List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Antiâ€infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious	2.6	545
2	Resurgence of Colistin: A Review of Resistance, Toxicity, Pharmacodynamics, and Dosing. Pharmacotherapy, 2010, 30, 1279-1291.	2.6	340
3	Pharmacokinetic/Pharmacodynamic Investigation of Colistin against <i>Pseudomonas aeruginosa</i> Using an <i>In Vitro</i> Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 3783-3789.	3.2	150
4	Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet?. International Journal of Antimicrobial Agents, 2016, 48, 592-597.	2.5	137
5	Attenuation of Colistin Bactericidal Activity by High Inoculum of <i>Pseudomonas aeruginosa</i> Characterized by a New Mechanism-Based Population Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 2051-2062.	3.2	119
6	Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii. Scientific Reports, 2017, 7, 45527.	3.3	89
7	Pharmacokinetics/pharmacodynamics of systemically administered polymyxin B against Klebsiella pneumoniae in mouse thigh and lung infection models. Journal of Antimicrobial Chemotherapy, 2018, 73, 462-468.	3.0	86
8	The Combination of Colistin and Doripenem Is Synergistic against Klebsiella pneumoniae at Multiple Inocula and Suppresses Colistin Resistance in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2012, 56, 5103-5112.	3.2	85
9	Polymyxin Resistance in Acinetobacter baumannii: Genetic Mutations and Transcriptomic Changes in Response to Clinically Relevant Dosage Regimens. Scientific Reports, 2016, 6, 26233.	3.3	82
10	Two Mechanisms of Killing of Pseudomonas aeruginosa by Tobramycin Assessed at Multiple Inocula via Mechanism-Based Modeling. Antimicrobial Agents and Chemotherapy, 2015, 59, 2315-2327.	3.2	76
11	Synergistic combinations of polymyxins. International Journal of Antimicrobial Agents, 2016, 48, 607-613.	2.5	71
12	Quantifying Subpopulation Synergy for Antibiotic Combinations via Mechanism-Based Modeling and a Sequential Dosing Design. Antimicrobial Agents and Chemotherapy, 2013, 57, 2343-2351.	3.2	68
13	Colistin and Polymyxin B Dosage Regimens against Acinetobacter baumannii: Differences in Activity and the Emergence of Resistance. Antimicrobial Agents and Chemotherapy, 2016, 60, 3921-3933.	3.2	66
14	Consistent Global Approach on Reporting of Colistin Doses to Promote Safe and Effective Use. Clinical Infectious Diseases, 2014, 58, 139-141.	5.8	60
15	Colistin and doripenem combinations against <i>Pseudomonas aeruginosa</i> : profiling the time course of synergistic killing and prevention of resistance. Journal of Antimicrobial Chemotherapy, 2015, 70, 1434-1442.	3.0	60
16	High-Dose Ampicillin-Sulbactam Combinations Combat Polymyxin-Resistant Acinetobacter baumannii in a Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	60
17	Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. Journal of Antimicrobial Chemotherapy, 2013, 68, 2311-7.	3.0	58
18	Alterations of Metabolic and Lipid Profiles in Polymyxin-Resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	58

#	Article	IF	CITATIONS
19	Polymyxin Combinations Combat <i>Escherichia coli</i> Harboring <i>mcr-1</i> and <i>bla</i> _{NDM-5} : Preparation for a Postantibiotic Era. MBio, 2017, 8, .	4.1	50
20	Attenuated Vancomycin Bactericidal Activity against <i>Staphylococcus aureus hemB</i> Mutants Expressing the Small-Colony-Variant Phenotype. Antimicrobial Agents and Chemotherapy, 2008, 52, 1533-1537.	3.2	46
21	Optimizing Polymyxin Combinations Against Resistant Gram-Negative Bacteria. Infectious Diseases and Therapy, 2015, 4, 391-415.	4.0	45
22	Polymyxin-resistant, carbapenem-resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity. Journal of Antimicrobial Chemotherapy, 2017, 72, 1415-1420.	3.0	44
23	Application of Pharmacokinetic-Pharmacodynamic Modeling and the Justification of a Novel Fusidic Acid Dosing Regimen: Raising Lazarus From the Dead. Clinical Infectious Diseases, 2011, 52, S513-S519.	5.8	43
24	Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2016, 60, 3913-3920.	3.2	43
25	Pharmacodynamics of colistin and fosfomycin: a â€~treasure trove' combination combats KPC-producing Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 2017, 72, 1985-1990.	3.0	43
26	Polymyxin B in combination with doripenem against heteroresistant <i>Acinetobacter baumannii</i> : pharmacodynamics of new dosing strategies. Journal of Antimicrobial Chemotherapy, 2016, 71, 3148-3156.	3.0	36
27	High-intensity meropenem combinations with polymyxin B: new strategies to overcome carbapenem resistance in <i>Acinetobacter baumannii</i> . Journal of Antimicrobial Chemotherapy, 2017, 72, 153-165.	3.0	36
28	Pharmacodynamics of early, high-dose linezolid against vancomycin-resistant enterococci with elevated MICs and pre-existing genetic mutations. Journal of Antimicrobial Chemotherapy, 2012, 67, 2182-2190.	3.0	33
29	In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2008, 62, 156-160.	3.0	32
30	New Dosing Strategies for an Old Antibiotic: Pharmacodynamics of Front-Loaded Regimens of Colistin at Simulated Pharmacokinetics in Patients with Kidney or Liver Disease. Antimicrobial Agents and Chemotherapy, 2014, 58, 1381-1388.	3.2	30
31	Front-Loaded Linezolid Regimens Result in Increased Killing and Suppression of the Accessory Gene Regulator System of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2012, 56, 3712-3719.	3.2	29
32	Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii. International Journal of Antimicrobial Agents, 2016, 48, 331-336.	2.5	28
33	Evolution of Staphylococcus aureus under Vancomycin Selective Pressure: the Role of the Small-Colony Variant Phenotype. Antimicrobial Agents and Chemotherapy, 2015, 59, 1347-1351.	3.2	26
34	Effect of Fluoroquinolones and Macrolides on Eradication and Resistance of Haemophilus influenzae in Chronic Obstructive Pulmonary Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 4151-4158.	3.2	26
35	Resistance suppression by high-intensity, short-duration aminoglycoside exposure against hypermutable and non-hypermutable <i>Pseudomonas aeruginosa</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 3157-3167.	3.0	26
36	Impact of Two-Component Regulatory Systems PhoP-PhoQ and PmrA-PmrB on Colistin Pharmacodynamics in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2012, 56, 3453-3456.	3.2	25

#	Article	IF	CITATIONS
37	Comparable Efficacy and Better Safety of Double β-Lactam Combination Therapy versus β‑Lactam plus Aminoglycoside in Gram-Negative Bacteria in Randomized, Controlled Trials. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	24
38	A combination of ceftaroline and daptomycin has synergistic and bactericidal activity <i>in vitro</i> against daptomycin nonsusceptible methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). Infectious Diseases, 2017, 49, 410-416.	2.8	23
39	Concentration-dependent plasma protein binding: Expect the unexpected. European Journal of Pharmaceutical Sciences, 2018, 122, 341-346.	4.0	23
40	Rational Combinations of Polymyxins with Other Antibiotics. Advances in Experimental Medicine and Biology, 2019, 1145, 251-288.	1.6	21
41	Shape does matter: short high-concentration exposure minimizes resistance emergence for fluoroquinolones in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2015, 70, 818-826.	3.0	20
42	Shifting Gears: The Future of Polymyxin Antibiotics. Antibiotics, 2019, 8, 42.	3.7	20
43	Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2016, 60, 2870-2880.	3.2	18
44	Sequential Evolution of Vancomycin-Intermediate Resistance Alters Virulence in Staphylococcus aureus: Pharmacokinetic/Pharmacodynamic Targets for Vancomycin Exposure. Antimicrobial Agents and Chemotherapy, 2016, 60, 1584-1591.	3.2	18
45	Loss of vancomycin bactericidal activity against accessory gene regulator (agr) dysfunctional Staphylococcus aureus under conditions of high bacterial density. Diagnostic Microbiology and Infectious Disease, 2009, 64, 220-224.	1.8	17
46	Four Decades of β-Lactam Antibiotic Pharmacokinetics in Cystic Fibrosis. Clinical Pharmacokinetics, 2019, 58, 143-156.	3.5	15
47	Impact of accessory gene regulator (agr) dysfunction on vancomycin pharmacodynamics among Canadian community and health-care associated methicillin-resistant Staphylococcus aureus. Annals of Clinical Microbiology and Antimicrobials, 2011, 10, 20.	3.8	14
48	Comparative pharmacodynamics of four different carbapenems in combination with polymyxin B against carbapenem-resistant Acinetobacter baumannii. International Journal of Antimicrobial Agents, 2016, 48, 719-724.	2.5	14
49	New Polymyxin B Dosing Strategies To Fortify Old Allies in the War against KPC-2-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	14
50	Pharmacodynamics of dose-escalated â€~front-loading' polymyxin B regimens against polymyxin-resistant mcr-1-harbouring Escherichia coli. Journal of Antimicrobial Chemotherapy, 2017, 72, 2297-2303.	3.0	14
51	Influence of <i>rhlR</i> and <i>lasR</i> on Polymyxin Pharmacodynamics in Pseudomonas aeruginosa and Implications for Quorum Sensing Inhibition with Azithromycin. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	13
52	Combinatorial Pharmacodynamics of Ceftolozane-Tazobactam against Genotypically Defined β-Lactamase-Producing Escherichia coli: Insights into the Pharmacokinetics/Pharmacodynamics of β-Lactam–β-Lactamase Inhibitor Combinations. Antimicrobial Agents and Chemotherapy, 2016, 60, 1967-197	3.2 '3.	11
53	Successful cure of daptomycin-non-susceptible, vancomycin-intermediate <i>Staphylococcus aureus</i> prosthetic aortic valve endocarditis directed by synergistic <i>in vitro</i> time-kill study. Infectious Diseases, 2019, 51, 287-292.	2.8	9
54	In vitro pharmacodynamic evaluation of ceftolozane/tazobactam against β-lactamase-producing Escherichia coli in a hollow-fibre infection model. International Journal of Antimicrobial Agents, 2017, 49, 25-30.	2.5	8

#	Article	IF	CITATIONS
55	Combatting the Rising Tide of Antimicrobial Resistance: Pharmacokinetic/Pharmacodynamic Dosing Strategies for Maximal Precision. International Journal of Antimicrobial Agents, 2021, 57, 106269.	2.5	8
56	Native valveProteus mirabilisendocarditis: successful treatment of a rare entity formulated by in vitro synergy antibiotic testing. BMJ Case Reports, 2016, 2016, bcr2016215956.	0.5	6
57	Emergence of Polymyxin B Resistance Influences Pathogenicity in Pseudomonas aeruginosa Mutators. Antimicrobial Agents and Chemotherapy, 2015, 59, 4343-4346.	3.2	5
58	Defining the Active Fraction of Daptomycin against Methicillin-Resistant Staphylococcus aureus (MRSA) Using a Pharmacokinetic and Pharmacodynamic Approach. PLoS ONE, 2016, 11, e0156131.	2.5	5
59	Polymyxin B and fosfomycin thwart KPC-producing Klebsiella pneumoniae in the hollow-fibre infection model. International Journal of Antimicrobial Agents, 2018, 52, 114-118.	2.5	5
60	Azithromycin Pharmacodynamics against Persistent Haemophilus influenzae in Chronic Obstructive Pulmonary Disease. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	4
61	ColistinDose, a Mobile App for Determining Intravenous Dosage Regimens of Colistimethate in Critically III Adult Patients: Clinician-Centered Design and Development Study. JMIR MHealth and UHealth, 2020, 8, e20525.	3.7	4
62	Impact of Staphylococcus aureus accessory gene regulator (agr) system on linezolid efficacy by profiling pharmacodynamics and RNAIII expression. Journal of Antibiotics, 2017, 70, 98-101.	2.0	2
63	1325. Things that go Bump in the Night: Combating Klebsiella pneumoniae co-producing New Delhi metallo-beta-lactamase (NDM) and Mobile Colistin Resistance (MCR). Open Forum Infectious Diseases, 2020, 7, S673-S673.	0.9	0