Arnold R Kriegstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355248/publications.pdf Version: 2024-02-01

88	21,976	³¹⁹⁷⁶ 53	60623 81
papers	citations	h-index	g-index
112	112	112	27303
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Challenges of Organoid Research. Annual Review of Neuroscience, 2022, 45, 23-39.	10.7	59
2	Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science, 2022, 375, eabk2346.	12.6	13
3	Diversifying stem cell debates: Including Muslim contexts and perspectives. Stem Cell Reports, 2022, , .	4.8	2
4	An ACVR1 activating mutation causes neuropathic pain and sensory neuron hyperexcitability in humans. Pain, 2022, Publish Ahead of Print, .	4.2	3
5	Tropism of SARS-CoV-2 for human cortical astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	77
6	Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nature Neuroscience, 2021, 24, 584-594.	14.8	244
7	Human intermediate progenitor diversity during cortical development. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
8	Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nature Neuroscience, 2021, 24, 1235-1242.	14.8	28
9	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	27.8	114
10	An atlas of cortical arealization identifies dynamic molecular signatures. Nature, 2021, 598, 200-204.	27.8	132
11	Identification of Lipid Heterogeneity and Diversity in the Developing Human Brain. Jacs Au, 2021, 1, 2261-2270.	7.9	23
12	Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell, 2020, 183, 126-142.e17.	28.9	269
13	Cell-type-specific 3D epigenomes in the developing human cortex. Nature, 2020, 587, 644-649.	27.8	110
14	Origins and Proliferative States of Human Oligodendrocyte Precursor Cells. Cell, 2020, 182, 594-608.e11.	28.9	110
15	Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature, 2020, 588, 459-465.	27.8	98
16	Mitochondria Control Cortical Cell Fate after Mitosis. Developmental Cell, 2020, 55, 120-122.	7.0	4
17	Are Organoids Ready for Prime Time?. Cell Stem Cell, 2020, 27, 361-365.	11.1	24
18	Identification of amygdala-expressed genes associated with autism spectrum disorder. Molecular Autism, 2020, 11, 39.	4.9	22

#	Article	IF	CITATIONS
19	Human neurogenesis. , 2020, , 751-767.		Ο
20	Neural stem cells among glia. , 2020, , 775-806.		2
21	A Chromatin Accessibility Atlas of the Developing Human Telencephalon. Cell, 2020, 182, 754-769.e18.	28.9	69
22	Cell stress in cortical organoids impairs molecular subtype specification. Nature, 2020, 578, 142-148.	27.8	387
23	SMART-Q:Â An Integrative Pipeline Quantifying Cell Type-Specific RNA Transcription. PLoS ONE, 2020, 15, e0228760.	2.5	4
24	Cortical Neural Stem Cell Lineage Progression Is Regulated by Extrinsic Signaling Molecule Sonic Hedgehog. Cell Reports, 2020, 30, 4490-4504.e4.	6.4	45
25	Medulloblastoma Arises from the Persistence of a Rare and Transient Sox2+ Granule Neuron Precursor. Cell Reports, 2020, 31, 107511.	6.4	35
26	mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. ELife, 2020, 9, .	6.0	74
27	SMART-Q: An Integrative Pipeline Quantifying Cell Type-Specific RNA Transcription. , 2020, 15, e0228760.		0
28	SMART-Q: An Integrative Pipeline Quantifying Cell Type-Specific RNA Transcription. , 2020, 15, e0228760.		0
29	SMART-Q: An Integrative Pipeline Quantifying Cell Type-Specific RNA Transcription. , 2020, 15, e0228760.		0
30	SMART-Q: An Integrative Pipeline Quantifying Cell Type-Specific RNA Transcription. , 2020, 15, e0228760.		0
31	New insights into the development of the human cerebral cortex. Journal of Anatomy, 2019, 235, 432-451.	1.5	224
32	Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature, 2019, 573, 75-82.	27.8	385
33	Neuroglial stem cell-derived inflammatory pseudotumor (n-SCIPT): clinicopathologic characterization of a novel lesion of the lumbosacral spinal cord and nerve roots following intrathecal allogeneic stem cell intervention. Acta Neuropathologica, 2019, 138, 1103-1106.	7.7	1
34	The Phenotypes of Proliferating Glioblastoma Cells Reside on a Single Axis of Variation. Cancer Discovery, 2019, 9, 1708-1719.	9.4	205
35	Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation. Cell Stem Cell, 2019, 25, 531-541.e6.	11.1	60
36	Shared and derived features of cellular diversity in the human cerebral cortex. Current Opinion in Neurobiology, 2019, 56, 117-124.	4.2	61

#	Article	IF	CITATIONS
37	Neuroserpin expression during human brain development and in adult brain revealed by immunohistochemistry and single cell <scp>RNA</scp> sequencing. Journal of Anatomy, 2019, 235, 543-554.	1.5	28
38	Immature excitatory neurons develop during adolescence in the human amygdala. Nature Communications, 2019, 10, 2748.	12.8	95
39	Single-cell genomics identifies cell type–specific molecular changes in autism. Science, 2019, 364, 685-689.	12.6	600
40	Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell, 2019, 176, 743-756.e17.	28.9	423
41	Multimodal Single-Cell Analysis Reveals Physiological Maturation in the Developing Human Neocortex. Neuron, 2019, 102, 143-158.e7.	8.1	61
42	Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 2018, 555, 377-381.	27.8	1,074
43	An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nature Genetics, 2018, 50, 727-736.	21.4	235
44	Secretagogin is Expressed by Developing Neocortical GABAergic Neurons in Humans but not Mice and Increases Neurite Arbor Size and Complexity. Cerebral Cortex, 2018, 28, 1946-1958.	2.9	34
45	Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nature Neuroscience, 2018, 21, 1784-1792.	14.8	121
46	Does Adult Neurogenesis Persist in the Human Hippocampus?. Cell Stem Cell, 2018, 23, 780-781.	11.1	95
47	Identification of cell types in a mouse brain single-cell atlas using low sampling coverage. BMC Biology, 2018, 16, 113.	3.8	15
48	Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis. Cell, 2018, 173, 1356-1369.e22.	28.9	366
49	Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell, 2017, 20, 435-449.e4.	11.1	463
50	Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nature Communications, 2017, 8, 14167.	12.8	69
51	oRGs and mitotic somal translocation $\hat{a} \in$ " a role in development and disease. Current Opinion in Neurobiology, 2017, 42, 61-67.	4.2	46
52	The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron, 2017, 96, 542-557.	8.1	235
53	The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 2017, 18, 573-584.	10.2	528
54	Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science, 2017, 358, 1318-1323.	12.6	717

ARNOLD R KRIEGSTEIN

#	Article	IF	CITATIONS
55	Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biology, 2017, 18, 234.	8.8	448
56	The Human Cell Atlas. ELife, 2017, 6, .	6.0	1,547
57	Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the United States of America, 2016, 113, 14408-14413.	7.1	432
58	Singleâ€cell sequencing maps gene expression to mutational phylogenies in <scp>PDGF</scp> ―and <scp>EGF</scp> â€driven gliomas. Molecular Systems Biology, 2016, 12, 889.	7.2	91
59	Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells. Cell Stem Cell, 2016, 18, 591-596.	11.1	483
60	Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biology, 2016, 17, 67.	8.8	295
61	Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury. Cell Stem Cell, 2016, 19, 544-557.	11.1	102
62	Primate Neurons Flex Their Musclin. Neuron, 2016, 92, 681-683.	8.1	2
63	Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development. Neuron, 2016, 91, 1219-1227.	8.1	264
64	A Primate IncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA. Neuron, 2016, 90, 1174-1188.	8.1	115
65	The Long Noncoding RNA Pnky Regulates Neuronal Differentiation of Embryonic and Postnatal Neural Stem Cells. Cell Stem Cell, 2015, 16, 439-447.	11.1	294
66	Molecular Identity of Human Outer Radial Glia during Cortical Development. Cell, 2015, 163, 55-67.	28.9	698
67	A GABAergic projection from the zona incerta to cortex promotes cortical neuron development. Science, 2015, 350, 554-558.	12.6	71
68	Neuronal Migration Dynamics in the Developing Ferret Cortex. Journal of Neuroscience, 2015, 35, 14307-14315.	3.6	77
69	Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons. Neuron, 2015, 87, 999-1007.	8.1	84
70	Radial glia in the proliferative ventricular zone of the embryonic and adult turtle,Trachemys scripta elegans. Neurogenesis (Austin, Tex), 2014, 1, e970905.	1.5	25
71	Axonal Control of the Adult Neural Stem Cell Niche. Cell Stem Cell, 2014, 14, 500-511.	11.1	117
72	Interneurons from Embryonic Development to Cell-Based Therapy. Science, 2014, 344, 1240622.	12.6	162

ARNOLD R KRIEGSTEIN

#	Article	IF	CITATIONS
73	Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature, 2014, 507, 99-103.	27.8	75
74	Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex. Nature, 2014, 515, 264-268.	27.8	145
75	Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nature Biotechnology, 2014, 32, 1053-1058.	17.5	850
76	Control of Outer Radial Glial Stem Cell Mitosis in the Human Brain. Cell Reports, 2014, 8, 656-664.	6.4	78
77	Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nature Neuroscience, 2013, 16, 1576-1587.	14.8	253
78	Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nature Communications, 2013, 4, 1665.	12.8	186
79	SnapShot: Cortical Development. Cell, 2012, 151, 918-918.e1.	28.9	57
80	Development and Evolution of the Human Neocortex. Cell, 2011, 146, 18-36.	28.9	1,110
81	Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 2010, 464, 554-561.	27.8	1,150
82	Commentary: The Prospect of Cell-Based Therapy for Epilepsy. Neurotherapeutics, 2009, 6, 295-299.	4.4	6
83	The Glial Nature of Embryonic and Adult Neural Stem Cells. Annual Review of Neuroscience, 2009, 32, 149-184.	10.7	2,067
84	Cortical Neurogenesis: Transitioning from Advances in the Laboratory to Cell-Based Therapies. Journal of Visualized Experiments, 2007, , 241.	0.3	0
85	Perspective authors' response: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews Neuroscience, 2007, 8, 989-989.	10.2	1
86	Constructing Circuits: Neurogenesis and Migration in the Developing Neocortex. Epilepsia, 2005, 46, 15-21.	5.1	62
87	Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 2004, 7, 136-144.	14.8	1,938
88	Calcium Waves Propagate through Radial Glial Cells and Modulate Proliferation in the Developing Neocortex. Neuron, 2004, 43, 647-661.	8.1	495