Journal, 2009, 15, 4419-4427.	3.3	58
70	A Simple Road for the Transformation of Few-Layer Graphene into MWNTs. Journal of the American Chemical Society, 2012, 134, 13310-13315.	13.7	58
71	Biorecognition in Organic Field Effect Transistors Biosensors: The Role of the Density of States of the Organic Semiconductor. Analytical Chemistry, 2016, 88, 12330-12338.	6.5	58
72	Conformational Self-Recognition as the Origin of Dewetting in Bistable Molecular Surfaces. Journal of Physical Chemistry B, 2001, 105, 10826-10830.	2.6	57

#	Article	IF	Citations
73	Modeling the Adsorption of Alkanes on an Au(111) Surface. Langmuir, 2003, 19, 7335-7340.	3.5	57
74	Electronic Structure of Carbon Nanotubes with Ultrahigh Curvature. ACS Nano, 2010, 4, 4515-4522.	14.6	57
75	Conformational Selection and Folding-upon-binding of Intrinsically Disordered Protein CP12 Regulate Photosynthetic Enzymes Assembly. Journal of Biological Chemistry, 2012, 287, 21372-21383.	3.4	57
76	Circumstellar carbon chain molecules: A density function theory study of CnO, n=3–9. Journal of Chemical Physics, 1995, 103, 6343-6349.	3.0	56
77	Amyloid-β fibril disruption by C60—molecular guidance for rational drug design. Physical Chemistry Chemical Physics, 2012, 14, 8599.	2.8	56
78	Frequency-Dependent Second-Order Hyperpolarizability of Carbon Clusters: A Semiempirical Investigation. Journal of the American Chemical Society, 1995, 117, 6101-6108.	13.7	55
79	A Tight-Binding Treatment for 13C NMR Spectra of Fullerenes. Journal of Physical Chemistry A, 1999, 103, 8738-8746.	2.5	55
80	From reactants to products via simple hydrogen-bonding networks: Information transmission in chemical reactions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4967-4971.	7.1	53
81	Molecular Dynamics of a Dendrimerâ^'Dye Guestâ^'Host System. Journal of the American Chemical Society, 2003, 125, 7388-7393.	13.7	53
82	A computational analysis of the insertion of carbon nanotubes into cellular membranes. Biomaterials, 2011, 32, 7079-7085.	11.4	53
83	Electronic and mechanical coupling between guest and host in carbon peapods. Physical Review B, 2004, 69, .	3.2	52
84	Modeling the Stability and the Motion of DNA Nucleobases on the Gold Surface. Langmuir, 2005, 21, 2512-2518.	3.5	52
85	The vibrational frequencies of C60. Chemical Physics Letters, 1992, 190, 174-178.	2.6	51
86	Theoretical study of the force field of the lowest singlet electronic states of long polyenes. Journal of Chemical Physics, 1989, 91, 6215-6224.	3.0	50
87	The vibrational spectroscopy of C60H36: An experimental and theoretical study. Chemical Physics, 1998, 232, 75-94.	1.9	50
88	The Mechanism of Formation of Amide-Based Interlocked Compounds: Prediction of a New Rotaxane-Forming Motif. Chemistry - A European Journal, 2004, 10, 4960-4969.	3.3	50
89	The Stone-Wales map for C60. Chemical Physics Letters, 1995, 235, 146-151.	2.6	49
90	Rolling up a Graphene Sheet. ChemPhysChem, 2013, 14, 3447-3453.	2.1	49

#	Article	IF	Citations
91	Vibronic coupling in polyenes: The frequency increase of the active Cî—»C ag stretching mode in the absorption spectra. Chemical Physics, 1986, 108, 187-195.	1.9	48
92	Theoretical analysis of the force field of the lowest excited singlet state of trans-stilbene. The Journal of Physical Chemistry, 1989, 93, 5124-5128.	2.9	48
93	Incorporation of Fullerene Derivatives into Smectite Clays:Â A New Family of Organicâ^'Inorganic Nanocomposites. Journal of the American Chemical Society, 2004, 126, 8561-8568.	13.7	47
94	Shape Governs the Motion of Chemically Propelled Janus Swimmers. Journal of Physical Chemistry C, 2012, 116, 592-598.	3.1	47
95	Structural Motifs and the Stability of Fullerenes. The Journal of Physical Chemistry, 1995, 99, 8076-8081.	2.9	46
96	Clayâ^Fulleropyrrolidine Nanocomposites. Journal of the American Chemical Society, 2006, 128, 6154-6163.	13.7	46
97	Experimental and Theoretical Study of the Infrared, Raman, and Electronic Spectra of Two Isomers of C78ofC2vSymmetry. The Journal of Physical Chemistry, 1996, 100, 13399-13407.	2.9	45
98	The hyperpolarisability of an endohedral fullerene: Li@C60. Chemical Physics Letters, 1998, 288, 131-137.	2.6	45
99	Assignment and vibrational analysis of the 600â€,nm absorption band in the phenoxyl radical and some of its derivatives. Canadian Journal of Chemistry, 1993, 71, 1655-1662.	1.1	44
100	The intramolecular vibrations of prototypical polythiophenes. Journal of Chemical Physics, 1996, 104, 9704-9718.	3.0	44
101	C36:Â The Best Fullerene for Covalent Bonding. Journal of the American Chemical Society, 1999, 121, 3218-3219.	13.7	44
102	Water-induced polaron formation at the pentacene surface: Quantum mechanical molecular mechanics simulations. Physical Review B, 2009, 79, .	3.2	44
103	Graphite Oxide and Aromatic Amines: Size Matters. Advanced Functional Materials, 2015, 25, 263-269.	14.9	44
104	Vibronic coupling in the benzyl radical. Chemical Physics Letters, 1985, 115, 253-258.	2.6	43
105	Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope. Applied Physics Letters, 2010, 96, .	3.3	43
106	In Silico Carborane Docking to Proteins and Potential Drug Targets. Journal of Chemical Information and Modeling, 2011, 51, 1882-1896.	5.4	43
107	The electronic structure and vibrational frequencies of the stable C76 isomer of D2 symmetry. Chemical Physics Letters, 1993, 208, 441-445.	2.6	42
108	Dynamics of Thiolate Chains on a Gold Nanoparticle. Small, 2007, 3, 386-388.	10.0	42

#	Article	IF	Citations
109	An introduction to bubble dynamics. Physical Chemistry Chemical Physics, 2007, 9, 2447.	2.8	42
110	Vibronic coupling in polyenes and their derivatives. Interpretation of the absorption and emission spectra of a derivative of dodecahexaene. Journal of Chemical Physics, 1987, 87, 2505-2512.	3.0	41
111	Quantum chemical and vibronic analysis of the 1 2B2↔1 2A2, 2 2B2transition in benzylâ€h7and benzylâ€d7radicals. Journal of Chemical Physics, 1990, 93, 600-608.	3.0	41
112	Infrared fingerprints of nine fullerene C82 isomers: a semiempirical prediction. The Journal of Physical Chemistry, 1993, 97, 13575-13579.	2.9	41
113	Fullerene sorting proteins. Nanoscale, 2011, 3, 2873.	5.6	41
114	Atomistic molecular dynamics simulations reveal insights into adsorption, packing, and fluxes of molecules with carbon nanotubes. Journal of Materials Chemistry A, 2014, 2, 12123-12135.	10.3	41
115	Blocking the Passage: C ₆₀ Geometrically Clogs K ⁺ Channels. ACS Nano, 2015, 9, 4827-4834.	14.6	41
116	Absolute intensities of CH-stretching overtones in chloroform and deuterochloroform. Chemical Physics Letters, 1989, 154, 273-279.	2.6	40
117	Dynamics of molecular inversion: An instanton approach. Journal of Chemical Physics, 1995, 102, 7024-7034.	3.0	40
118	Energetics of C20and C22Fullerene and Near-Fullerene Carbon Cages. Journal of Physical Chemistry A, 1997, 101, 8339-8344.	2.5	40
119	Adsorption of a Benzylic Amide Macrocycle on a Solid Substrate:  XPS and HREELS Characterization of Thin Films Grown on Au(111). Journal of Physical Chemistry B, 2002, 106, 8739-8746.	2.6	40
120	Selective Enhancement of Photoluminescence in Filled Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2012, 22, 3202-3208.	14.9	40
121	Thermodynamics of Binding Between Proteins and Carbon Nanoparticles: The Case of C ₆₀ @Lysozyme. Journal of Physical Chemistry C, 2015, 119, 28077-28082.	3.1	40
122	New Assignments in the 600 nm Region of C60:Â The Origins of the T1gand GgTransitions. The Journal of Physical Chemistry, 1996, 100, 10849-10853.	2.9	39
123	Large Enhancement of the Nonlinear Optical Response of Reduced Fullerene Derivatives. Chemistry - A European Journal, 2003, 9, 1529-1534.	3.3	39
124	Simple models for hydrophobic hydration. Chemical Society Reviews, 2005, 34, 1012.	38.1	39
125	Application of the Poisson-Nernst-Planck Theory with Space-Dependent Diffusion Coefficients to KcsA. Biophysical Journal, 2006, 91, 3162-3169.	0.5	39
126	Electric Field Effects on Short Fibrils of A \hat{I}^2 Amyloid Peptides. Journal of Chemical Theory and Computation, 2010, 6, 3516-3526.	5. 3	39

#	Article	IF	Citations
127	Inelastic neutron-scattering study of the intramolecular vibrations of the C70 fullerene. The Journal of Physical Chemistry, 1993, 97, 3641-3643.	2.9	38
128	What Is Adenine Doing in Photolyase?. Journal of Physical Chemistry B, 2010, 114, 4101-4106.	2.6	38
129	Mechanical Interactions in All-Carbon Peapods. Journal of Physical Chemistry B, 2003, 107, 6986-6990.	2.6	37
130	Molecular dynamics study of onset of water gelation around the collagen triple helix. Proteins: Structure, Function and Bioinformatics, 2006, 64, 711-718.	2.6	37
131	Pyridinedicarboxamide Strands Form Double Helices via an Activated Slippage Mechanism. Journal of the American Chemical Society, 2004, 126, 2362-2367.	13.7	36
132	On-the-Fly, Electric-Field-Driven, Coupled Electronâ'Nuclear Dynamics. Journal of Physical Chemistry A, 2008, 112, 9650-9656.	2.5	36
133	Comparison of synchronous and asynchronous hydrogen transfer mechanisms in free-base porphyrins. Chemical Physics, 1989, 136, 285-295.	1.9	35
134	Theoretical study of the vibronic structure of the 1 1A1→1 1B2 and 1 1A1→1 3B2 electronic cyclopentadiene. Journal of Chemical Physics, 1993, 99, 3721-3729.	transitior	ns in 35
135	Growth of <i>p-</i> and <i>n-</i> Dopable Films from Electrochemically Generated C ₆₀ Cations. Journal of the American Chemical Society, 2008, 130, 3788-3796.	13.7	35
136	Splitting CO ₂ with Electric Fields: A Computational Investigation. Journal of Physical Chemistry Letters, 2010, 1, 3256-3260.	4.6	34
137	Interaction Model for the Adsorption of Organic Molecules on the Silver Surface. Journal of Physical Chemistry B, 2006, 110, 5595-5601.	2.6	34
138	Quantum-chemical analysis of vibrational intensity distributions in the S0-S1 absorption spectra and raman excitation profiles of azulene. Chemical Physics, 1986, 110, 421-430.	1.9	33
139	Theoretical analysis of Franck-Condon and vibronic activity of the ag and b3g modes in the S0↔ S1 transitions in anthracene. Chemical Physics, 1988, 127, 17-29.	1.9	33
140	Relative stabilities of C76 isomers. A numerical test of the fullerene isolated-pentagon rule. Chemical Physics Letters, 1994, 226, 219-225.	2.6	33
141	A Density Functional Study of the Vibrations of Three Oligomers of Thiophene. Journal of Physical Chemistry A, 1997, 101, 7283-7291.	2.5	33
142	The Effect of Guest Inclusion on the Crystal Packing of p-tert-Butylcalix[4]arenes. Chemistry - A European Journal, 2002, 8, 4854-4866.	3.3	33
143	Modelling of the Adsorption of C60 on the Au(110) Surface. ChemPhysChem, 2004, 5, 245-248.	2.1	33
144	Proteins as supramolecular hosts for C ₆₀ : a true solution of C ₆₀ in water. Nanoscale, 2018, 10, 9908-9916.	5.6	33

#	Article	IF	Citations
145	Intermolecular Repulsion through Interfacial Attraction: Toward Engineering of Polymorphs. Journal of the American Chemical Society, 2009, 131, 15655-15659.	13.7	32
146	Controlled Hydrogenâ€Bond Breaking in a Rotaxane by Discrete Solvation. Angewandte Chemie - International Edition, 2010, 49, 3896-3900.	13.8	32
147	Calcite Single Crystals as Hosts for Atomicâ€Scale Entrapment and Slow Release of Drugs. Advanced Healthcare Materials, 2015, 4, 1510-1516.	7.6	32
148	The Collapse of Nanobubbles in Water. Journal of the American Chemical Society, 2005, 127, 8020-8021.	13.7	31
149	Unexpected Photophysical Properties of Symmetric Indolylmaleimide Derivatives. Journal of Physical Chemistry A, 2005, 109, 6440-6449.	2.5	31
150	Customizing Properties of \hat{l}^2 -Chitin in Squid Pen (Gladius) by Chemical Treatments. Marine Drugs, 2014, 12, 5979-5992.	4.6	31
151	Observation and modeling of the recombination kinetics of diphenylmethyl radicals in the cavities of Na-X zeolite. The Journal of Physical Chemistry, 1991, 95, 10018-10024.	2.9	30
152	The infrared and Raman active vibrational frequencies of C60 hexaanion. Chemical Physics Letters, 1992, 196, 303-310.	2.6	30
153	The Franckâ€"Condon structure of the 1Aâ†'1B transition of cis―and transâ€hexatriene: An ab initio modeling. Journal of Chemical Physics, 1993, 98, 4822-4829.	3.0	30
154	Molecular Structure of Stilbene in the T1 State. Transient Resonance Raman Spectra of Stilbene Isotopomers and Quantum Chemical Calculations. The Journal of Physical Chemistry, 1994, 98, 2254-2265.	2.9	30
155	Energetics and isomerisation pathways of a lower fullerene. The Stone–Wales map for C40. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1421-1423.	1.7	30
156	Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation. Chemical Communications, 2014, 50, 13117-13120.	4.1	30
157	Graphene Oxide Promotes Site-Selective Allylic Alkylation of Thiophenes with Alcohols. Organic Letters, 2018, 20, 3705-3709.	4.6	30
158	Identification and preparation of stable water dispersions of protein - Carbon nanotube hybrids and efficient design of new functional materials. Carbon, 2019, 147, 70-82.	10.3	30
159	Franck–Condon modeling of the structure of the S0→S2 transition of trans, transâ€, cis, transâ€, and cis, cisâ€octatetraene. Journal of Chemical Physics, 1994, 101, 1842-1851.	3.0	29
160	Vibronic activity in trans,transâ€1,3,5,7 octatetraene: The SO→S1 spectrum. Journal of Chemical Physics, 1995, 103, 10492-10501.	3.0	29
161	Competition between Even and Odd Fullerenes:  C118, C119, and C120. Journal of Physical Chemistry A, 2000, 104, 9625-9629.	2.5	29
162	Shaping of a Conformationally Flexible Molecular Structure for Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 3174-3179.	13.8	29

#	Article	IF	CITATIONS
163	Cl ^(â^') Exchange S _N 2 Reaction inside Carbon Nanotubes: Câ€"H···Ĩ€ and Cl···Ĩ€ Interactions Govern the Course of the Reaction. Journal of Physical Chemistry C, 2014, 118, 5032-5040.	3.1	29
164	Molecules on gold. Chemical Communications, 2010, 46, 667-676.	4.1	28
165	Crossover of two power laws in the anomalous diffusion of a two lipid membrane. Journal of Chemical Physics, 2015, 142, 215102.	3.0	28
166	Resonance Raman spectroscopy of the B1u region of benzene: Analysis in terms of pseudoâ€Jahn–Teller distortion. Journal of Chemical Physics, 1992, 96, 2617-2628.	3.0	27
167	Ab initio scaling of the second hyperpolarizabilities of carbon cages. Journal of Chemical Physics, 1997, 107, 5072-5075.	3.0	27
168	Structural Predictions for the C116Molecule. Journal of Physical Chemistry A, 1998, 102, 6835-6841.	2.5	27
169	Third-Order Susceptibility of Li@C60. Advanced Materials, 1999, 11, 405-408.	21.0	27
170	Multistate Photo-Induced Relaxation and Photoisomerization Ability of Fumaramide Threads: A Computational and Experimental Study. Journal of the American Chemical Society, 2009, 131, 104-117.	13.7	27
171	Correlation between the frequency of the Franck-Condon active Cî—»C ag stretch vibration and the excitation energy of the 1Bu electronic state in polyenes. Chemical Physics Letters, 1987, 141, 138-142.	2.6	26
172	New assignment of the vibrational structure of the V ↕N transition in ethylene-d4. Chemical Physics Letters, 1990, 174, 119-125.	2.6	26
173	Vibrational spectrum and harmonic force field of trimethylphosphine. The Journal of Physical Chemistry, 1990, 94, 4820-4831.	2.9	26
174	Microwave spectrum and ab initio calculations of indazole. Journal of Molecular Spectroscopy, 1992, 155, 1-10.	1.2	26
175	A Quantum-Mechanical Description of Macrocyclic Ring Rotation in Benzylic Amide [2]Catenanes. Chemistry - A European Journal, 2001, 7, 1450-1454.	3.3	26
176	Self-organization of nano-lines and dots triggered by a local mechanical stimulus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17650-17654.	7.1	26
177	Resonance Raman spectra and quantum chemical vibrational analysis of the C7H7â‹ and C7D7â‹ benzyl radicals. Journal of Chemical Physics, 1994, 100, 3503-3513.	3.0	25
178	C60 Bioconjugation with Proteins: Towards a Palette of Carriers for All pH Ranges. Materials, 2018, 11, 691.	2.9	25
179	Inversion potentials in the ground and excited electronic states of 9,10â€dihydroanthracene as probed by the absorption and fluorescence spectra of jetâ€cooled molecules. Journal of Chemical Physics, 1991, 94, 3511-3516.	3.0	24
180	Prediction of the structure and the vibrational frequencies of a C84 isomer of D2 symmetry. Chemical Physics Letters, 1992, 189, 495-498.	2.6	24

#	Article	IF	Citations
181	Vibronic coupling between the lowest electronic states of biphenyl. Chemical Physics Letters, 1985, 120, 140-146.	2.6	23
182	Quantum-chemical analysis of the absorption and emission spectra of coronene. Chemical Physics, 1988, 123, 175-185.	1.9	23
183	Circumstellar carbon-chain molecules. Prediction of the infrared spectrum of SiC4. Chemical Physics Letters, 1989, 164, 517-519.	2.6	23
184	The Electrochemistry of C60Ph5Cl:  A Very Special Fullerene Derivative. Journal of the American Chemical Society, 2000, 122, 4209-4212.	13.7	23
185	Enantiomeric Excesses and Electronic Chirality Measure. Journal of the American Chemical Society, 2003, 125, 1975-1979.	13.7	23
186	Bioinspired Nanocomposites: Ordered 2D Materials Within a 3D Lattice. Advanced Functional Materials, 2016, 26, 5569-5575.	14.9	23
187	Inversion of the oxiranyl radical occurs by quantum-mechanical tunneling. Journal of the American Chemical Society, 1988, 110, 6721-6726.	13.7	22
188	Franck–Condon structure of the S0→S1 and S0→S2 transitions in norbornadiene. Journal of Chemical Physics, 1993, 98, 14-20.	3.0	22
189	The circular dichroism spectrum of C76. A quantum chemical study. Chemical Physics Letters, 1994, 224, 113-117.	2.6	22
190	Photoemission study of pristine and potassium intercalated benzylic amide catenane films. Surface Science, 2001, 474, 37-46.	1.9	22
191	Self-organization of Rotaxane Thin Films into Spatially Correlated Nanostructures:Â Morphological and Structural Aspects. Journal of the American Chemical Society, 2006, 128, 526-532.	13.7	22
192	Adsorption of Organic Molecules on Gold Electrodes. Journal of Physical Chemistry C, 2007, 111, 13879-13885.	3.1	22
193	And Yet it Moves! Microfluidics Without Channels and Troughs. Advanced Functional Materials, 2013, 23, 5543-5549.	14.9	22
194	Inhibition of \hat{l}_{\pm} -chymotrypsin by pristine single-wall carbon nanotubes: Clogging up the active site. Journal of Colloid and Interface Science, 2020, 571, 174-184.	9.4	22
195	A Bioâ€Conjugated Fullerene as a Subcellular‶argeted and Multifaceted Phototheranostic Agent. Advanced Functional Materials, 2021, 31, 2101527.	14.9	22
196	The resonance Raman spectrum of cyclobutene. Journal of Chemical Physics, 1995, 103, 5911-5918.	3.0	21
197	Vibrational structure of C84 and Sc2@C84 analyzed by IR spectroscopy. Journal of Molecular Structure, 1997, 408-409, 359-362.	3.6	21
198	Spontaneous Fabrication of Microscopic Arrays of Molecular Structures with Submicron Length Scales. Nano Letters, 2002, 2, 635-639.	9.1	21

#	Article	IF	CITATIONS
199	Experimental and theoretical study of the adsorption of fumaramide [2]rotaxane on Au(111) and Ag(111) surfaces. Journal of Chemical Physics, 2005, 123, 244708.	3.0	21
200	Asymmetric Indolylmaleimide Derivatives and Their Complexation with Zinc(II)â^'Cyclen. Journal of Physical Chemistry A, 2005, 109, 9443-9455.	2.5	21
201	Polyareneâ€Functionalized Fullerenes in Carbon Nanotubes: Towards Controlled Geometry of Molecular Chains. Small, 2008, 4, 2262-2270.	10.0	21
202	A Strongly Emitting Liquidâ€Crystalline Derivative of Y ₃ N@C ₈₀ : Bright and Longâ€Lived Nearâ€IR Luminescence from a Charge Transfer State. Angewandte Chemie - International Edition, 2013, 52, 12303-12307.	13.8	21
203	CNT-Confinement Effects on the Menshutkin S _N 2 Reaction: The Role of Nonbonded Interactions. Journal of Chemical Theory and Computation, 2016, 12, 4082-4092.	5.3	21
204	Theoretical analysis of the vibrational structure of the Tâ†N transition in ethylene. Journal of Chemical Physics, 1989, 91, 5926-5933.	3.0	20
205	Tunneling splittings from ab initio data: indoline, a test case. Chemical Physics Letters, 1995, 237, 279-285.	2.6	20
206	Growth and characterization of benzylic amide [2]catenane thin films. Thin Solid Films, 1998, 327-329, 321-325.	1.8	20
207	Simulation of STM Images from Commercially Available Software. Journal of the American Chemical Society, 1999, 121, 5392-5395.	13.7	20
208	Electrochemically Induced Dynamics of a Benzylic Amide [2]Catenane. Journal of Physical Chemistry B, 1999, 103, 10171-10179.	2.6	20
209	Excited and ionic states of formamide: An excited-state photoelectron spectroscopy and ab initio study. Journal of Chemical Physics, 2002, 117, 8270-8280.	3.0	20
210	Hydroxyl vacancies in single-walled aluminosilicate and aluminogermanate nanotubes. Journal of Physics Condensed Matter, 2009, 21, 195301.	1.8	20
211	Morphological and mechanical characterization of composite calcite/SWCNT–COOH single crystals. Nanoscale, 2013, 5, 6944.	5.6	20
212	Oriented External Electric Fields Affect Rate and Stereoselectivity of Electrocyclic Reactions. Journal of Physical Chemistry C, 2019, 123, 26370-26378.	3.1	20
213	Incorporation of Molecular Nanoparticles Inside Proteins: The Trojan Horse Approach in Theranostics. Accounts of Materials Research, 2021, 2, 594-605.	11.7	20
214	Franck-Condon activity of totally symmetric modes in trans- and cis-polyacetylenes. Chemical Physics Letters, 1988, 143, 153-162.	2.6	19
215	The EEL epectrum of the triplet exciton of C60 and the theoretical analysis of its vibronic structure. Chemical Physics Letters, 1996, 250, 537-543.	2.6	19
216	Semiempirical quantum-chemical assignment of the circular dichroism spectra of small chiral fullerenes. Chemical Physics, 1997, 223, 159-168.	1.9	19

#	Article	IF	CITATIONS
217	High-Frequency Vibrations of the Simplest Benzylic Amide [2]Catenane. Journal of Physical Chemistry A, 1998, 102, 5782-5788.	2.5	19
218	Physical Consequences of a Mechanically Interlocked Architecture: Benzylic Amide Catenane NH Stretching Vibrations as Sensitive Probes for Weakly Hydrogen-Bonding Environments. ChemPhysChem, 2000, 1, 97-100.	2.1	19
219	C70Ph8 and C70Ph10: A computational and solid solution spectroscopic study. Journal of Chemical Physics, 2002, 116, 7621-7626.	3.0	19
220	Mono- and Bichromatic Electron Dynamics:Â LiH, a Test Case. Journal of Physical Chemistry A, 2006, 110, 5164-5172.	2.5	19
221	Interactions in Concentric Carbon Nanotubes:  The Radius vs the Chirality Angle Contributions. Nano Letters, 2006, 6, 1950-1954.	9.1	19
222	C ₆₀ on Gold: Adsorption, Motion, and Viscosity. Small, 2007, 3, 1694-1698.	10.0	19
223	Explaining Fullerene Dispersion by using Micellar Solutions. ChemPhysChem, 2014, 15, 2998-3005.	2.1	19
224	Human Serum Albumin–Oligothiophene Bioconjugate: A Phototheranostic Platform for Localized Killing of Cancer Cells by Precise Light Activation. Jacs Au, 2021, 1, 925-935.	7.9	19
225	Pseudoparity propensity rules for vibronic perturbations in neutral alternant hydrocarbons. Chemical Physics Letters, 1986, 131, 409-413.	2.6	18
226	A study of the large amplitude motions of indoline through microwave spectroscopy andab initiocalculations. Molecular Physics, 1993, 78, 1561-1574.	1.7	18
227	Modeling of the Franck-Condon Structure of the Electronic Transitions of an Oligomer of Polydiacetylene. The Journal of Physical Chemistry, 1994, 98, 13157-13161.	2.9	18
228	Inelastic neutron scattering of large molecular systems: The case of the original benzylic amide [2]catenane. Journal of Chemical Physics, 1998, 109, 11094-11100.	3.0	18
229	Modeling Buckminsterfullerene Spinning in (C60)nClusters. Journal of the American Chemical Society, 1999, 121, 5281-5286.	13.7	18
230	On the Cavitation Energy of Water. Chemistry - A European Journal, 2003, 9, 566-569.	3.3	18
231	Local Ice Melting by an Antifreeze Protein. Biomacromolecules, 2012, 13, 2046-2052.	5.4	18
232	Photocatalytic activity of exfoliated graphite–TiO ₂ nanoparticle composites. Nanoscale, 2019, 11, 19301-19314.	5.6	18
233	Stable and Biocompatible Monodispersion of C ₆₀ in Water by Peptides. Bioconjugate Chemistry, 2019, 30, 808-814.	3.6	18
234	Complex Nanoparticle Diffusional Motion in Liquid-Cell Transmission Electron Microscopy. Journal of Physical Chemistry C, 2020, 124, 14881-14890.	3.1	18

#	Article	IF	Citations
235	Adsorption of Fumaramide [2]Rotaxane and Its Components on a Solid Substrate:  A Coverage-Dependent Study. Journal of Physical Chemistry B, 2006, 110, 17076-17081.	2.6	17
236	Quantitative analysis of charge-carrier trapping in organic thin-film transistors from transfer characteristics. Applied Physics A: Materials Science and Processing, 2009, 95, 55-60.	2.3	17
237	Aromatic Bromination of <i>N</i> -Phenylacetamide Inside CNTs. Are CNTs Real Nanoreactors Controlling Regioselectivity and Kinetics? A QM/MM Investigation. Journal of Physical Chemistry C, 2017, 121, 27674-27682.	3.1	17
238	Inversion of the dioxolanyl radical: an experimental and theoretical study. Journal of the American Chemical Society, 1990, 112, 4284-4290.	13.7	16
239	Scaling of the second hyperpolarisabilities of conjugated carbon systems: polyynes versus polyenes and fullerenes. Chemical Physics Letters, 1999, 313, 426-430.	2.6	16
240	Saturation versus inductive effects: the electrochemistry of the C70Ph2n (nâ€=â€1–5) series. Perkin Transactions II RSC, 2001, , 140-145.	1.1	16
241	In situ nanomechanical characterization of the early stages of swelling and degradation of a biodegradable polymer. Nanoscale, 2015, 7, 5403-5410.	5.6	16
242	Functionalization Pattern of Graphene Oxide Sheets Controls Entry or Produces Lipid Turmoil in Phospholipid Membranes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15487-15493.	8.0	16
243	New insights into the composition of Indian yellow and its use in a Rajasthani wall painting. Microchemical Journal, 2018, 137, 238-249.	4.5	16
244	Interaction of Single Cells with 2D Organic Monolayers: A Scanning Electrochemical Microscopy Study. ChemElectroChem, 2018, 5, 2975-2981.	3.4	16
245	Quantum-chemical analysis of the propeller-shaped molecule [4,4,4]-propellahexaene. A study in heavy-atom tunneling. Chemical Physics, 1989, 130, 45-54.	1.9	15
246	Modeling the Spectroscopy of the Lowest Excited Singlet State of cis,trans-1,3,5,7-Octatetraene:  The Role of Symmetry Breaking and Vibronic Interactions. Journal of Physical Chemistry A, 1999, 103, 2220-2226.	2.5	15
247	Internal Dynamics and Energy Transfer in Dansylated POPAM Dendrimers and Their Eosin Complexes. Journal of Physical Chemistry B, 2010, 114, 1548-1558.	2.6	15
248	Quantum mechanical calculation of vibronic effects on the S2 \hat{i} –,S0 transition of azulene. Chemical Physics, 1987, 113, 167-173.	1.9	14
249	On the 1Agâ†'1Bu absorption spectrum of four butadiene isotopomers. Chemical Physics Letters, 1989, 157, 515-520.	2.6	14
250	Preresonance Raman Spectrum of C76. The Journal of Physical Chemistry, 1994, 98, 7933-7935.	2.9	14
251	A generalized Stone - Wales map: energetics and isomerizations of carbon cages. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 4895-4906.	1.5	14
252	The inelastic neutron scattering of two benzylic amide [2]catenanes. Journal of Chemical Physics, 2001, 114, 5006-5011.	3.0	14

#	Article	IF	CITATIONS
253	Dynamics of carbon clusters: chemical equilibration of rings and bi-cyclic rings. Chemical Physics Letters, 2002, 358, 359-367.	2.6	14
254	Continuous Chirality Measure in Reaction Pathways of Ruthenium-Catalyzed Transfer Hydrogenation of Ketones. Advanced Synthesis and Catalysis, 2005, 347, 792-802.	4.3	14
255	$\hat{l}_{\pm}, \hat{l}_{\mu}$ -Hybrid Foldamers with 1,2,3-Triazole Rings: Order versus Disorder. Journal of Organic Chemistry, 2014, 79, 5958-5969.	3.2	14
256	Engineering the Fullereneâ€protein Interface by Computational Design: The Sum is More than its Parts. Israel Journal of Chemistry, 2017, 57, 547-552.	2.3	14
257	Normal modes and ground state geometry of porphine. Evidence for dynamic instability of the D2h configuration. Chemical Physics Letters, 1987, 139, 401-406.	2.6	13
258	Franckâ€"Codon activity of totally symmetric modes in the absorption spectrum of cyclopentadiene. Chemical Physics Letters, 1991, 179, 131-136.	2.6	13
259	The Raman activity of and : a computational semiempirical study. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 5065-5075.	1.5	13
260	Nuclear Motions of an Inclusion Complex of Calix[4]arene. Journal of Physical Chemistry A, 1998, 102, 6910-6915.	2.5	13
261	Photophysical Properties of the Ground and Triplet State of Four Multiphenylated [70]Fullerene Compounds. ChemPhysChem, 2001, 2, 109-114.	2.1	13
262	Permanent Chiral Twisting of Nonchiral Carbon Nanotubes. Journal of Physical Chemistry A, 2002, 106, 4795-4797.	2.5	13
263	Role of the Intracellular Cavity in Potassium Channel Conductivity. Journal of Physical Chemistry B, 2007, 111, 13993-14000.	2.6	13
264	Molecular Dynamics of Nanobubbles' Collapse in Ionic Solutions. ChemPhysChem, 2007, 8, 47-49.	2.1	13
265	Electrochemical Fabrication of Surface Chemical Gradients in Thiol Self-Assembled Monolayers with Tailored Work-Functions. Langmuir, 2014, 30, 11591-11598.	3.5	13
266	Single-molecule mechanics of synthetic aromatic amide helices: Ultrafast and robust non-dissipative winding. CheM, 2021, 7, 1333-1346.	11.7	13
267	Janus-Type Dendrimers Based on Highly Branched Fluorinated Chains with Tunable Self-Assembly and ¹⁹ F Nuclear Magnetic Resonance Properties. Macromolecules, 0, , .	4.8	13
268	Local density functional theory calculation of the in-plane force field and vibrational frequencies of conjugated molecules: benzene and octatetraene. Chemical Physics, 1992, 164, 91-97.	1.9	12
269	Stability and IR spectra of isomers of C60F48. Journal of the Chemical Society Perkin Transactions II, 1996, , 155.	0.9	12
270	13C NMR Patterns of Odd-Numbered C119 Fullerenes. Journal of Physical Chemistry A, 2000, 104, 3865-3868.	2.5	12

#	Article	IF	Citations
271	Rotaxanes––novel photonic molecules. Optical Materials, 2003, 21, 39-44.	3.6	12
272	Double-wall carbon nanotubes: The outer shell may pattern the structure of the inner one. Chemical Physics Letters, 2008, 463, 139-140.	2.6	12
273	Imaging, photophysical properties and DFT calculations of manganese blue (barium) Tj ETQq1 1 0.784314 rgBT / 15297-15300.	Overlock : 4.1	10 Tf 50 667 12
274	Stochastic analysis of movements on surfaces: The case of C60 on Au(111). Chemical Physics Letters, 2015, 633, 163-168.	2.6	12
275	Interactions between Endohedral Metallofullerenes and Proteins: The Gd@C ₆₀ –Lysozyme Model. ACS Omega, 2018, 3, 13782-13789.	3.5	12
276	Graphene Materials Strengthen Aqueous Polyurethane Adhesives. ACS Omega, 2018, 3, 8829-8835.	3.5	12
277	Theoretical investigation of the inversion of the methylcyclopropyl radical. Journal of the American Chemical Society, 1989, 111, 2799-2802.	13.7	11
278	Vibrational potentials of the low frequency outâ€ofâ€plane motion in the ground and excited singlet electronic states of 9,10â€dihydrophenanthrene. Journal of Chemical Physics, 1992, 96, 7229-7236.	3.0	11
279	Propensity Rules for the Stability of Odd-Numbered Fullerenes:Â A Semiempirical Proposal. Journal of the American Chemical Society, 1996, 118, 2734-2739.	13.7	11
280	The torsional spectrum of CH3CD3. Journal of Chemical Physics, 1996, 105, 8536-8542.	3.0	11
281	Polarization Effects in Pushâ^'Pull Buckminsterfullerenes:Â A Semiempirical Study. Journal of Physical Chemistry A, 1997, 101, 3015-3020.	2.5	11
282	Carbon Rings Snapping. Journal of the American Chemical Society, 1999, 121, 10958-10961.	13.7	11
283	Ejection Dynamics of a Simple Liquid from Individual Carbon Nanotube Nozzles. Nano Letters, 2006, 6, 969-972.	9.1	11
284	Self-assembly of semifluorinated n-alkanethiols on $\{111\}$ -oriented Au investigated with scanning tunneling microscopy experiment and theory. Journal of Chemical Physics, 2007, 127, 024702.	3.0	11
285	Driving Force for the Adsorption of Sexithiophene on Gold. Journal of Physical Chemistry C, 2008, 112, 19516-19520.	3.1	11
286	Branched Substituents Generate Improved Supramolecular Ordering in Physisorbed Molecular Assemblies. Journal of Physical Chemistry C, 2009, 113, 4955-4959.	3.1	11
287	Excitation Energy Transfer and Low-Efficiency Photolytic Splitting of Water Ice by Vacuum UV Light. Journal of Physical Chemistry Letters, 2012, 3, 3610-3615.	4.6	11
288	Breathing modes of Kolumbo submarine volcano (Santorini, Greece). Scientific Reports, 2017, 7, 46515.	3.3	11

#	Article	IF	Citations
289	Modeling Living Cells Response to Surface Tension and Chemical Patterns. ACS Applied Materials & Interfaces, 2017, 9, 19552-19561.	8.0	11
290	Retinoic acid/calcite micro-carriers inserted in fibrin scaffolds modulate neuronal cell differentiation. Journal of Materials Chemistry B, 2019, 7, 5808-5813.	5.8	11
291	Green Fabrication of (6,5)Carbon Nanotube/Protein Transistor Endowed with Specific Recognition. Advanced Electronic Materials, 2021, 7, 2001114.	5.1	11
292	Fullerenes against COVID-19: Repurposing C60 and C70 to Clog the Active Site of SARS-CoV-2 Protease. Molecules, 2022, 27, 1916.	3.8	11
293	Scattering of the vibrational frequencies of 13C12C60â^. A Raman spectroscopy and quantum chemical study. Chemical Physics Letters, 1993, 211, 353-357.	2.6	10
294	Scaled ab initio force field of E- and Z-hexatriene in the SO and T1 states. Chemical Physics, 1993, 178, 133-145.	1.9	10
295	Triplet State Resonance Raman and Absorption Spectroscopy of a Configurationally Locked (Z)-Hexatriene: 1,2-Divinylcyclopentene. The Journal of Physical Chemistry, 1994, 98, 9437-9445.	2.9	10
296	Isomers of C70Dimer. Journal of Physical Chemistry A, 2001, 105, 1140-1143.	2.5	10
297	Structure and Photophysics of an Old, New Molecule:Â 1,3,6,8-Tetraazatricyclo[4.4.1.13,8]dodecane. Journal of the American Chemical Society, 2002, 124, 149-158.	13.7	10
298	The Free Energy of Nanobubbles in Organic Liquids. Journal of Physical Chemistry A, 2003, 107, 11253-11257.	2.5	10
299	Interactions of Aromatic Heterocycles with Water: The Driving Force from Freeâ€Jet Rotational Spectroscopy and Model Electrostatic Calculations. ChemPhysChem, 2008, 9, 1303-1308.	2.1	10
300	Fullerenol entrapment in calcite microspheres. Chemical Communications, 2011, 47, 10662.	4.1	10
301	Fast Calculation of Electrostatic Potentials on the GPU or the ASIC MD-GRAPE-3. Computer Journal, 2011, 54, 1181-1187.	2.4	10
302	Changes of the Molecular Structure in Organic Thin Film Transistors during Operation. Journal of Physical Chemistry C, 2015, 119, 15912-15918.	3.1	10
303	Vibronic coupling in 1,2,4,5-tetrafluorobenzene: the double-minimum potential of the butterfly motion (Q11) in the state S1. The Journal of Physical Chemistry, 1987, 91, 4238-4240.	2.9	9
304	The T1 and T2 planar structures of butadiene. Chemical Physics Letters, 1991, 176, 7-10.	2.6	9
305	Franck-Condon Modeling of the Structure of the 1Ag-1Bu Electronic Transition of .alpha.,.omega. Diphenylpolyenes. Journal of the American Chemical Society, 1995, 117, 1621-1624.	13.7	9
306	Stilbenoid molecules: An experimental and theoretical study of trans-1-(2-pyridyl)-2-(4-pyridyl)-ethylene and the parent molecule. Journal of Chemical Physics, 1997, 107, 1073-1078.	3.0	9

#	Article	IF	Citations
307	Rotor-vibrator couplings in partially deuterated toluenes. Journal of Chemical Physics, 1997, 106, 6279-6287.	3.0	9
308	On the Distribution of Local Molecular Symmetry in Crystals. Journal of Physical Chemistry A, 2000, 104, 11439-11442.	2.5	9
309	The costly process of creating a cavity in n-octanol. Theoretical Chemistry Accounts, 2004, 112, 240.	1.4	9
310	A Woodwardâ^'Hoffmann Approach to the C60Cluster Opening Leading to Homo[60]fullerenes. Journal of Physical Chemistry A, 2004, 108, 7135-7138.	2.5	9
311	Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films:  Experiments and Theory. Journal of Physical Chemistry B, 2006, 110, 7648-7652.	2.6	9
312	Charge–Metal Interaction of a Carbon Nanotube. ChemPhysChem, 2007, 8, 1005-1008.	2.1	9
313	Nonlinear optical properties of C60 with explicit time-dependent electron dynamics. Theoretical Chemistry Accounts, 2007, 118, 99-106.	1.4	9
314	Quantum Study of Laser-Induced Initial Activation of Graphite-to-Diamond Conversion. Journal of the American Chemical Society, 2010, 132, 12166-12167.	13.7	9
315	The effect of temperature on the internal dynamics of dansylated POPAM dendrimers. RSC Advances, 2011, 1, 1778.	3.6	9
316	Redox active Double Wall Carbon Nanotubes show intrinsic anti-proliferative effects and modulate autophagy in cancer cells. Carbon, 2014, 78, 589-600.	10.3	9
317	Theoretical study of the CC stretching vibrations in linked polyene chains: Nystatin. Chemical Physics Letters, 1988, 144, 437-444.	2.6	8
318	Ground- and excited-state conformational heterogeneity of the 2'-naphthylbutadiene chromophore of a fluorescent cholesterol analog probe. The Journal of Physical Chemistry, 1990, 94, 4439-4446.	2.9	8
319	The infrared spectrum of a non conjugated conducting polymer. Chemical Physics Letters, 1991, 187, 642-648.	2.6	8
320	Automerization of s-cis butadiene. Chemical Physics Letters, 1991, 184, 191-194.	2.6	8
321	Theoretical investigation of asymmetric methyl rotor dynamics in partially deuterated acetophenones. Journal of Chemical Physics, 1992, 96, 7973-7976.	3.0	8
322	Energetics of Fullerenes with Octagonal Rings. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 747-768.	0.6	8
323	An Instanton approach to hindered torsions: methyl glycolate — a case study. Chemical Physics Letters, 1997, 271, 189-196.	2.6	8
324	Vibronic interactions in s-trans-butadiene. Chemical Physics Letters, 1998, 287, 275-281.	2.6	8

#	Article	IF	CITATIONS
325	Simulation of some dynamical aspects of the photophysics of dye molecules encapsulated in a dendrimer. Journal of Luminescence, 2005, 111, 335-342.	3.1	8
326	Electric-field perturbations of ring currents in π systems. Chemical Physics Letters, 2005, 405, 136-141.	2.6	8
327	Dynamics of a lipid bilayer induced by electric fields. Physical Chemistry Chemical Physics, 2011, 13, 9216.	2.8	8
328	Reverse Engineering of Monolayers and Nanopatterns. Advanced Materials, 2013, 25, 449-455.	21.0	8
329	Evidence of Stringlike Behavior inall-trans-Octatetraene. Journal of the American Chemical Society, 1996, 118, 9178-9179.	13.7	7
330	The large 1â€^1Agâ^'–2â€^1Agâ^'Cî~C and C–C stretch vibronic interaction in all-trans polyenes. Chemical Pl Letters, 1998, 289, 118-124.	nysics 2.6	7
331	Experimental and theoretical studies of the low-lying electronic states of the simplest benzylic amide [2]catenane. Chemical Physics, 1998, 238, 421-428.	1.9	7
332	Solid-State Fingerprints of Molecular Threading Detected by Inelastic Neutron Scattering. ChemPhysChem, 2002, 3, 1038-1041.	2.1	7
333	Effect of potassium intercalation on the electronic and vibrational properties of benzylic amide [2]catenane films. Surface Science, 2002, 515, 45-52.	1.9	7
334	Introducing temperature dependence in an enhanced Poisson–Boltzmann approach. Chemical Physics Letters, 2009, 480, 313-317.	2.6	7
335	GPUâ€accelerated computation of electron transfer. Journal of Computational Chemistry, 2012, 33, 2351-2356.	3.3	7
336	Structural features of aquaporin 4 supporting the formation of arrays and junctions in biomembranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2234-2243.	2.6	7
337	Conformation Diversity of a Fusedâ€Ring Pyrazine Derivative on Au(111) and Highly Ordered Pyrolytic Graphite. Chemistry - an Asian Journal, 2015, 10, 1311-1317.	3.3	7
338	Temperature and Conductivity as Indicators of the Morphology and Activity of a Submarine Volcano: Avyssos (Nisyros) in the South Aegean Sea, Greece. Geosciences (Switzerland), 2018, 8, 193.	2.2	7
339	Analysis of the vibronic structure of the 1A1g → 1B3g, 1B2u transition in biphenyl -h10 and -d10. Chemical Physics Letters, 1986, 129, 296-302.	2.6	6
340	Vibronically induced intensities by CNDO /S calculations: The $\hat{1}\frac{1}{2}8\hat{1}\frac{1}{2}6$ intensity ratio in S1 al S0 transition in benzene. Chemical Physics, 1986, 108, 197-201.	1.9	6
341	Sum over orbitals scaling of the second hyperpolarisabilities of polyenic chains: a case study. Chemical Physics Letters, 1998, 285, 180-185.	2.6	6
342	Engineering molecular chains in carbon nanotubes. Nanoscale, 2012, 4, 7540.	5.6	6

#	Article	IF	CITATIONS
343	Modeling Nanotube Caps: The Relationship Between Fullerenes and Caps. Journal of Physical Chemistry A, 2015, 119, 12839-12844.	2.5	6
344	Optical and theoretical investigation of Indian yellow (euxanthic acid and euxanthone). Dyes and Pigments, 2017, 144, 234-241.	3.7	6
345	Analysis of the vibronic structure of the trans-stilbene fluorescence and excitation spectra: the S ₀ and S ₁ PES along the C _e î€C _e and C _{ph} torsions. Physical Chemistry Chemical Physics, 2017, 19, 25095-25104.	2.8	6
346	Delivery systems for agriculture: Fe-EDDHSA/CaCO3 hybrid crystals as adjuvants for prevention of iron chlorosis. Chemical Communications, 2018, 54, 1635-1638.	4.1	6
347	Controlling Sizeâ€Dispersion of Single Walled Carbon Nanotubes by Interaction with Polyoxometalates Armed with a Tryptophan Tweezer. European Journal of Inorganic Chemistry, 2019, 2019, 374-379.	2.0	6
348	Annealing graphite-like structures. A Monte Carlo-quantum chemical study. Chemical Physics, 1991, 150, 39-45.	1.9	5
349	Favorable Entropy of Aromatic Clusters in Thermophilic Proteins. Journal of Physical Chemistry B, 2005, 109, 18184-18188.	2.6	5
350	Atomistic Simulation of "Drop-on-Demand―Inkjet Dynamics. Journal of Physical Chemistry C, 2008, 112, 10616-10621.	3.1	5
351	FTâ€Raman characterization of the antipodal bisâ€adduct of C ₆₀ and anthracene. Physica Status Solidi (B): Basic Research, 2009, 246, 2794-2797.	1.5	5
352	Electronic structure and radial breathing mode for carbon nanotubes with ultraâ€high curvature. Physica Status Solidi (B): Basic Research, 2010, 247, 2774-2778.	1.5	5
353	Laws of thermal diffusion of individual molecules on the gold surface. Physical Chemistry Chemical Physics, 2011, 13, 13690.	2.8	5
354	CNTâ€Catalyzed Oxidative Dehydrogenation of Ethylbenzene to Styrene: DFT Calculations Disclose the Pathways. ChemNanoMat, 2019, 5, 499-505.	2.8	5
355	Viscoelasticity and Noise Properties Reveal the Formation of Biomemory in Cells. Journal of Physical Chemistry B, 2021, 125, 10883-10892.	2.6	5
356	The effect of pressure on the electronic spectra of anthracene derivatives. Journal of Luminescence, 1987, 38, 311-313.	3.1	4
357	Vibrationally modulated hyperfine coupling in the EPR spectrum of the oxiranyl radical. Chemical Physics, 1989, 139, 503-506.	1.9	4
358	Resonance Raman activity in odd quanta of the trans bending vibration of acetylene: Strong vibronic coupling in the $X \cap A \cap A$ and $X \cap A \cap A$ to $A \cap A$ the $A \cap A$ to	2.6	4
359	Analysis of the Raman Spectra of A3C60 and A ₆ C ₆₀ . Molecular Crystals and Liquid Crystals, 1993, 234, 155-160.	0.3	4
360	Guest Dynamics in Endohedrally Doped Fullerenes. Journal of Physical Chemistry B, 2005, 109, 15048-15051.	2.6	4

#	Article	IF	CITATIONS
361	Understanding the Cosolvation Effect of Dendrimers. Journal of Chemical Theory and Computation, 2005, 1, 194-200.	5.3	4
362	Time-dependent quantum simulation of coronene photoemission spectra. Physical Chemistry Chemical Physics, 2016, 18, 13604-13615.	2.8	4
363	Dissecting the Supramolecular Dispersion of Fullerenes by Proteins/Peptides: Amino Acid Ranking and Driving Forces for Binding to C60. International Journal of Molecular Sciences, 2021, 22, 11567.	4.1	4
364	On the vibrational force fields of the ground state of trans- and cis-polyacetylenes. Chemical Physics Letters, 1988, 151, 526-530.	2.6	3
365	The SO-T1 transition of [1.1.1]propellane: a theoretical study. Chemical Physics Letters, 1995, 241, 445-449.	2.6	3
366	Potential energy surface and kinetics of the helix–coil transition in a 33-peptide. Theoretical Chemistry Accounts, 2007, 118, 25-34.	1.4	3
367	A RNA-based nanodevice recording temperature over time. Chemical Physics, 2010, 369, 91-95.	1.9	3
368	Polymorphism and isomerisation of an azobenzene derivative on gold. Chemical Communications, 2011, 47, 8662.	4.1	3
369	Operations and Thermodynamics of an Artificial Rotary Molecular Motor in Solution. ChemPhysChem, 2014, 15, 1834-1840.	2.1	3
370	"Active―drops as phantom models for living cells: a mesoscopic particle-based approach. Soft Matter, 2016, 12, 3538-3544.	2.7	3
371	Structural determinants in the bulk heterojunction. Physical Chemistry Chemical Physics, 2018, 20, 5708-5720.	2.8	3
372	Multifractal structure of microscopic eye–head coordination. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 945-953.	2.6	3
373	Impact of the green tea ingredient epigallocatechin gallate and a short pentapeptide (Ile-Ile-Ala-Glu-Lys) on the structural organization of mixed micelles and the related uptake of cholesterol. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1956-1963.	2.4	3
374	Dynamic Self-Organization and Catalysis: Periodic versus Random Driving Forces. Journal of Physical Chemistry C, 2019, 123, 825-835.	3.1	3
375	Electron Dynamics with Explicit-Time Density Functional Theory of the [4+2] Diels–Alder Reaction. Journal of Chemical Theory and Computation, 2020, 16, 2172-2180.	5.3	3
376	Why do the SO→S1(nπ*) and SO→T2(nπ*) transitions in acetophenone display different activity of the methyl group torsion?. Chemical Physics Letters, 1988, 153, 436-440.	2.6	2
377	Nonlinear Optical Properties of Benzylic Amide [2] Catenanes: A Novel Versatile Photonic Material. Molecular Crystals and Liquid Crystals, 2000, 353, 545-559.	0.3	2
378	Electric Field Promotes Pentacene Dimerization in Thin Film Transistors. Journal of Physical Chemistry C, 2016, 120, 13942-13947.	3.1	2

#	Article	IF	CITATIONS
379	White and Colored Noises as Driving Forces of Electron Transfer: The Photolyase Repair Mechanism as a Test Case. Journal of Physical Chemistry Letters, 2019, 10, 4511-4516.	4.6	2
380	Photothermal motion: effect of low-intensity irradiation on the thermal motion of organic nanoparticles. Nanoscale, 2022, 14, 7233-7241.	5.6	2
381	Validity of the essential states model in fullerenes. , 1995, , .		1
382	Evidence for ring spinning in rotaxanes induced with an alternate electric field., 2000, 4106, 194.		1
383	Intercage dynamics of C60 in doped crystals. Chemical Physics Letters, 2005, 405, 270-273.	2.6	1
384	Intraresidue Distribution of Energy in Proteins. Journal of Physical Chemistry B, 2005, 109, 3586-3593.	2.6	1
385	Surface enhanced SHG from macrocycle, catenane and rotaxane thin films: experiments and theory. , 2005, 5724, 139.		1
386	Sensing Biomolecules with Ultra-Thin Film Organic Field Effect Transistors. Biophysical Journal, 2010, 98, 658a.	0.5	1
387	Thermal collapse of snowflake fractals. Chemical Physics Letters, 2012, 543, 82-85.	2.6	1
388	Common Force Field Thermodynamics of Cholesterol. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	1
389	Are Twoâ€Station Biased Random Walkers Always Potential Molecular Motors?. ChemPhysChem, 2015, 16, 104-107.	2.1	1
390	Time Fractional Diffusion Equations and Analytical Solvable Models. Journal of Physics: Conference Series, 2016, 738, 012106.	0.4	1
391	<title>New assignments in the 600-nm region of C<formula></title> ., 1996,,.		О
392	Organic Functionalized Carbon Nanotubes. AIP Conference Proceedings, 2002, , .	0.4	0
393	Control of Supramolecular Shapes at Nanometer Level. AIP Conference Proceedings, 2002, , .	0.4	O
394	Understanding the properties of benzylic amide-based interlocked molecular architectures. AIP Conference Proceedings, 2002, , .	0.4	0
395	Motions In Catenanes And Rotaxanes. AIP Conference Proceedings, 2004, , .	0.4	0
396	Modulating Charge-Transfer Interactions in Topologically Different Porphyrinâ€"C60 Dyads ChemInform, 2004, 35, no.	0.0	0

#	ARTICLE	IF	CITATIONS
397	Ordering Fullerene Materials at Nanometer Dimensions. ChemInform, 2005, 36, no.	0.0	0
398	Towards Understanding Different Spatial and Temporal Scales. AIP Conference Proceedings, 2007, , .	0.4	0
399	Quantum Chemical Calculations of C60 Vibrational Frequencies and Electronic States. NATO ASI Series Series B: Physics, 1993, , 201-208.	0.2	O
400	Physical Consequences of a Mechanically Interlocked Architecture: Benzylic Amide Catenane NH Stretching Vibrations as Sensitive Probes for Weakly Hydrogen-Bonding Environments. ChemPhysChem, 2000, 1, 97-100.	2.1	0