Salvador Eslava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3552469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic Effect of Simultaneous Doping of Ceria Nanorods with Cu and Cr on CO Oxidation and NO Reduction. Chemistry - A European Journal, 2021, 27, 2165-2174.	3.3	10
2	Mechanochemically synthesized Pb-free halide perovskite-based Cs ₂ AgBiBr ₆ –Cu–RGO nanocomposite for photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 12179-12187.	10.3	70
3	Structural evolution of iron forming iron oxide in a deep eutectic-solvothermal reaction. Nanoscale, 2021, 13, 1723-1737.	5.6	14
4	Hypercrosslinked Polymers as a Photocatalytic Platform for Visibleâ€Lightâ€Driven CO ₂ Photoreduction Using H ₂ O. ChemSusChem, 2021, 14, 1720-1727.	6.8	42
5	Oxygen Evolution Catalysts at Transition Metal Oxide Photoanodes: Their Differing Roles for Solar Water Splitting. Advanced Energy Materials, 2021, 11, 2003111.	19.5	51
6	Editorial: Recent advances in water splitting. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100530.	5.9	0
7	Recent advances in gasoline three-way catalyst formulation: A review. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 936-949.	1.9	104
8	Strategies for the deposition of LaFeO ₃ photocathodes: improving the photocurrent with a polymer template. Sustainable Energy and Fuels, 2020, 4, 884-894.	4.9	15
9	Zn-Doped Fe ₂ TiO ₅ Pseudobrookite-Based Photoanodes Grown by Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Energy Materials, 2020, 3, 12066-12077.	5.1	20
10	Polypyrrole-Promoted rGO–MoS ₂ Nanocomposites for Enhanced Photocatalytic Conversion of CO ₂ and H ₂ 0 to CO, CH ₄ , and H ₂ Products. ACS Applied Energy Materials, 2020, 3, 9897-9909.	5.1	61
11	Silver-Decorated TiO ₂ Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 41200-41210.	8.0	41
12	PrFeO ₃ Photocathodes Prepared Through Spray Pyrolysis. ChemElectroChem, 2020, 7, 1365-1372.	3.4	27
13	All-Inorganic CsPbBr ₃ Nanocrystals: Gram-Scale Mechanochemical Synthesis and Selective Photocatalytic CO ₂ Reduction to Methane. ACS Applied Energy Materials, 2020, 3, 4509-4522.	5.1	75
14	Recent Advances in Photocatalytic Materials for Solar Fuel Production from Water and Carbon Dioxide. RSC Energy and Environment Series, 2020, , 80-115.	0.5	2
15	TiO ₂ photoanodes with exposed {0 1 0} facets grown by aerosol-assisted chemical vapor deposition of a titanium oxo/alkoxy cluster. Journal of Materials Chemistry A, 2019, 7, 19161-19172.	10.3	18
16	Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nature Communications, 2019, 10, 2097.	12.8	124
17	Understanding charge transfer, defects and surface states at hematite photoanodes. Sustainable Energy and Fuels, 2019, 3, 1351-1364.	4.9	44
18	Simultaneous Formation of FeO _{<i>x</i>} Electrocatalyst Coating within Hematite Photoanodes for Solar Water Splitting. ACS Applied Energy Materials, 2019, 2, 2043-2052.	5.1	17

SALVADOR ESLAVA

#	Article	IF	CITATIONS
19	Electricity generation from moss with light-driven microbial fuel cells. Electrochimica Acta, 2019, 298, 934-942.	5.2	20
20	Pyro-electrolytic water splitting for hydrogen generation. Nano Energy, 2019, 58, 183-191.	16.0	50
21	Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane. Applied Catalysis B: Environmental, 2019, 242, 358-368.	20.2	50
22	Efficient hematite photoanodes prepared by hydrochloric acid-treated solutions with amphiphilic graft copolymer. Journal of Power Sources, 2018, 404, 149-158.	7.8	9
23	Mo-doped TiO ₂ photoanodes using [Ti ₄ Mo ₂ O ₈ (OEt) ₁₀] ₂ bimetallic oxo cages as a single source precursor. Sustainable Energy and Fuels, 2018, 2, 2674-2686.	4.9	13
24	Screen printed carbon CsPbBr ₃ solar cells with high open-circuit photovoltage. Journal of Materials Chemistry A, 2018, 6, 18677-18686.	10.3	46
25	Role of cobalt–iron (oxy)hydroxide (CoFeO _x) as oxygen evolution catalyst on hematite photoanodes. Energy and Environmental Science, 2018, 11, 2972-2984.	30.8	120
26	Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. Applied Catalysis B: Environmental, 2018, 239, 586-598.	20.2	278
27	Enhancing the hydrophobicity of perovskite solar cells using C18 capped CH ₃ NH ₃ PbI ₃ nanocrystals. Journal of Materials Chemistry C, 2018, 6, 7149-7156.	5.5	14
28	A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. Journal of Materials Science, 2017, 52, 7323-7344.	3.7	63
29	Nanostructured WO ₃ photoanodes for efficient water splitting via anodisation in citric acid. RSC Advances, 2017, 7, 35221-35227.	3.6	26
30	Tetrabutylammonium cations for moisture-resistant and semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 22325-22333.	10.3	69
31	Exploring effects of intermittent light upon visible light promoted water oxidations. Sustainable Energy and Fuels, 2017, 1, 2101-2109.	4.9	3
32	Microwave-assisted deep eutectic-solvothermal preparation of iron oxide nanoparticles for photoelectrochemical solar water splitting. Journal of Materials Chemistry A, 2017, 5, 16189-16199.	10.3	40
33	In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Applied Nanoscience (Switzerland), 2016, 6, 1015-1022.	3.1	75
34	Autonomous self-healing structural composites with bio-inspired design. Scientific Reports, 2016, 6, 25059.	3.3	50
35	Using graphene oxide as a sacrificial support of polyoxotitanium clusters to replicate its two-dimensionality on pure titania photocatalysts. Journal of Materials Chemistry A, 2016, 4, 7200-7206.	10.3	13
36	Printing in Three Dimensions with Graphene. Advanced Materials, 2015, 27, 1688-1693.	21.0	266

SALVADOR ESLAVA

#	Article	IF	CITATIONS
37	<scp>ATRâ€FTIR</scp> measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics. Journal of Biomedical Materials Research - Part A, 2015, 103, 3493-3502.	4.0	10
38	Mesoscale assembly of chemically modified graphene into complex cellular networks. Nature Communications, 2014, 5, 4328.	12.8	250
39	Metal-Organic Framework ZIF-8 Films As Low-l [°] Dielectrics in Microelectronics. Chemistry of Materials, 2013, 25, 27-33.	6.7	227
40	Synthesis and Optimization of the Production of Millimeterâ€&ized Hydroxyapatite Single Crystals by <scp><scp>Cl</scp></scp> ^{â^'} – <scp><scp>OH</scp></scp> ^{â^'} Ion Exchange. Journal of the American Ceramic Society, 2013, 96, 759-765.	3.8	9
41	A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: Possibilities and limits. Journal of the European Ceramic Society, 2013, 33, 679-688.	5.7	29
42	Electrical conduction of carbon nanotube forests through sub-nanometric films of alumina. Applied Physics Letters, 2013, 102, .	3.3	24
43	Manipulation of the catalyst-support interactions for inducing nanotube forest growth. Journal of Applied Physics, 2011, 109, 044303-044303-7.	2.5	35
44	Extending the Family of Titanium Heterometallic–oxo–alkoxy Cages. Inorganic Chemistry, 2011, 50, 5655-5662.	4.0	49
45	Comment on "MELâ€type Pureâ€Silica Zeolite Nanocrystals Prepared by an Evaporationâ€Assisted Twoâ€Sta Synthesis Method as Ultraâ€Lowâ€ <i>k</i> Materialsâ€. Advanced Functional Materials, 2010, 20, 2377-2379.	ge 14.9	9
46	Single-Source Materials for Metal-Doped Titanium Oxide: Syntheses, Structures, and Properties of a Series of Heterometallic Transition-Metal Titanium Oxo Cages. Inorganic Chemistry, 2010, 49, 11532-11540.	4.0	71
47	Heterometallic cobalt(ii)–titanium(iv) oxo cages; key building blocks for hybrid materials. Chemical Communications, 2010, 46, 4701.	4.1	42
48	Synthesis, Characterization, and Surface Tethering of Sulfide-Functionalized Ti ₁₆ -oxo-alkoxy Cages. Chemistry of Materials, 2010, 22, 5174-5178.	6.7	24
49	Transmission measurements in rapid growth KDP and DKDP crystals. Journal of Modern Optics, 2009, 56, 27-31.	1.3	11
50	Effects of Silica Sources on Nanoporous Organosilicate Films Templated with Tetraalkylammonium Cations. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	0
51	Characterization of spin-on zeolite films prepared from Silicalite-1 nanoparticle suspensions. Microporous and Mesoporous Materials, 2009, 118, 458-466.	4.4	20
52	Nanoporous Organosilicate Films Prepared in Acidic Conditions Using Tetraalkylammonium Bromide Porogens. Advanced Functional Materials, 2008, 18, 3332-3339.	14.9	9
53	Evidence of Large Voids in Pureâ€Silicaâ€Zeolite Lowâ€ <i>k</i> Dielectrics Synthesized by Spinâ€on of Nanoparticle Suspensions. Advanced Materials, 2008, 20, 3110-3116.	21.0	34
54	Zeolite-Inspired Low-kDielectrics Overcoming Limitations of Zeolite Films. Journal of the American Chemical Society, 2008, 130, 17528-17536.	13.7	36

SALVADOR ESLAVA

#	Article	IF	CITATIONS
55	Reaction of Trimethylchlorosilane in Spin-On Silicalite-1 Zeolite Film. Langmuir, 2008, 24, 4894-4900.	3.5	21
56	Ultraviolet-Assisted Curing of Organosilicate Glass Low-k Dielectric by Excimer Lamps. Journal of the Electrochemical Society, 2008, 155, G231.	2.9	22
57	Optical Property Changes in Low-k Films upon Ultraviolet-Assisted Curing. Journal of the Electrochemical Society, 2008, 155, G115.	2.9	42
58	Profile control of novel non-Si gates using BCl[sub 3]â^•N[sub 2] plasma. Journal of Vacuum Science & Technology B, 2007, 25, 739.	1.3	10
59	Ultra-violet-assisted cure of spin-on silicalite-1 films. Studies in Surface Science and Catalysis, 2007, 170, 594-599.	1.5	3
60	Characterization of a Molecular Sieve Coating Using Ellipsometric Porosimetry. Langmuir, 2007, 23, 12811-12816.	3.5	43
61	Ultraviolet-Assisted Curing of Polycrystalline Pure-Silica Zeolites:  Hydrophobization, Functionalization, and Cross-Linking of Grains. Journal of the American Chemical Society, 2007, 129, 9288-9289.	13.7	38
62	Size Shrinkage of Methacrylate-based Terpolymer Latexes Synthesized by Free Radical Polymerization:	2.7	13

Kinetics and Influence of Main Reaction Parameters. Polymer Journal, 2006, 38, 786-798. 62