
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3553716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression, purification and characterization of SORCS2 intracellular domain for structural studies. Protein Expression and Purification, 2022, 193, 106058.	1.3	0
2	Intrinsically disordered regions couple the ligand binding and kinase activation of Trk neurotrophin receptors. IScience, 2022, 25, 104348.	4.1	2
3	Streptocinnamides A and B, Depsipeptides from <i>Streptomyces</i> sp. KMM 9044. Organic Letters, 2022, 24, 4892-4895.	4.6	4
4	Structure-based rational design of an enhanced fluorogen-activating protein for fluorogens based on GFP chromophore. Communications Biology, 2022, 5, .	4.4	5
5	Imidazol-5-ones as a substrate for [1,5]-hydride shift triggered cyclization. New Journal of Chemistry, 2021, 45, 1805-1808.	2.8	11
6	NanoFAST: structure-based design of a small fluorogen-activating protein with only 98 amino acids. Chemical Science, 2021, 12, 6719-6725.	7.4	22
7	New Insectotoxin from Tibellus Oblongus Spider Venom Presents Novel Adaptation of ICK Fold. Toxins, 2021, 13, 29.	3.4	7
8	Targeting the transmembrane domain 5 of latent membrane protein 1 using small molecule modulators. European Journal of Medicinal Chemistry, 2021, 214, 113210.	5.5	2
9	Structure of MeuNaTxαâ€1 toxin from scorpion venom highlights the importance of the nest motif. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1055-1060.	2.6	3
10	Sampling the cultivation parameter space for the bacterial production of TLR1 intracellular domain reveals the multiple optima. Protein Expression and Purification, 2021, 181, 105832.	1.3	1
11	Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn2+ ions. Communications Biology, 2021, 4, 1003.	4.4	7
12	Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. Journal of Biological Chemistry, 2021, 297, 100926.	3.4	8
13	Unexpected Coelenterazine Degradation Products of <i>Beroe abyssicola</i> Photoprotein Photoinactivation. Organic Letters, 2021, 23, 6846-6849.	4.6	6
14	Spatial Structure and Activity of Synthetic Fragments of Lynx1 and of Nicotinic Receptor Loop C Models. Biomolecules, 2021, 11, 1.	4.0	48
15	Archaeal cyclopentane fragment in a surfactant's hydrophobic tail decreases the Krafft point. Soft Matter, 2020, 16, 1333-1341.	2.7	2
16	Structural basis of the transmembrane domain dimerization and rotation in the activation mechanism of the TRKA receptor by nerve growth factor. Journal of Biological Chemistry, 2020, 295, 275-286.	3.4	22
17	Synthesis of 5-(aminomethylidene)imidazol-4-ones by using N,N-dialkylformamide acetals. Chemistry of Heterocyclic Compounds, 2020, 56, 1097-1099.	1.2	2
18	Revising the mechanism of p75NTR activation: intrinsically monomeric state of death domains invokes the "helper" hypothesis. Scientific Reports, 2020, 10, 13686.	3.3	7

#	Article	IF	CITATIONS
19	Oligomerization analysis as a tool to elucidate the mechanism of EBV latent membrane protein 1 inhibition by pentamidine. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183380.	2.6	8
20	Imidazol-5-one as an Acceptor in Donor–Acceptor Cyclopropanes: Cycloaddition with Aldehydes. Organic Letters, 2020, 22, 2740-2745.	4.6	16
21	Synthesis of methylsulfanyl analogs of Kaede protein chromophore. Chemistry of Heterocyclic Compounds, 2020, 56, 399-402.	1.2	1
22	Targeting trimeric transmembrane domain 5 of oncogenic latent membrane protein 1 using a computationally designed peptide. Chemical Science, 2019, 10, 7584-7590.	7.4	10
23	Protein surface topography as a tool to enhance the selective activity of a potassium channel blocker. Journal of Biological Chemistry, 2019, 294, 18349-18359.	3.4	10
24	NMR structure of a fullâ€length singleâ€pass membrane protein NRADD. Proteins: Structure, Function and Bioinformatics, 2019, 87, 786-790.	2.6	4
25	Enamine–azide [2+3]-cycloaddition as a method to introduce functional groups into fluorescent dyes. Tetrahedron Letters, 2019, 60, 456-459.	1.4	5
26	Phase Transitions in Small Isotropic Bicelles. Langmuir, 2018, 34, 3426-3437.	3.5	11
27	Cover Image, Volume 86, Issue 10. Proteins: Structure, Function and Bioinformatics, 2018, 86, C4-C4.	2.6	0
28	A Novel Lipopeptaibol Emericellipsin A with Antimicrobial and Antitumor Activity Produced by the Extremophilic Fungus Emericellopsis alkalina. Molecules, 2018, 23, 2785.	3.8	53
29	Probing the effect of membrane contents on transmembrane protein-protein interaction using solution NMR and computer simulations. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2486-2498.	2.6	10
30	CARD domain of rat RIP2 kinase: Refolding, solution structure, pH-dependent behavior and protein-protein interactions. PLoS ONE, 2018, 13, e0206244.	2.5	9
31	Refined structure of BeM9 reveals arginine hand, an overlooked structural motif in scorpion toxins affecting sodium channels. Proteins: Structure, Function and Bioinformatics, 2018, 86, 1117-1122.	2.6	5
32	Behavior of Most Widely Spread Lipids in Isotropic Bicelles. Langmuir, 2018, 34, 8302-8313.	3.5	8
33	Derivatives of Azidocinnamic Acid in the Synthesis of 2-Amino-4-Arylidene-1H-Imidazol-5(4H)-Ones. Chemistry of Heterocyclic Compounds, 2018, 54, 625-629.	1.2	5
34	Ligand Binding Properties of the Lentil Lipid Transfer Protein: Molecular Insight into the Possible Mechanism of Lipid Uptake. Biochemistry, 2017, 56, 1785-1796.	2.5	27
35	Mechanism and color modulation of fungal bioluminescence. Science Advances, 2017, 3, e1602847.	10.3	74
36	Yellow and Orange Fluorescent Proteins with Tryptophan-based Chromophores. ACS Chemical Biology, 2017, 12, 1867-1873.	3.4	6

#	Article	IF	CITATIONS
37	The Conformation of the Epidermal Growth Factor Receptor Transmembrane Domain Dimer Dynamically Adapts to the Local Membrane Environment. Biochemistry, 2017, 56, 1697-1705.	2.5	39
38	Façade detergents as bicelle rim-forming agents for solution NMR spectroscopy. Nanotechnology Reviews, 2017, 6, 93-103.	5.8	9
39	Membrane mimetics for solution NMR studies of membrane proteins. Nanotechnology Reviews, 2017, 6, 15-32.	5.8	25
40	NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix–helix interactions in membrane proteins. Journal of Biomolecular NMR, 2017, 69, 165-179.	2.8	7
41	Spatial structure of TLR4 transmembrane domain in bicelles provides the insight into the receptor activation mechanism. Scientific Reports, 2017, 7, 6864.	3.3	23
42	Synthesis of Panal Terpenoid Core. Synlett, 2017, 28, 583-588.	1.8	0
43	Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 561-576.	2.6	72
44	New Disulfide-Stabilized Fold Provides Sea Anemone Peptide to Exhibit Both Antimicrobial and TRPA1 Potentiating Properties. Toxins, 2017, 9, 154.	3.4	41
45	Structural Basis of p75 Transmembrane Domain Dimerization. Journal of Biological Chemistry, 2016, 291, 12346-12357.	3.4	27
46	A novel lipid transfer protein from the dill <i>Anethum graveolens</i> L.: isolation, structure, heterologous expression, and functional characteristics. Journal of Peptide Science, 2016, 22, 59-66.	1.4	20
47	Cell-free expression and purification of the fragments of the receptor tyrosine kinases of the EGFR family, containing the transmembrane domain with the juxtamembrane region, for structural studies. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10, 142-149.	0.6	0
48	Characterization of Small Isotropic Bicelles with Various Compositions. Langmuir, 2016, 32, 6624-6637.	3.5	47
49	HER2 Transmembrane Domain Dimerization Coupled with Self-Association of Membrane-Embedded Cytoplasmic Juxtamembrane Regions. Journal of Molecular Biology, 2016, 428, 52-61.	4.2	55
50	Titelbild: The Chemical Basis of Fungal Bioluminescence (Angew. Chem. 28/2015). Angewandte Chemie, 2015, 127, 8113-8113.	2.0	0
51	GMDP: unusual physico-chemical and biological properties of the anomeriѕforms. Journal of Peptide Science, 2015, 21, 717-722.	1.4	4
52	The Chemical Basis of Fungal Bioluminescence. Angewandte Chemie, 2015, 127, 8242-8246.	2.0	9
53	Frontispiece: Novel Peptide Chemistry in Terrestrial Animals: Natural Luciferin Analogues from the Bioluminescent EarthwormFridericia heliota. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
54	The Chemical Basis of Fungal Bioluminescence. Angewandte Chemie - International Edition, 2015, 54, 8124-8128.	13.8	89

#	Article	IF	CITATIONS
55	Reversible condensation of 4-arylidene-1,2-dimethyl-1H-imidazol-5(4H)-ones with aromatic acyl chlorides. Chemistry of Heterocyclic Compounds, 2015, 51, 944-947.	1.2	1
56	NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs. Biophysical Journal, 2015, 109, 772-782.	0.5	22
57	Novel Peptide Chemistry in Terrestrial Animals: Natural Luciferin Analogues from the Bioluminescent Earthworm <i>Fridericia heliota</i> . Chemistry - A European Journal, 2015, 21, 3942-3947.	3.3	9
58	The Membrane Mimetic Affects the Spatial Structure and Mobility of EGFR Transmembrane and Juxtamembrane Domains. Biochemistry, 2015, 54, 6295-6298.	2.5	32
59	Tollâ€like receptor 3 transmembrane domain is able to perform various homotypic interactions: An NMR structural study. FEBS Letters, 2014, 588, 3802-3807.	2.8	30
60	Structural Similarity between Defense Peptide from Wheat and Scorpion Neurotoxin Permits Rational Functional Design. Journal of Biological Chemistry, 2014, 289, 14331-14340.	3.4	33
61	NMR-based approach to measure the free energy of transmembrane helix–helix interactions. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 164-172.	2.6	32
62	Heterologous expression and solution structure of defensin from lentil Lens culinaris. Biochemical and Biophysical Research Communications, 2014, 451, 252-257.	2.1	19
63	Structural and Functional Characterization of Alternative Transmembrane Domain Conformations in VEGF Receptor 2 Activation. Structure, 2014, 22, 1077-1089.	3.3	43
64	Lipid-Protein Nanodiscs Offer New Perspectives for Structural and Functional Studies of Water-Soluble Membrane-Active Peptides. Acta Naturae, 2014, 6, 84-94.	1.7	25
65	Lipid-protein nanodiscs offer new perspectives for structural and functional studies of water-soluble membrane-active peptides. Acta Naturae, 2014, 6, 84-94.	1.7	17
66	Preparation of pro-oncogenic mutant forms V659E and V659Q of the transmembrane domain of receptor protein kinase ErbB2 for structural studies. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2013, 7, 91-99.	0.6	1
67	Sea Anemone Peptide with Uncommon β-Hairpin Structure Inhibits Acid-sensing Ion Channel 3 (ASIC3) and Reveals Analgesic Activity. Journal of Biological Chemistry, 2013, 288, 23116-23127.	3.4	60
68	Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris. Biochemical and Biophysical Research Communications, 2013, 439, 427-432.	2.1	33
69	Structural investigations of recombinant urokinase growth factor-like domain. Biochemistry (Moscow), 2013, 78, 517-530.	1.5	3
70	Structural investigation of influenza virus hemagglutinin membrane-anchoring peptide. Protein Engineering, Design and Selection, 2013, 26, 547-552.	2.1	27
71	Mutation rate in stem cells: an underestimated barrier on the way to therapy. Trends in Molecular Medicine, 2013, 19, 273-280.	6.7	24
72	Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochemical Journal, 2012, 446, 331-331.	3.7	0

#	Article	IF	CITATIONS
73	Structure-Functional Insight into Transmembrane Helix Dimerization byÂProtein Engineering, Molecular Modeling and Heteronuclear NMR Spectroscopy. Biophysical Journal, 2012, 102, 470a.	0.5	1
74	Insight into the Thermodynamics and Equilibrium Kinetics of the Interaction between Transmembrane α-Helices in the Membrane Domain of ErbB4. Biophysical Journal, 2012, 102, 391a.	0.5	0
75	Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochemical Journal, 2012, 446, 69-77.	3.7	56
76	Lipid–protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: Comparison with detergent micelles, bicelles and liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 349-358.	2.6	95
77	Structural and thermodynamic insight into the process of "weak―dimerization of the ErbB4 transmembrane domain by solution NMR. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2158-2170.	2.6	66
78	Structural Aspects of Transmembrane Domain Interactions of Receptor Tyrosine Kinases. Biophysical Journal, 2011, 100, 207a.	0.5	1
79	NMR Structure and Action on Nicotinic Acetylcholine Receptors of Water-soluble Domain of Human LYNX1. Journal of Biological Chemistry, 2011, 286, 10618-10627.	3.4	87
80	Spatial structure and dimer–monomer equilibrium of the ErbB3 transmembrane domain in DPC micelles. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2081-2088.	2.6	41
81	Bacterial synthesis, purification, and solubilization of transmembrane segments of ErbB family receptors. Molecular Biology, 2011, 45, 823-832.	1.3	5
82	Dimeric Structure of the Transmembrane Domain of Glycophorin A in Lipidic and Detergent Environments. Acta Naturae, 2011, 3, 90-98.	1.7	37
83	Dimeric structure of the transmembrane domain of glycophorin a in lipidic and detergent environments. Acta Naturae, 2011, 3, 90-8.	1.7	23
84	Left-Handed Dimer of EphA2 Transmembrane Domain: Helix Packing Diversity among Receptor Tyrosine Kinases. Biophysical Journal, 2010, 98, 881-889.	0.5	100
85	Spatial Structure of the Transmembrane Domain Heterodimer of ErbB1 and ErbB2 Receptor Tyrosine Kinases. Journal of Molecular Biology, 2010, 400, 231-243.	4.2	130
86	Isolation, Structure Elucidation, and Synergistic Antibacterial Activity of a Novel Two-Component Lantibiotic Lichenicidin from <i>Bacillus licheniformis</i> VK21. Biochemistry, 2010, 49, 6462-6472.	2.5	67
87	Spatial Structure of the Dimeric Transmembrane Domain of the Growth Factor Receptor ErbB2 Presumably Corresponding to the Receptor Active State. Journal of Biological Chemistry, 2008, 283, 6950-6956.	3.4	189
88	Solution of the spatial structure of dimeric transmembrane domains of proteins by heteronuclear NMR spectroscopy and molecular modeling. Biophysics (Russian Federation), 2006, 51, 23-27.	0.7	2
89	Determination of tin equilibrium isotope fractionation factors from synchrotron radiation experiments. Geochimica Et Cosmochimica Acta, 2005, 69, 5531-5536.	3.9	55