Francesco Sciortino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3553385/publications.pdf

Version: 2024-02-01

438 papers 29,249 citations

90 h-index 154 g-index

441 all docs

441 docs citations

times ranked

441

9889 citing authors

#	Article	IF	CITATIONS
1	Treatment of kidney clear cell carcinoma, lung adenocarcinoma and glioblastoma cell lines with hydrogels made of DNA nanostars. Biomaterials Science, 2022, 10, 1304-1316.	2.6	6
2	The physics of empty liquids: from patchy particles to water. Reports on Progress in Physics, 2022, 85, 016601.	8.1	20
3	Decompression dynamics of high density amorphous ice above and below the liquid-liquid critical point. Journal of Non-Crystalline Solids: X, 2022, 13, 100081.	0.5	4
4	SAT-assembly: a new approach for designing self-assembling systems. Journal of Physics Condensed Matter, 2022, 34, 354002.	0.7	7
5	Liquid–liquid criticality in the WAIL water model. Journal of Chemical Physics, 2022, 157, .	1.2	20
6	Phase Behavior and Microscopic Dynamics of a Thermosensitive Gel-Forming Polymer. Macromolecules, 2021, 54, 3897-3906.	2.2	6
7	Structural and topological changes across the liquid–liquid transition in water. Journal of Chemical Physics, 2021, 154, 184506.	1.2	21
8	Monodisperse patchy particle glass former. Journal of Chemical Physics, 2021, 154, 174501.	1.2	5
9	Gel Formation in Reversibly Cross-Linking Polymers. Macromolecules, 2021, 54, 6613-6627.	2.2	7
10	Hydrodynamic instability and flow reduction in polymer brush coated channels. Soft Matter, 2021, 17, 9235-9245.	1.2	1
11	Structure of High-Pressure Supercooled and Glassy Water. Physical Review Letters, 2021, 127, 175502.	2.9	13
12	Building up DNA, bit by bit: a simple description of chain assembly. Soft Matter, 2021, 17, 10736-10743.	1.2	0
13	Facile self-assembly of colloidal diamond from tetrahedral patchy particles via ring selection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
14	Advances in the study of supercooled water. European Physical Journal E, 2021, 44, 143.	0.7	40
15	Spatially uniform dynamics in equilibrium colloidal gels. Science Advances, 2021, 7, eabk2360.	4.7	12
16	DNA-GEL, Novel Nanomaterial for Biomedical Applications and Delivery of Bioactive Molecules. Frontiers in Pharmacology, 2020, 11, 01345.	1.6	17
17	Aggregate formation in fluids with bounded repulsive core and competing interactions. Journal of Molecular Liquids, 2020, 303, 112601.	2.3	3
18	Second critical point in two realistic models of water. Science, 2020, 369, 289-292.	6.0	176

#	Article	IF	Citations
19	Hyperbranched DNA clusters. Nanoscale, 2020, 12, 23003-23012.	2.8	3
20	Connection between liquid and non-crystalline solid phases in water. Journal of Chemical Physics, 2020, 153, 104503.	1.2	25
21	Gelling without Structuring: A SAXS Study of the Interactions among DNA Nanostars. Langmuir, 2020, 36, 10387-10396.	1.6	10
22	Combinatorial-Entropy-Driven Aggregation in DNA-Grafted Nanoparticles. ACS Nano, 2020, 14, 5628-5635.	7.3	15
23	Leveraging Hierarchical Self-Assembly Pathways for Realizing Colloidal Photonic Crystals. ACS Nano, 2020, 14, 5348-5359.	7.3	43
24	A structural indicator for water built upon potential energy considerations. Journal of Chemical Physics, 2020, 152, 244503.	1.2	25
25	The stability-limit conjecture revisited. Journal of Chemical Physics, 2019, 150, 234502.	1.2	18
26	Patchy Particle Models to Understand Protein Phase Behavior. Methods in Molecular Biology, 2019, 2039, 187-208.	0.4	5
27	Glass polymorphism in TIP4P/2005 water: A description based on the potential energy landscape formalism. Journal of Chemical Physics, 2019, 150, 244506.	1.2	20
28	General Methodology to Identify the Minimum Alphabet Size for Heteropolymer Design. Advanced Theory and Simulations, 2019, 2, 1900031.	1.3	8
29	Patchy particles at a hard wall: Orientation-dependent bonding. Journal of Chemical Physics, 2019, 151, 174903.	1.2	6
30	Assembly of clathrates from tetrahedral patchy colloids with narrow patches. Journal of Chemical Physics, 2019, 151, 094502.	1.2	20
31	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>q</mml:mi></mml:math> -Independent Slow Dynamics in Atomic and Molecular Systems. Physical Review Letters, 2019, 122, 175501.	2.9	19
32	Cold-swappable DNA gels. Nanoscale, 2019, 11, 9691-9697.	2.8	18
33	Size dependence of dynamic fluctuations in liquid and supercooled water. Journal of Chemical Physics, 2019, 150, 144505.	1.2	5
34	Several glasses of water but one dense liquid. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9149-9151.	3.3	6
35	Supercooled water: A polymorphic liquid with a cornucopia of behaviors. Journal of Chemical Physics, 2019, 151, 210401.	1.2	9
36	All-DNA System Close to the Percolation Threshold. ACS Macro Letters, 2019, 8, 84-87.	2.3	2

#	Article	IF	CITATIONS
37	Evaluating the Laplace pressure of water nanodroplets from simulations. Journal of Physics Condensed Matter, 2018, 30, 144005.	0.7	15
38	Potential energy landscape of TIP4P/2005 water. Journal of Chemical Physics, 2018, 148, 134505.	1.2	32
39	Binding branched and linear DNA structures: From isolated clusters to fully bonded gels. Journal of Chemical Physics, 2018, 148, 025103.	1.2	10
40	Self-Dynamics and Collective Swap-Driven Dynamics in a Particle Model for Vitrimers. Macromolecules, 2018, 51, 1232-1241.	2.2	41
41	Freely Jointed Polymers Made of Droplets. Physical Review Letters, 2018, 121, 138002.	2.9	64
42	Spatiotemporal intermittency and localized dynamic fluctuations upon approaching the glass transition. Physical Review E, 2018, 97, 060601.	0.8	6
43	Dynamics of Vitrimers: Defects as a Highway to Stress Relaxation. Physical Review Letters, 2018, 121, 058003.	2.9	67
44	Exploiting limited valence patchy particles to understand autocatalytic kinetics. Nature Communications, 2018, 9, 2647.	5.8	4
45	The Adam–Gibbs relation and the TIP4P/2005 model of water. Molecular Physics, 2018, 116, 3366-3371.	0.8	11
46	Advances in Computational Studies of the Liquid–Liquid Transition in Water and Water-Like Models. Chemical Reviews, 2018, 118, 9129-9151.	23.0	152
47	Microrheology of DNA hydrogel gelling and melting on cooling. Soft Matter, 2018, 14, 6431-6438.	1.2	37
48	Condensation and Demixing in Solutions of DNA Nanostars and Their Mixtures. ACS Nano, 2017, 11, 2094-2102.	7.3	28
49	Three-body potential for simulating bond swaps in molecular dynamics. European Physical Journal E, 2017, 40, 3.	0.7	38
50	Communication: Re-entrant limits of stability of the liquid phase and the Speedy scenario in colloidal model systems. Journal of Chemical Physics, 2017, 146, 041103.	1.2	25
51	Phase behaviour in complementary DNA-coated gold nanoparticles and fd-viruses mixtures: a numerical study. European Physical Journal E, 2017, 40, 7.	0.7	4
52	Equilibrium gels of limited valence colloids. Current Opinion in Colloid and Interface Science, 2017, 30, 90-96.	3.4	53
53	Connectivity, dynamics, and structure in a tetrahedral network liquid. Soft Matter, 2017, 13, 514-530.	1.2	29
54	Free energy calculations for rings and chains formed by dipolar hard spheres. Soft Matter, 2017, 13, 7870-7878.	1.2	15

#	Article	IF	CITATIONS
55	Which way to low-density liquid water?. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8141-8143.	3.3	5
56	Fluctuating Elasticity Mode in Transient Molecular Networks. Physical Review Letters, 2017, 119, 078002.	2.9	29
57	"Swarm relaxation― Equilibrating a large ensemble of computer simulationsâ<†. European Physical Journal E, 2017, 40, 98.	0.7	7
58	Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13336-13344.	3.3	99
59	Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars. Journal of Chemical Physics, 2016, 145, 084910.	1.2	30
60	Discontinous change from thermally- to geometrically-dominated effective interactions in colloidal solutions. Soft Matter, 2016, 12, 9649-9656.	1.2	3
61	Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice. Journal of Chemical Physics, 2016, 145, 224501.	1.2	27
62	Toward the observation of a liquid-liquid phase transition in patchy origami tetrahedra: a numerical study. European Physical Journal E, 2016, 39, 131.	0.7	9
63	Anomalous dynamics of intruders in a crowded environment of mobile obstacles. Nature Communications, 2016, 7, 11133.	5. 8	114
64	Re-entrant DNA gels. Nature Communications, 2016, 7, 13191.	5 . 8	69
65	Surface wave excitations and backflow effect over dense polymer brushes. Scientific Reports, 2016, 6, 22257.	1.6	7
66	Crystals of Janus colloids at various interaction ranges. Journal of Chemical Physics, 2016, 145, .	1.2	20
67	Tuning the Liquid-Liquid Transition by Modulating the Hydrogen-Bond Angular Flexibility in a Model for Water. Physical Review Letters, 2015, 115, 015701.	2.9	89
68	Unusual Dynamics of Concentration Fluctuations in Solutions of Weakly Attractive Globular Proteins. Journal of Physical Chemistry Letters, 2015, 6, 4470-4474.	2.1	25
69	Phase diagram of the ST2 model of water. Molecular Physics, 2015, 113, 2791-2798.	0.8	25
70	Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water. European Physical Journal E, 2015, 38, 124.	0.7	15
71	Patchy particles. Journal of Physics Condensed Matter, 2015, 27, 230301.	0.7	5
72	Temperature-induced structural transitions in self-assembling magnetic nanocolloids. Physical Chemistry Chemical Physics, 2015, 17, 16601-16608.	1.3	38

#	Article	IF	Citations
73	How fluorescent labelling alters the solution behaviour of proteins. Physical Chemistry Chemical Physics, 2015, 17, 31177-31187.	1.3	47
74	Switching Bonds in a DNA Gel: An All-DNA Vitrimer. Physical Review Letters, 2015, 114, 078104.	2.9	32
75	Cluster formation and phase separation in heteronuclear Janus dumbbells. Journal of Physics Condensed Matter, 2015, 27, 234101.	0.7	23
76	Equilibrium gels of trivalent DNA-nanostars: Effect of the ionic strength on the dynamics. European Physical Journal E, 2015, 38, 64.	0.7	29
77	Reference interaction site model and optimized perturbation theories of colloidal dumbbells with increasing anisotropy. Journal of Chemical Physics, 2015, 142, 224904.	1.2	10
78	Equilibrium gels of low-valence DNA nanostars: a colloidal model for strong glass formers. Soft Matter, 2015, 11, 3132-3138.	1.2	53
79	Low temperature structural transitions in dipolar hard spheres: The influence on magnetic properties. Journal of Magnetism and Magnetic Materials, 2015, 383, 272-276.	1.0	5
80	Liquid–Liquid Phase Transitions in Tetrahedrally Coordinated Fluids via Wertheim Theory. Journal of Physical Chemistry B, 2015, 119, 9076-9083.	1.2	7
81	Self-assembly of mesogenic bent-core DNA nanoduplexes. Soft Matter, 2015, 11, 2934-2944.	1.2	10
82	From square-well to Janus: Improved algorithm for integral equation theory and comparison with thermodynamic perturbation theory within the Kern-Frenkel model. Journal of Chemical Physics, 2014, 140, 094104.	1.2	19
83	Cooperative polymerization of one-patch colloids. Journal of Chemical Physics, 2014, 140, 144902.	1.2	27
84	Multiple Glass Singularities and Isodynamics in a Core-Softened Model for Glass-Forming Systems. Physical Review Letters, 2014, 113, 258302.	2.9	17
85	Casimir-like forces at the percolation transition. Nature Communications, 2014, 5, 3267.	5.8	35
86	Self-Assembly-Driven Nematization. Langmuir, 2014, 30, 4814-4819.	1.6	26
87	Accurate phase diagram of tetravalent DNA nanostars. Journal of Chemical Physics, 2014, 140, .	1.2	50
88	Equilibrium phases of one-patch colloids with short-range attractions. Soft Matter, 2014, 10, 5121-5128.	1.2	53
89	Phase separation and self-assembly of colloidal dimers with tunable attractive strength: from symmetrical square-wells to Janus dumbbells. Soft Matter, 2014, 10, 5269-5279.	1.2	31
90	Erasing no-man's land by thermodynamically stabilizing the liquid–liquid transition in tetrahedral particles. Nature Physics, 2014, 10, 653-657.	6.5	123

#	Article	IF	CITATIONS
91	"Crystal-clear―liquid–liquid transition in a tetrahedral fluid. Soft Matter, 2014, 10, 9413-9422.	1.2	25
92	Gels of DNA Nanostars Never Crystallize. ACS Nano, 2014, 8, 3567-3574.	7.3	74
93	Self-assembly of hard helices: a rich and unconventional polymorphism. Soft Matter, 2014, 10, 8171-8187.	1.2	37
94	Observable-dependence of the effective temperature in off-equilibrium diatomic molecular liquids. Journal of Chemical Physics, 2014, 141, 194507.	1.2	1
95	Free energy surface of ST2 water near the liquid-liquid phase transition. Journal of Chemical Physics, 2013, 138, 034505.	1.2	118
96	Liquids more stable than crystals in particles with limited valence and flexible bonds. Nature Physics, 2013, 9, 554-558.	6.5	160
97	Understanding tetrahedral liquids through patchy colloids. Journal of Chemical Physics, 2013, 139, 234901.	1.2	41
98	Phase diagram of a reentrant gel of patchy particles. Journal of Chemical Physics, 2013, 139, 244910.	1.2	18
99	On the gas–liquid phase separation and the self-assembly of charged soft dumbbells. Molecular Physics, 2013, 111, 3608-3617.	0.8	14
100	Generalized Fluctuation-Dissipation Relation and Effective Temperature Upon Heating a Deeply Supercooled Liquid. Physical Review Letters, 2013, 110, 035701.	2.9	11
101	Structure and phase behavior of colloidal dumbbells with tunable attractive interactions. Physical Chemistry Chemical Physics, 2013, 15, 20590.	1.3	28
102	Soft heaps and clumpy crystals. Nature, 2013, 493, 30-31.	13.7	21
103	Flying to the bottom. Nature Materials, 2013, 12, 94-95.	13.3	30
104	Patchy Particle Model for Vitrimers. Physical Review Letters, 2013, 111, 188002.	2.9	95
105	Self-Assembly in Chains, Rings, and Branches: A Single Component System with Two Critical Points. Physical Review Letters, 2013, 111, 168302.	2.9	44
106	Cluster Phases of Decorated Micellar Solutions with Macrocyclic Ligands. Journal of Physical Chemistry B, 2013, 117, 3613-3623.	1.2	1
107	Cluster formation in one-patch colloids: low coverage results. Soft Matter, 2013, 9, 2652.	1.2	56
108	How to calculate structure factors of self-assembling anisotropic particles. Soft Matter, 2013, 9, 4412.	1.2	10

#	Article	IF	Citations
109	Nonmonotonic Magnetic Susceptibility of Dipolar Hard-Spheres at Low Temperature and Density. Physical Review Letters, 2013, 110, 148306.	2.9	75
110	Computing the phase diagram of binary mixtures: A patchy particle case study. Journal of Chemical Physics, 2013, 138, 164904.	1.2	27
111	The influence of shape anisotropy on the microstructure of magnetic dipolar particles. Soft Matter, 2013, 9, 6594.	1.2	22
112	Gelling by Heating. Scientific Reports, 2013, 3, 2451.	1.6	27
113	Phase Diagram of One-Patch Colloids Forming Tubes and Lamellae. Journal of Physical Chemistry B, 2013, 117, 9540-9547.	1.2	60
114	Unveiling the complex glassy dynamics of square shoulder systems: Simulations and theory. Journal of Chemical Physics, 2013, 138, 134501.	1.2	17
115	Phase behavior and critical activated dynamics of limited-valence DNA nanostars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15633-15637.	3.3	156
116	Branching points in the low-temperature dipolar hard sphere fluid. Journal of Chemical Physics, 2013, 134, 134, 134, 134, 134, 134, 134, 1	1.2	33
117	Predicting crystals of Janus colloids. Journal of Chemical Physics, 2013, 138, 164505.	1.2	87
118	Observation of empty liquids and equilibrium gels in a colloidal clay. , 2013, , .		4
119	Instantaneous Normal Mode in Supercooled Water. Progress of Theoretical Physics Supplement, 2013, 126, 267-272.	0.2	0
120	Cooperative Molecular Motions in Water. Progress of Theoretical Physics Supplement, 2013, 126, 201-206.	0.2	0
121	Quantitative description of the self-assembly of patchy particles into chains and rings. Journal of Chemical Physics, 2012, 137, 044901.	1.2	36
122	Properties of patchy colloidal particles close to a surface: A Monte Carlo and density functional study. Journal of Chemical Physics, 2012, 137, 084704.	1.2	27
123	Tuning effective interactions close to the critical point in colloidal suspensions. Journal of Chemical Physics, 2012, 137, 084903.	1.2	14
124	DNA Hairs Provide Potential for Molecular Self-Assembly. Physics Magazine, 2012, 5, .	0.1	0
125	Self-assembly of short DNA duplexes: from a coarse-grained model to experiments through a theoretical link. Soft Matter, 2012, 8, 8388.	1.2	56
126	Structural properties of the dipolar hard-sphere fluid at low temperatures and densities. Soft Matter, 2012, 8, 6310.	1.2	80

#	Article	IF	Citations
127	Self-Assembly of Bifunctional Patchy Particles with Anisotropic Shape into Polymers Chains: Theory, Simulations, and Experiments. Macromolecules, 2012, 45, 1090-1106.	2.2	72
128	Ising Universality Class for the Liquid-Liquid Critical Point of a One Component Fluid: A Finite-Size Scaling Test. Physical Review Letters, 2012, 109, 177801.	2.9	61
129	Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory. Journal of Chemical Physics, 2012, 136, 094512.	1.2	24
130	Chapter 6. Theoretical Calculations of Phase Diagrams and Self-assembly in Patchy Colloids. RSC Smart Materials, 2012, , 108-137.	0.1	2
131	How properties of interacting depletant particles control aggregation of hard-sphere colloids. Soft Matter, 2012, 8, 1991-1996.	1.2	24
132	Chemical and physical aggregation of small-functionality particles. Soft Matter, 2012, 8, 11207.	1.2	28
133	Patterning symmetry in the rational design of colloidal crystals. Nature Communications, 2012, 3, 975.	5.8	134
134	Phase diagram of trivalent and pentavalent patchy particles. Journal of Physics Condensed Matter, 2012, 24, 064113.	0.7	26
135	Chain dynamics in nonentangled polymer melts: A first-principle approach for the role of intramolecular barriers. Soft Matter, 2011, 7, 1364.	1.2	9
136	Cluster theory of Janus particles. Soft Matter, 2011, 7, 2419.	1.2	41
137	From caging to Rouse dynamics in polymer melts with intramolecular barriers: A critical test of the mode coupling theory. Journal of Chemical Physics, 2011, 134, 024523.	1.2	16
138	Re-entrant phase behaviour of network fluids: A patchy particle model with temperature-dependent valence. Journal of Chemical Physics, 2011, 135, 034501.	1.2	72
139	Cluster-Driven Dynamical Arrest in Concentrated Lysozyme Solutions. Journal of Physical Chemistry B, 2011, 115, 7227-7237.	1.2	108
140	Two dimensional assembly of triblock Janus particles into crystal phases in the two bond per patch limit. Soft Matter, 2011, 7, 5799.	1.2	106
141	Reversible gels of patchy particles. Current Opinion in Solid State and Materials Science, 2011, 15, 246-253.	5.6	106
142	Study of the ST2 model of water close to the liquid–liquid critical point. Physical Chemistry Chemical Physics, 2011, 13, 19759.	1.3	117
143	Observation of empty liquids and equilibrium gels in a colloidal clay. Nature Materials, 2011, 10, 56-60.	13.3	307
144	Patchy from the bottom up. Nature Materials, 2011, 10, 171-173.	13.3	114

#	Article	IF	Citations
145	Self and collective correlation functions in a gel of tetrahedral patchy particles. Molecular Physics, 2011, 109, 2889-2896.	0.8	22
146	Crystallization of tetrahedral patchy particles <i>in silico</i> . Journal of Chemical Physics, 2011, 134, 174502.	1,2	116
147	Quantitative investigation of the two-state picture for water in the normal liquid and the supercooled regime. European Physical Journal E, 2011, 34, 48.	0.7	55
148	Dynamical Behavior Near a Liquid–Liquid Phase Transition in Simulations of Supercooled Water. Journal of Physical Chemistry B, 2011, 115, 14176-14183.	1.2	75
149	Silica through the eyes of colloidal modelsâ€"when glass is a gel. Journal of Physics Condensed Matter, 2011, 23, 285101.	0.7	7
150	The vibrational density of states of a disordered gel model. Journal of Chemical Physics, 2011, 135, 104502.	1.2	11
151	Nucleation barriers in tetrahedral liquids spanning glassy and crystallizing regimes. Journal of Chemical Physics, 2011, 135, 124506.	1.2	30
152	Reentrant Phase Diagram of Network Fluids. Physical Review Letters, 2011, 106, 085703.	2.9	104
153	No Evidence of Gas-Liquid Coexistence in Dipolar Hard Spheres. Physical Review Letters, 2011, 107, 237801.	2.9	88
154	Silicon in silico. Nature Physics, 2011, 7, 523-524.	6.5	14
155	Simulation and theory of a model for tetrahedral colloidal particles. Journal of Chemical Physics, 2011, 134, 194502.	1.2	20
156	Primitive models of patchy colloidal particles. A review. Collection of Czechoslovak Chemical Communications, 2010, 75, 349-358.	1.0	27
157	Effects of patch size and number within a simple model of patchy colloids. Journal of Chemical Physics, 2010, 132, 174110.	1.2	107
158	Theoretical Description of a DNA-Linked Nanoparticle Self-Assembly. Physical Review Letters, 2010, 105, 055502.	2.9	38
159	Phase diagram of a tetrahedral patchy particle model for different interaction ranges. Journal of Chemical Physics, 2010, 132, .	1.2	116
160	How do Self-Assembling Polymers and Gels Age Compared to Glasses?. Physical Review Letters, 2010, 104, 195701.	2.9	23
161	Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: A Monte Carlo simulation study in the Debye–Hückel approximation. Journal of Chemical Physics, 2010, 133, 024901.	1.2	25
162	Equilibrium self-assembly of colloids with distinct interaction sites: Thermodynamics, percolation, and cluster distribution functions. Journal of Chemical Physics, 2010, 132, 234502.	1,2	50

#	Article	lF	CITATIONS
163	Nanoflows through disordered media: A joint lattice Boltzmann and molecular dynamics investigation. Europhysics Letters, 2010, 89, 44001.	0.7	14
164	A spherical model with directional interactions: II. Dynamics and landscape properties. Journal of Physics Condensed Matter, 2010, 22, 104110.	0.7	5
165	Association of limited valence patchy particles in two dimensions. Journal of Physics Condensed Matter, 2010, 22, 104108.	0.7	20
166	Disconnected Glass-Glass Transitions and Diffusion Anomalies in a Model with Two Repulsive Length Scales. Physical Review Letters, 2010, 104, 145701.	2.9	26
167	A numerical study of one-patch colloidal particles: from square-well to Janus. Physical Chemistry Chemical Physics, 2010, 12, 11869.	1.3	123
168	Modeling the Crossover between Chemically and Diffusion-Controlled Irreversible Aggregation in a Small-Functionality Gel-Forming System. Journal of Physical Chemistry B, 2010, 114, 3769-3775.	1.2	26
169	Valency Dependence of Polymorphism and Polyamorphism in DNA-Functionalized Nanoparticles. Langmuir, 2010, 26, 3601-3608.	1.6	37
170	Association of limited valence patchy particles in two dimensions. Soft Matter, 2010, 6, 4229.	1.2	32
171	Phase Diagram of Janus Particles. Physical Review Letters, 2009, 103, 237801.	2.9	254
172	Reversible gels of patchy particles: Role of the valence. Journal of Chemical Physics, 2009, 131, 014504.	1.2	146
173	Identifying a causal link between structure and dynamics in supercooled water. Europhysics Letters, 2009, 88, 16003.	0.7	22
174	Vapor-liquid coexistence of fluids with attractive patches: An application of Wertheim's theory of association. Journal of Chemical Physics, 2009, 130, 044902.	1.2	31
175	Phase diagram and structural properties of a simple model for one-patch particles. Journal of Chemical Physics, 2009, 131, 174114.	1.2	42
176	Colloidal particle aggregates induced by particle surface charge heterogeneity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 34-42.	2.3	24
177	Kinetic arrest in polyion-induced inhomogeneously charged colloidal particle aggregation. European Physical Journal E, 2009, 29, 229-237.	0.7	13
178	Evidence of a two-state picture for supercooled water and its connections with glassy dynamics. European Physical Journal E, 2009, 29, 305-310.	0.7	78
179	Role of the Range in the Fluidâ^'Crystal Coexistence for a Patchy Particle Model. Journal of Physical Chemistry B, 2009, 113, 15133-15136.	1.2	47
	Assembly Kinetics in Binary Mixtures of Strongly Attractive Colloids. Journal of Physical Chemistry B,		

#	Article	IF	CITATIONS
181	Multiple Glass Transitions in Star Polymer Mixtures: Insights from Theory and Simulations. Macromolecules, 2009, 42, 423-434.	2.2	46
182	Connecting Irreversible to Reversible Aggregation: Time and Temperature. Journal of Physical Chemistry B, 2009, 113, 1233-1236.	1.2	37
183	A parameter-free description of the kinetics of formation of loop-less branched structures and gels. Soft Matter, 2009, , .	1.2	7
184	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gel. Soft Matter, 2009, 5, 2390.	1.2	143
185	Gel-forming patchy colloids and network glass formers: thermodynamic and dynamic analogies. European Physical Journal B, 2008, 64, 505-509.	0.6	66
186	Gelation of particles with short-range attraction. Nature, 2008, 453, 499-503.	13.7	811
187	Asymmetric caging in soft colloidal mixtures. Nature Materials, 2008, 7, 780-784.	13.3	116
188	DNA Closed Nanostructures: A Structural and Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2008, 112, 15283-15294.	1.2	23
189	Theoretical and numerical study of the phase diagram of patchy colloids: Ordered and disordered patch arrangements. Journal of Chemical Physics, 2008, 128, 144504.	1.2	150
190	A molecular dynamics study of chemical gelation in a patchy particle model. Soft Matter, 2008, 4, 1173.	1.2	42
191	Hierarchies of networked phases induced by multiple liquid–liquid critical points. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13711-13715.	3.3	67
192	The vanishing limit of the square-well fluid: The adhesive hard-sphere model as a reference system. Journal of Chemical Physics, 2008, 128, 134513.	1.2	67
193	Theoretical and numerical estimates of the gas-liquid critical point of a primitive model for silica. Journal of Chemical Physics, 2008, 129, 224904.	1.2	6
194	Simulation of the dynamics of hard ellipsoids. Philosophical Magazine, 2008, 88, 4117-4123.	0.7	3
195	Growth of equilibrium polymers under non-equilibrium conditions. Journal of Physics Condensed Matter, 2008, 20, 155101.	0.7	29
196	Gelation as arrested phase separation in short-ranged attractive colloid–polymer mixtures. Journal of Physics Condensed Matter, 2008, 20, 494242.	0.7	78
197	Numerical Investigation of Glassy Dynamics in Low-Density Systems. Physical Review Letters, 2008, 100, 195701.	2.9	27
198	Event-Driven Simulation of the Dynamics of Hard Ellipsoids. AIP Conference Proceedings, 2008, , .	0.3	0

#	Article	IF	Citations
199	Interaction between charged colloids in a low dielectric constant solvent. Europhysics Letters, 2008, 81, 59901.	0.7	4
200	Viscoelasticity and Stokes-Einstein relation in repulsive and attractive colloidal glasses. Journal of Chemical Physics, 2007, 127, 144906.	1.2	37
201	Vapor-liquid coexistence of patchy models: Relevance to protein phase behavior. Journal of Chemical Physics, 2007, 127, 084902.	1.2	121
202	Dynamics of Uniaxial Hard Ellipsoids. Physical Review Letters, 2007, 98, 265702.	2.9	58
203	Metabasin dynamics and local structure in supercooled water. Physical Review E, 2007, 75, 041501.	0.8	33
204	Effective nonadditive pair potential for lock-and-key interacting particles: The role of the limited valence. Physical Review E, 2007, 76, 011402.	0.8	19
205	A spherical model with directional interactions. I. Static properties. Journal of Chemical Physics, 2007, 127, 174501.	1.2	21
206	Gas–liquid phase coexistence in a tetrahedral patchy particle model. Journal of Physics Condensed Matter, 2007, 19, 322101.	0.7	34
207	Interaction between charged colloids in a low dielectric constant solvent. Europhysics Letters, 2007, 78, 38002.	0.7	18
208	Modeling equilibrium clusters in lysozyme solutions. Europhysics Letters, 2007, 77, 48004.	0.7	112
209	Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation. Journal of Chemical Physics, 2007, 126, 194903.	1.2	199
210	On the Possibility of Extending the Noroâ^'Frenkel Generalized Law of Correspondent States to Nonisotropic Patchy Interactions. Journal of Physical Chemistry B, 2007, 111, 9702-9705.	1.2	89
211	Self-Assembling DNA Dendrimers:Â A Numerical Study. Langmuir, 2007, 23, 5896-5905.	1.6	73
212	Fully Solvable Equilibrium Self-Assembly Process:  Fine-Tuning the Clusters Size and the Connectivity in Patchy Particle Systems. Journal of Physical Chemistry B, 2007, 111, 11765-11769.	1.2	83
213	Glass Transition Line in C ₆₀ :  A Mode-Coupling/Molecular-Dynamics Study. Journal of Physical Chemistry B, 2007, 111, 10759-10764.	1.2	2
214	Aging in a Laponite colloidal suspension: A Brownian dynamics simulation study. Journal of Chemical Physics, 2007, 126, 014905.	1.2	32
215	Rheological transitions in asymmetric colloidal star mixtures. Rheologica Acta, 2007, 46, 611-619.	1.1	18
216	Phase Diagram of Patchy Colloids: Towards Empty Liquids. Physical Review Letters, 2006, 97, 168301.	2.9	482

#	Article	IF	Citations
217	Gel to glass transition in simulation of a valence-limited colloidal system. Journal of Chemical Physics, 2006, 124, 124908.	1.2	85
218	Maximum valency lattice gas models. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P12010-P12010.	0.9	12
219	Dynamics in the Presence of Attractive Patchy Interactions. Journal of Physical Chemistry B, 2006, 110, 8064-8079.	1.2	99
220	Non-Gaussian energy landscape of a simple model for strong network-forming liquids: Accurate evaluation of the configurational entropy. Journal of Chemical Physics, 2006, 124, 204509.	1.2	24
221	Mode-coupling theory predictions for a limited valency attractive square well model. Journal of Physics Condensed Matter, 2006, 18, S2373-S2382.	0.7	9
222	Slow dynamics in a primitive tetrahedral network model. Journal of Chemical Physics, 2006, 125, 204710.	1.2	37
223	Molecular correlation functions for uniaxial ellipsoids in the isotropic state. Journal of Chemical Physics, 2006, 124, 104509.	1.2	9
224	Extended law of corresponding states in short-range square wells: A potential energy landscape study. Physical Review E, 2006, 74, 050401.	0.8	28
225	Relation between local diffusivity and local inherent structures in the Kob-Andersen Lennard-Jones model. Physical Review E, 2006, 74, 050501.	0.8	19
226	Model for assembly and gelation of four-armed DNA dendrimers. Journal of Physics Condensed Matter, 2006, 18, L347-L353.	0.7	84
227	Diffusivity and configurational entropy maxima in short range attractive colloids. Journal of Physics Condensed Matter, 2005, 17, L113-L119.	0.7	18
228	Viscoelastic properties of attractive and repulsive colloidal glasses. Journal of Physics Condensed Matter, 2005, 17, L271-L277.	0.7	24
229	Energy Landscape of a Simple Model for Strong Liquids. Physical Review Letters, 2005, 95, 157802.	2.9	45
230	Routes to colloidal gel formation. Computer Physics Communications, 2005, 169, 166-171.	3.0	52
231	Density minimum and liquid–liquid phase transition. Journal of Physics Condensed Matter, 2005, 17, L431-L437.	0.7	181
232	Liquid–liquid transitions in one-component systems. Journal of Physics Condensed Matter, 2005, 17, V7-V8.	0.7	12
233	Dynamic arrest in a liquid of symmetric dumbbells: Reorientational hopping for small molecular elongations. Journal of Chemical Physics, 2005, 123, 204505.	1.2	34
234	Arrested phase separation in a short-ranged attractive colloidal system: A numerical study. Journal of Chemical Physics, 2005, 122, 224903.	1.2	112

#	Article	IF	Citations
235	Structural order in glassy water. Physical Review E, 2005, 71, 061505.	0.8	48
236	Model for Reversible Colloidal Gelation. Physical Review Letters, 2005, 94, 218301.	2.9	143
237	Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water. Physical Review Letters, 2005, 94, 107803.	2.9	67
238	Static and dynamic anomalies in a repulsive spherical ramp liquid: Theory and simulation. Physical Review E, 2005, 72, 021501.	0.8	102
239	Structural relaxation in the glass transition region of water. Physical Review E, 2005, 72, 011203.	0.8	25
240	Reply to "Comment on Test of nonequilibrium thermodynamics in glassy systems: The soft-sphere case― Physical Review E, 2005, 71, .	0.8	2
241	Phase diagram of amorphous solid water: Low-density, high-density, and very-high-density amorphous ices. Physical Review E, 2005, 72, 031510.	0.8	53
242	Evidence for the Weak Steric Hindrance Scenario in the Supercooled-State Reorientational Dynamics. Physical Review Letters, 2005, 94, 215701.	2.9	54
243	Tailoring the Flow of Soft Glasses by Soft Additives. Physical Review Letters, 2005, 95, 268301.	2.9	68
244	Simulated silica. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 525-535.	1.6	15
245	Glassy colloidal systems. Advances in Physics, 2005, 54, 471-524.	35.9	230
246	Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16558-16562.	3.3	693
247	Scaling of Dynamics with the Range of Interaction in Short-Range Attractive Colloids. Physical Review Letters, 2005, 94, 078301.	2.9	134
248	One-Dimensional Cluster Growth and Branching Gels in Colloidal Systems with Short-Range Depletion Attraction and Screened Electrostatic Repulsion. Journal of Physical Chemistry B, 2005, 109, 21942-21953.	1.2	179
249	Potential energy landscape description of supercooled liquids and glasses. Journal of Statistical Mechanics: Theory and Experiment, 2005, 2005, P05015.	0.9	176
250	Scaling in soft spheres: fragility invariance on the repulsive potential softness. Journal of Physics Condensed Matter, 2004, 16, L489-L494.	0.7	44
251	Dynamical arrest in dense short-ranged attractive colloids. Journal of Physics Condensed Matter, 2004, 16, S3791-S3806.	0.7	15
252	Numerical study of theglass–glasstransition in short-ranged attractive colloids. Journal of Physics Condensed Matter, 2004, 16, S4849-S4860.	0.7	22

#	Article	IF	Citations
253	Free energy and configurational entropy of liquid silica: Fragile-to-strong crossover and polyamorphism. Physical Review E, 2004, 69, 041503.	0.8	110
254	Cooling rate, heating rate, and aging effects in glassy water. Physical Review E, 2004, 69, 050201.	0.8	23
255	Liquid stability in a model for ortho-terphenyl. Journal of Chemical Physics, 2004, 120, 6128-6134.	1.2	11
256	Phase diagram of silica from computer simulation. Physical Review E, 2004, 70, 061507.	0.8	73
257	Structural relaxation in supercooled orthoterphenyl. Physical Review E, 2004, 69, 051202.	0.8	31
258	Distributions of inherent structure energies during aging. Physical Review E, 2004, 70, 041202.	0.8	23
259	Aging in short-ranged attractive colloids: A numerical study. Journal of Chemical Physics, 2004, 120, 8824-8830.	1.2	32
260	α-relaxation processes in binary hard-sphere mixtures. Physical Review E, 2004, 69, 011505.	0.8	92
261	Is There a Reentrant Glass in Binary Mixtures?. Physical Review Letters, 2004, 92, 225703.	2.9	55
262	Saddles and softness in simple model liquids. Journal of Chemical Physics, 2004, 121, 7533-7534.	1.2	12
263	Effect of bond lifetime on the dynamics of a short-range attractive colloidal system. Physical Review E, 2004, 70, 041401.	0.8	47
264	Landscapes and fragilities. Journal of Chemical Physics, 2004, 120, 10666-10680.	1.2	85
265	Fragile-to-strong crossover and polyamorphism in liquid silica: changes in liquid structure. Philosophical Magazine, 2004, 84, 1437-1445.	0.7	14
266	On Static and Dynamic Heterogeneities in Waterâ€. Journal of Physical Chemistry B, 2004, 108, 19663-19669.	1.2	19
267	Equilibrium Cluster Phases and Low-Density Arrested Disordered States: The Role of Short-Range Attraction and Long-Range Repulsion. Physical Review Letters, 2004, 93, 055701.	2.9	434
268	Ground-State Clusters for Short-Range Attractive and Long-Range Repulsive Potentials. Langmuir, 2004, 20, 10756-10763.	1.6	187
269	Crossover (or Kovacs) Effect in an Aging Molecular Liquid. Physical Review Letters, 2004, 92, 045504.	2.9	78
270	Glass-Transition Temperature of Water: A Simulation Study. Physical Review Letters, 2004, 93, 047801.	2.9	123

#	Article	IF	Citations
271	Short-ranged attractive colloids: What is the gel state?. , 2004, , 181-194.		13
272	Application of Statistical Physics to Understand Static and Dynamic Anomalies in Liquid Water. Journal of Statistical Physics, 2003, 110, 1039-1054.	0.5	23
273	Recent results on the connection between thermodynamics and dynamics in supercooled water. Biophysical Chemistry, 2003, 105, 573-583.	1.5	22
274	Physics of the Liquid-Liquid Critical Point. Physical Review Letters, 2003, 91, 155701.	2.9	72
275	Activated Bond-Breaking Processes Preempt the Observation of a Sharp Glass-Glass Transition in Dense Short-Ranged Attractive Colloids. Physical Review Letters, 2003, 91, 108301.	2.9	40
276	Mixing Effects for the Structural Relaxation in Binary Hard-Sphere Liquids. Physical Review Letters, 2003, 91, 085701.	2.9	86
277	Evidence of a Higher-Order Singularity in Dense Short-Ranged Attractive Colloids. Physical Review Letters, 2003, 91, 268301.	2.9	107
278	Energy landscapes, ideal glasses, and their equation of state. Journal of Chemical Physics, 2003, 118, 8821-8830.	1.2	53
279	Structural Arrest in Dense Star-Polymer Solutions. Physical Review Letters, 2003, 90, 238301.	2.9	107
280	General features of the energy landscape in Lennard-Jones-like model liquids. Journal of Chemical Physics, 2003, 119, 2120-2126.	1.2	49
281	Equation of state of supercooled water from the sedimentation profile. Physical Review E, 2003, 67, 010202.	0.8	17
282	Potential-Energy Landscape Study of the Amorphous-Amorphous Transformation inH2O. Physical Review Letters, 2003, 91, 115504.	2.9	47
283	Test of nonequilibrium thermodynamics in glassy systems: The soft-sphere case. Physical Review E, 2003, 68, 032103.	0.8	23
284	Fluctuation-Dissipation Relations and Energy Landscape in an Out-of-Equilibrium Strong-Glass-Forming Liquid. Physical Review Letters, 2003, 90, 115503.	2.9	8
285	Static and dynamical correlation functions behaviour in attractive colloidal systems from theory and simulation. Journal of Physics Condensed Matter, 2003, 15, S367-S374.	0.7	25
286	Equilibrium and out-of-equilibrium thermodynamics in supercooled liquids and glasses. Journal of Physics Condensed Matter, 2003, 15, S351-S357.	0.7	8
287	Numerical evaluation of the statistical properties of a potential energy landscape. Journal of Physics Condensed Matter, 2003, 15, S1085-S1094.	0.7	21
288	Structural relaxation in a supercooled molecular liquid. Europhysics Letters, 2003, 64, 197-203.	0.7	10

#	Article	IF	Citations
289	Reply to "Comment on â€~Quasisaddles as relevant points of the potential energy surface in the dynamics of supercooled liquids' ―[J. Chem. Phys. 118, 5263 (2002)]. Journal of Chemical Physics, 2003, 118, 5265-5266.	1.2	7
290	Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions: Application to protein crystallization. Physical Review E, 2002, 65, 031407.	0.8	168
291	Evidence for an unusual dynamical-arrest scenario in short-ranged colloidal systems. Physical Review E, 2002, 65, 050802.	0.8	99
292	Configuration Space Connectivity across the Fragile-to-Strong Transition in Silica. Physical Review Letters, 2002, 88, 035501.	2.9	55
293	Equilibration times in numerical simulation of structural glasses: Comparing parallel tempering and conventional molecular dynamics. Physical Review E, 2002, 65, 051202.	0.8	15
294	Quasisaddles as relevant points of the potential energy surface in the dynamics of supercooled liquids. Journal of Chemical Physics, 2002, 116, 10297-10306.	1.2	50
295	Transitions between inherent structures in water. Physical Review E, 2002, 65, 041502.	0.8	57
296	Crossover between equilibrium and shear-controlled dynamics in sheared liquids. Physical Review E, 2002, 66, 061505.	0.8	12
297	Confirmation of anomalous dynamical arrest in attractive colloids: A molecular dynamics study. Physical Review E, 2002, 66, 041402.	0.8	138
298	Dynamics of supercooled liquids: density fluctuations and mode coupling theory. Journal of Physics Condensed Matter, 2002, 14, 2413-2437.	0.7	20
299	Quenches and crunches: Does the system explore in ageing the same part of the configuration space explored in equilibrium?. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 695-705.	0.6	6
300	Off-equilibrium dynamics in the energy landscape of a simple model glass. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 163-169.	0.6	2
301	A stroll in the energy landscape. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 151-161.	0.6	8
302	Potential Energy Landscape Equation of State. Physical Review Letters, 2002, 88, 225701.	2.9	70
303	Ideal glass in attractive systems with different potentials. Journal of Physics Condensed Matter, 2002, 14, 2223-2235.	0.7	8
304	Quantitative tests of mode-coupling theory for fragile and strong glass formers. Journal of Non-Crystalline Solids, 2002, 307-310, 181-187.	1.5	44
305	Interplay between Time-Temperature Transformation and the Liquid-Liquid Phase Transition in Water. Physical Review Letters, 2002, 88, 195701.	2.9	225
306	Thermodynamics and aging in supercooled liquids: the energy landscape approach. Physica A: Statistical Mechanics and Its Applications, 2002, 306, 343-350.	1.2	6

#	Article	IF	CITATIONS
307	One liquid, two glasses. Nature Materials, 2002, 1, 145-146.	13.3	196
308	Slowed relaxational dynamics beyond the fluctuation–dissipation theorem. Physica A: Statistical Mechanics and Its Applications, 2002, 307, 15-26.	1.2	10
309	Statistical physics and liquid water: "What matters― Physica A: Statistical Mechanics and Its Applications, 2002, 306, 230-242.	1.2	23
310	Competition between crystallization and glassification for particles with short-ranged attraction. Possible applications to protein crystallization. Physica A: Statistical Mechanics and Its Applications, 2002, 314, 539-547.	1.2	14
311	Statistical physics and liquid water at negative pressures. Physica A: Statistical Mechanics and Its Applications, 2002, 315, 281-289.	1.2	32
312	Dynamics and configurational entropy in the Lewis-Wahnstr $\tilde{A}\P$ m model for supercooled orthoterphenyl. Physical Review E, 2002, 65, 041205.	0.8	98
313	Aging and energy landscapes: application to liquids and glasses. European Physical Journal B, 2002, 30, 351-355.	0.6	25
314	Water and its energy landscape. European Physical Journal E, 2002, 9, 233-237.	0.7	8
315	Interrelationship of Polyamorphism and the Fragile-to-Strong Transition in Liquid Silica. , 2002, , 168-178.		0
316	Unsolved Problems of Liquid Water. , 2002, , 308-324.		0
317	Water at Positive and Negative Pressures. , 2002, , 59-67.		1
318	Free Energy for Liquids Out of Equilibrium. , 2002, , 556-571.		0
319	Debye-Waller Factor of Liquid Silica: Theory and Simulation. Physical Review Letters, 2001, 86, 648-651.	2.9	112
320	Mode-coupling theory of colloids with short-range attractions. Journal of Physics Condensed Matter, 2001, 13, 9113-9126.	0.7	20
321	Relaxation phenomena in AOT-water-decane critical and dense microemulsions. Physica A: Statistical Mechanics and Its Applications, 2001, 300, 53-81.	1.2	12
322	Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature, 2001, 412, 514-517.	13.7	356
323	Gaussian density fluctuations and mode coupling theory for supercooled liquids. Europhysics Letters, 2001, 55, 157-163.	0.7	52
324	Aging in simple liquids: a numerical study. Journal of Physics Condensed Matter, 2001, 13, 9127-9139.	0.7	9

#	Article	IF	Citations
325	Extension of the Fluctuation-Dissipation Theorem to the Physical Aging of a Model Glass-Forming Liquid. Physical Review Letters, 2001, 86, 107-110.	2.9	129
326	Mechanical properties of a model of attractive colloidal solutions. Physical Review E, 2001, 63, 031501.	0.8	106
327	Thermodynamic and structural aspects of the potential energy surface of simulated water. Physical Review E, 2001, 63, 041201.	0.8	78
328	Dynamics of supercooled water in configuration space. Physical Review E, 2001, 64, 036102.	0.8	34
329	Dynamics in a supercooled molecular liquid:â€∫Theory and simulations. Physical Review E, 2001, 63, 061210.	0.8	34
330	Are particle gels "glasses�. , 2001, , 221-225.		2
331	Slow dynamics in supercooled water. Chemical Physics, 2000, 258, 307-314.	0.9	25
332	Configurational entropy and diffusivity of supercooled water. Nature, 2000, 406, 166-169.	13.7	323
333	Kinetic Arrest Originating in Competition Between Attractive Interaction and Packing Force. Journal of Statistical Physics, 2000, 100, 363-376.	0.5	31
334	Thermodynamics of supercooled liquids in the inherent-structure formalism: a case study. Journal of Physics Condensed Matter, 2000, 12, 6525-6534.	0.7	67
335	Aging in a simple glass former. Journal of Physics Condensed Matter, 2000, 12, 6385-6394.	0.7	27
336	Higher-order glass-transition singularities in colloidal systems with attractive interactions. Physical Review E, 2000, 63, 011401.	0.8	367
337	Saddles in the Energy Landscape Probed by Supercooled Liquids. Physical Review Letters, 2000, 85, 5356-5359.	2.9	211
338	Test of molecular mode coupling theory for general rigid molecules. Physical Review E, 2000, 62, 1856-1861.	0.8	47
339	Role of Unstable Directions in the Equilibrium and Aging Dynamics of Supercooled Liquids. Physical Review Letters, 2000, 85, 1464-1467.	2.9	62
340	Free energy surface of supercooled water. Physical Review E, 2000, 62, 8016-8020.	0.8	58
341	Computer simulations of liquid silica: â€,Equation of state and liquid–liquid phase transition. Physical Review E, 2000, 63, 011202.	0.8	219
342	Instantaneous Normal Mode Analysis of Supercooled Water. Physical Review Letters, 2000, 84, 4605-4608.	2.9	80

#	Article	IF	CITATIONS
343	Molecular correlations in a supercooled liquid. Physical Review E, 2000, 62, 2388-2404.	0.8	24
344	Aging as dynamics in configuration space. Europhysics Letters, 2000, 49, 590-596.	0.7	128
345	On the mode-coupling-theory -correlator. Journal of Physics Condensed Matter, 1999, 11, A261-A269.	0.7	10
346	Model for dynamics in supercooled water. Physical Review E, 1999, 60, 6776-6787.	0.8	15
347	Molecular mode-coupling theory for supercooled liquids: Application to water. Physical Review E, 1999, 60, 5768-5777.	0.8	87
348	Inherent Structure Entropy of Supercooled Liquids. Physical Review Letters, 1999, 83, 3214-3217.	2.9	408
349	Slow Dynamics of Water under Pressure. Physical Review Letters, 1999, 82, 3629-3632.	2.9	108
350	Ideal glass-glass transitions and logarithmic decay of correlations in a simple system. Physical Review E, 1999, 59, R1347-R1350.	0.8	225
351	Solution of lattice gas models in the generalized ensemble on the Bethe lattice. Physical Review E, 1999, 59, 6348-6355.	0.8	15
352	Model for single-particle dynamics in supercooled water. Physical Review E, 1999, 59, 6708-6714.	0.8	115
353	Dynamics of simulated water under pressure. Physical Review E, 1999, 60, 6757-6768.	0.8	213
354	A phenomenological approach to relaxation in disordered systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 140, 269-278.	2.3	3
355	Relaxation phenomena in critical microemulsion systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 140, 289-293.	2.3	7
356	Rotational dynamics in a simulated supercooled network-forming liquid. Journal of Non-Crystalline Solids, 1998, 235-237, 325-330.	1.5	24
357	Coniglio-Klein mapping in the metastable region. Physical Review E, 1998, 57, 3797-3803.	0.8	8
358	Three-flavor instantaneous normal mode formalism: Diffusion, harmonicity, and the potential energy landscape of liquid CS2. Journal of Chemical Physics, 1998, 108, 252-260.	1.2	31
359	Test of the semischematic model for a liquid of linear molecules. Physical Review E, 1998, 58, 7272-7278.	0.8	12
360	Semischematic model for the center-of-mass dynamics in supercooled molecular liquids. Physical Review E, 1998, 57, 1485-1488.	0.8	20

#	Article	IF	Citations
361	Mode coupling for non-spherical molecules: A semischematic model applied to simulated water. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 499-505.	0.6	4
362	Cooperative Molecular Motions in Water: The Second Critical Point Hypothesis Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 1090-1093.	0.1	5
363	Equation of state of supercooled water simulated using the extended simple point charge intermolecular potential. Journal of Chemical Physics, 1997, 107, 7443-7450.	1.2	152
364	Harmonic Dynamics in Supercooled Liquids: The Case of Water. Physical Review Letters, 1997, 78, 2385-2388.	2.9	97
365	Line of compressibility maxima in the phase diagram of supercooled water. Physical Review E, 1997, 55, 727-737.	0.8	203
366	An ideal glass transition in supercooled water?. , 1997, , 90-99.		0
367	Liquid-Liquid Phase Transition: Evidence from Simulations. Physical Review Letters, 1997, 78, 2409-2412.	2.9	270
368	Molecular-dynamics study of incoherent quasielastic neutron-scattering spectra of supercooled water. Physical Review E, 1997, 56, 4231-4243.	0.8	133
369	Supercooled water and the kinetic glass transition. $\hat{a} \in f$ II. Collective dynamics. Physical Review E, 1997, 56, 5397-5404.	0.8	131
370	The Liquidâ€"Liquid Critical-Point Hypothesis. ACS Symposium Series, 1997, , 246-263.	0.5	1
371	Relaxation phenomena in disordered systems. Physica A: Statistical Mechanics and Its Applications, 1997, 236, 140-148.	1.2	10
372	Cooperative molecular motions in water: The liquid-liquid critical point hypothesis. Physica A: Statistical Mechanics and Its Applications, 1997, 236, 19-37.	1,2	39
373	Dielectric properties of highly concentrated water-in-oil microemulsions. Progress in Colloid and Polymer Science, 1997, 105, 298-301.	0.5	2
374	Cooperative Molecular Motions in Water. Progress of Theoretical Physics Supplement, 1997, 126, 201-206.	0.2	1
375	Instantaneous Normal Mode in Supercooled Water. Progress of Theoretical Physics Supplement, 1997, 126, 267-272.	0.2	3
376	Scale Invariance in Fluids with Anticorrelated Entropy-Specific Volume Fluctuations., 1997,, 119-132.		0
377	Supercooled water and the kinetic glass transition. Physical Review E, 1996, 54, 6331-6343.	0.8	317
378	Singularity-free interpretation of the thermodynamics of supercooled water. Physical Review E, 1996, 53, 6144-6154.	0.8	499

#	Article	IF	CITATIONS
379	Cluster formation in water-in-oil microemulsions at percolation: evaluation of the electrical properties. Journal of Physics Condensed Matter, 1996, 8, A19-A37.	0.7	16
380	Slow Dynamics of Water Molecules in Supercooled States. Physical Review Letters, 1996, 76, 2730-2733.	2.9	281
381	Slow Dynamics in Supercooled Water. Materials Research Society Symposia Proceedings, 1996, 455, 235.	0.1	0
382	Effects of salinity on the electrical conductivity of a water-in-oil microemulsion., 1996,, 170-176.		6
383	Cluster aggregation under diffusion. Physica A: Statistical Mechanics and Its Applications, 1996, 231, 191-196.	1.2	2
384	The static electrical conductivity of water-in-oil microemulsions below percolation threshold. Physica A: Statistical Mechanics and Its Applications, 1996, 231, 161-167.	1.2	13
385	Complex Electrical Conductivity of Water-in-Oil Microemulsions. Physical Review Letters, 1995, 75, 569-572.	2.9	28
386	Crystal stability limits at positive and negative pressures, and crystal-to-glass transitions. Physical Review E, 1995, 52, 6484-6491.	0.8	57
387	Amorphous polymorphism. Computational Materials Science, 1995, 4, 373-382.	1.4	72
388	Irreversible diffusion-limited cluster aggregation: The behavior of the scattered intensity. Physical Review E, 1995, 52, 4068-4079.	0.8	25
389	Structure Factor Scaling during Irreversible Cluster-Cluster Aggregation. Physical Review Letters, 1995, 74, 282-285.	2.9	45
390	Static and dynamic properties of water-in-oil microemulsions near the critical and percolation points. Journal of Physics Condensed Matter, 1994, 6, 10855-10883.	0.7	118
391	Low frequency depolarized Raman spectra in water: Results from normal mode analysis. Journal of Chemical Physics, 1994, 100, 5361-5366.	1.2	37
392	Pinning in phase-separating systems. Physical Review E, 1994, 49, 247-258.	0.8	61
393	Crossover region in the aggregation of colloids. Physical Review E, 1994, 50, 1649-1652.	0.8	22
394	Cluster-cluster correlation during irreversible diffusion-limited aggregation. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1159-1169.	0.4	2
395	Cluster description of water-in-oil microemulsions near the critical and percolation points. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1419-1431.	0.4	5
396	Is there a second critical point in liquid water?. Physica A: Statistical Mechanics and Its Applications, 1994, 205, 122-139.	1.2	96

#	Article	IF	Citations
397	Sound propagation in liquid water: The puzzle continues. Journal of Chemical Physics, 1994, 100, 3881-3893.	1.2	95
398	Effect of Hydrogen Bonds on the Thermodynamic Behavior of Liquid Water. Physical Review Letters, 1994, 73, 1632-1635.	2.9	409
399	Brillouin scattering from polymers and gels. Macromolecular Symposia, 1994, 79, 179-191.	0.4	0
400	Fractals in biology and medicine. , 1994, , 147-178.		9
401	Low Frequency Raman Spectra in Water by Normal Mode Analysis. , 1994, , 197-203.		0
402	Sound Propagation in Hydrogen Bonded Molecular Liquids: The Case of Liquid Water., 1994,, 85-95.		0
403	Novel Features in the Equation of State of Metastable Water. , 1994, , 53-60.		1
404	Density anomalies and reentrant spinodal behavior. Chemical Physics Letters, 1993, 207, 275-280.	1.2	10
405	Self-assembly of bioelastomeric structures from solutions: Mean-field critical behavior and Flory-Huggins free energy of interactions. Biopolymers, 1993, 33, 743-752.	1.2	37
406	Liquid and solid phases of water: an extensive molecular dynamics simulation with an ab initio polarizable potential. Journal of Molecular Structure, 1993, 296, 205-213.	1.8	12
407	Physical gels and microphase separation in multiblock copolymers. Physica A: Statistical Mechanics and Its Applications, 1993, 201, 482-495.	1.2	17
408	Structure and dynamics in hexagonal ice: A molecular dynamics simulation with anab initiopolarizable and flexible potential. Journal of Chemical Physics, 1993, 98, 5694-5700.	1.2	36
409	Phase diagram for amorphous solid water. Physical Review E, 1993, 48, 4605-4610.	0.8	181
410	Spinodal of liquid water. Physical Review E, 1993, 48, 3799-3817.	0.8	199
411	Limits of stability of the liquid phase in a lattice model with waterâ€like properties. Journal of Chemical Physics, 1993, 98, 9863-9872.	1.2	105
412	Raman and infrared spectra of hexagonal ice between 0 and 400 cm-1. Molecular Physics, 1993, 79, 547-558.	0.8	9
413	Long-range fractal correlations in DNA. Physical Review Letters, 1993, 71, 1776-1776.	2.9	53
414	Kinetics of phase separation in the presence of two disparate energy scales. Physical Review Letters, 1993, 70, 3275-3278.	2.9	23

#	Article	IF	Citations
415	Light-scattering studies in cross-linked gels: Evidence of a microphase separation. Physical Review E, 1993, 48, 4501-4509.	0.8	7
416	Interference of phase separation and gelation: A zeroth-order kinetic model. Physical Review E, 1993, 47, 4615-4618.	0.8	72
417	Network defects and molecular mobility in liquid water. Journal of Chemical Physics, 1992, 96, 3857-3865.	1.2	255
418	Long-range correlations in nucleotide sequences. Nature, 1992, 356, 168-170.	13.7	1,297
419	Phase behaviour of metastable water. Nature, 1992, 360, 324-328.	13.7	1,652
420	\hat{l}_{r} -point temperature and exponents for the bond fluctuation model. Physica A: Statistical Mechanics and Its Applications, 1992, 182, 346-352.	1.2	1
421	Fractal landscapes in biological systems: Long-range correlations in DNA and interbeat heart intervals. Physica A: Statistical Mechanics and Its Applications, 1992, 191, 1-12.	1.2	66
422	Fractal landscape analysis of DNA walks. Physica A: Statistical Mechanics and Its Applications, 1992, 191, 25-29.	1.2	48
423	Brillouin Scattering from Gels. Materials Research Society Symposia Proceedings, 1991, 248, 333.	0.1	0
424	Effect of defects on molecular mobility in liquid water. Nature, 1991, 354, 218-221.	13.7	339
425	Learning science through guided discovery: liquid water and molecular networks. Physica A: Statistical Mechanics and Its Applications, 1991, 177, 281-293.	1.2	2
426	Collective excitations in liquid water at low frequency and large wave vector. Journal of Chemical Physics, 1991, 95, 7775-7776.	1.2	43
427	Self-assembly of a bioelastomeric structure: Solution dynamics and the spinodal and coacervation lines. Biopolymers, 1990, 29, 1401-1407.	1.2	37
428	An algorithm to find all paths between two nodes in a graph. Journal of Computational Physics, 1990, 87, 231-236.	1.9	25
429	Dynamics of bonded networks with two energy scales. Physical Review Letters, 1990, 65, 2885-2888.	2.9	1
430	Isochoric differential scattering functions in liquid water: The fifth neighbor as a network defect. Physical Review Letters, 1990, 65, 3452-3455.	2.9	124
431	Lifetime of the bond network and gel-like anomalies in supercooled water. Physical Review Letters, 1990, 64, 1686-1689.	2.9	141
432	Dynamics of the Hydrogen Bond Network in Simulated Liquid Water. , 1990, , 214-224.		1

#	Article	IF	CITATIONS
433	Hydrogen bond cooperativity in simulated water: Time dependence analysis of pair interactions. Journal of Chemical Physics, 1989, 90, 2786-2792.	1.2	169
434	Spontaneous concentration fluctuations initiate bioelastogenesis. Chemical Physics Letters, 1988, 153, 557-559.	1.2	26
435	Nucleation and accretion of bioelastomeric fibers at biological temperatures and low concentrations. Biochemical and Biophysical Research Communications, 1988, 157, 1061-1066.	1.0	25
436	Solute-induced Water Structure: Computer Simulation on a Model System. Molecular Simulation, 1988, 1, 225-238.	0.9	15
437	Order parameters of gels and gelation kinetics of aqueous agarose systems: Relation to the spinodal decomposition of the sol. Biopolymers, 1987, 26, 743-761.	1.2	60
438	Quenches and crunches: Does the system explore in ageing the same part of the configuration space explored in equilibrium?. , 0, .		6