Stefano Livraghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc oxide hollow spheres decorated with cerium dioxide. The role of morphology in the photoactivity of semiconducting oxides. Journal of Physics Condensed Matter, 2022, 34, 134001.	1.8	2
2	Ce Doping Boosts the Thermo―and Photocatalytic Oxidation of CO at Low Temperature in TiZrO 4 Solid Solutions. Advanced Materials Interfaces, 2021, 8, 2100532.	3.7	0
3	Structural, electronic and photochemical properties of cerium-doped zirconium titanate. Catalysis Today, 2020, 340, 49-57.	4.4	11
4	Self-Organisation of Copper Species at the Surface of Cu–TiO2 Systems During H2 Evolution Reaction: A Combined Investigation by EPR and Optical Spectroscopy. Applied Magnetic Resonance, 2020, 51, 1497-1513.	1.2	0
5	Role of Hydroxyl, Superoxide, and Nitrate Radicals on the Fate of Bromide Ions in Photocatalytic TiO ₂ Suspensions. ACS Catalysis, 2020, 10, 7922-7931.	11.2	71
6	Nitrogen-doped semiconducting oxides. Implications on photochemical, photocatalytic and electronic properties derived from EPR spectroscopy. Chemical Science, 2020, 11, 6623-6641.	7.4	32
7	Alkaline treatment as a means to boost the activity of TiO2 in selective photocatalytic processes. Catalysis Science and Technology, 2020, 10, 5000-5012.	4.1	7
8	Electron magnetic resonance in heterogeneous photocatalysis research. Journal of Physics Condensed Matter, 2019, 31, 444001.	1.8	21
9	Formation of Reversible Adducts by Adsorption of Oxygen on Ce–ZrO ₂ : An Unusual Î ² lonic Superoxide. Journal of Physical Chemistry C, 2019, 123, 27088-27096.	3.1	14
10	Reversible adsorption of oxygen as superoxide ion on cerium doped zirconium titanate. Applied Catalysis A: General, 2019, 580, 140-148.	4.3	12
11	The Existence of Nitrate Radicals in Irradiated TiO ₂ Aqueous Suspensions in the Presence of Nitrate Ions. Angewandte Chemie - International Edition, 2018, 57, 10702-10706.	13.8	22
12	Copper-Modified TiO ₂ and ZrTiO ₄ : Cu Oxidation State Evolution during Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 27745-27756.	8.0	47
13	Ferromagnetic Interactions in Highly Stable, Partially Reduced TiO ₂ : The <i>S=</i> 2 State in Anatase. Angewandte Chemie - International Edition, 2017, 56, 2604-2607.	13.8	18
14	Fifty–Fifty Zr–Ti Solid Solution with a TiO ₂ -Type Structure: Electronic Structure and Photochemical Properties of Zirconium Titanate ZrTiO ₄ . Journal of Physical Chemistry C, 2017, 121, 5487-5497.	3.1	37
15	High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO 2. Applied Catalysis B: Environmental, 2017, 209, 417-428.	20.2	62
16	The photoactive nitrogen impurity in nitrogen-doped zirconium titanate (N-ZrTiO4): a combined electron paramagnetic resonance and density functional theory study. Journal of Materials Chemistry A, 2017, 5, 13062-13071.	10.3	11
17	A multi-technique comparison of the electronic properties of pristine and nitrogen-doped polycrystalline SnO ₂ . Physical Chemistry Chemical Physics, 2016, 18, 22617-22627.	2.8	7
18	Role of surface water molecules in stabilizing trapped hole centres in titanium dioxide (anatase) as monitored by electron paramagnetic resonance. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 322-323, 27-34.	3.9	44

#	Article	IF	CITATIONS
19	Nature of Paramagnetic Species in Nitrogen-Doped SnO ₂ : A Combined Electron Paramagnetic Resonance and Density Functional Theory Study. Journal of Physical Chemistry C, 2015, 119, 26895-26903.	3.1	18
20	Al- and Ga-Doped TiO ₂ , ZrO ₂ , and HfO ₂ : The Nature of O 2p Trapped Holes from a Combined Electron Paramagnetic Resonance (EPR) and Density Functional Theory (DFT) Study. Chemistry of Materials, 2015, 27, 3936-3945.	6.7	50
21	Fluorine- and Niobium-Doped TiO ₂ : Chemical and Spectroscopic Properties of Polycrystalline n-Type-Doped Anatase. Journal of Physical Chemistry C, 2014, 118, 8462-8473.	3.1	64
22	Nature of Reduced States in Titanium Dioxide as Monitored by Electron Paramagnetic Resonance. II: Rutile and Brookite Cases. Journal of Physical Chemistry C, 2014, 118, 22141-22148.	3.1	60
23	Influence of the chemical synthesis on the physicochemical properties of N-TiO2 nanoparticles. Catalysis Today, 2013, 209, 54-59.	4.4	21
24	Charge trapping in TiO2 polymorphs as seen by Electron Paramagnetic Resonance spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 9435.	2.8	188
25	Mechanism of the Photoactivity under Visible Light of N-Doped Titanium Dioxide. Charge Carriers Migration in Irradiated N-TiO ₂ Investigated by Electron Paramagnetic Resonance Journal of Physical Chemistry C, 2012, 116, 20887-20894.	3.1	155
26	Inactivation of TiO2 nano-powders for the preparation of photo-stable sunscreens via carbon-based surface modification. Journal of Materials Chemistry, 2012, 22, 19105.	6.7	27
27	The nitrogen–boron paramagnetic center in visible light sensitized N–B co-doped TiO ₂ . Experimental and theoretical characterization. Physical Chemistry Chemical Physics, 2011, 13, 136-143.	2.8	50
28	On the Nature of Reduced States in Titanium Dioxide As Monitored by Electron Paramagnetic Resonance. I: The Anatase Case. Journal of Physical Chemistry C, 2011, 115, 25413-25421.	3.1	147
29	Titanium Ions Dispersed into the ZrO ₂ Matrix: Spectroscopic Properties and Photoinduced Electron Transfer. Journal of Physical Chemistry C, 2010, 114, 18553-18558.	3.1	28
30	Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile). Journal of Solid State Chemistry, 2009, 182, 160-164.	2.9	71
31	The nitrogen photoactive centre in N-doped titanium dioxide formed via interaction of N atoms with the solid. Nature and energy level of the species. Chemical Physics Letters, 2009, 477, 135-138.	2.6	87
32	Nitrogen-Doped Titanium Dioxide Active in Photocatalytic Reactions with Visible Light: A Multi-Technique Characterization of Differently Prepared Materials. Journal of Physical Chemistry C, 2008, 112, 17244-17252.	3.1	155
33	The Nature of Defects in Fluorine-Doped TiO ₂ . Journal of Physical Chemistry C, 2008, 112, 8951-8956.	3.1	330
34	Density Functional Theory and Electron Paramagnetic Resonance Study on the Effect of Nâ^'F Codoping of TiO ₂ . Chemistry of Materials, 2008, 20, 3706-3714.	6.7	189
35	N-doped TiO2: Theory and experiment. Chemical Physics, 2007, 339, 44-56.	1.9	864
36	Trapped molecular species in N-doped TiO2. Research on Chemical Intermediates, 2007, 33, 739-747.	2.7	24

#	Article	IF	CITATIONS
37	Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light. Journal of the American Chemical Society, 2006, 128, 15666-15671.	13.7	818
38	Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations. Journal of Physical Chemistry B, 2005, 109, 11414-11419.	2.6	928
39	The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis. Chemical Communications, 2005, , 498.	4.1	181