Eric Johannsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355091/publications.pdf

Version: 2024-02-01

34 papers

2,732 citations

201674

27

h-index

395702 33 g-index

34 all docs

34 docs citations

times ranked

34

3667 citing authors

#	Article	IF	CITATIONS
1	Proteins of purified Epstein-Barr virus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16286-16291.	7.1	383
2	Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature, 2012, 487, 491-495.	27.8	349
3	Epstein–Barr virus and virus human protein interaction maps. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7606-7611.	7.1	348
4	Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14908-14913.	7.1	221
5	Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14902-14907.	7.1	180
6	Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16 ^{INK4A} and p14 ^{ARF} expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1919-1924.	7.1	112
7	Epigenetics of human papillomaviruses. Virology, 2013, 445, 205-212.	2.4	95
8	Epstein-Barr Virus LF2: an Antagonist to Type I Interferon. Journal of Virology, 2009, 83, 1140-1146.	3.4	92
9	Epstein-Barr Virus Nuclear Antigen 3C Putative Repression Domain Mediates Coactivation of the LMP1 Promoter with EBNA-2. Journal of Virology, 2002, 76, 232-242.	3.4	80
10	An Epstein-Barr Virus That Expresses Only the First 231 LMP1 Amino Acids Efficiently Initiates Primary B-Lymphocyte Growth Transformation. Journal of Virology, 1999, 73, 10525-10530.	3.4	72
11	RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1900-1905.	7.1	67
12	EBNA3A Association with RBP-Jî [®] Down-Regulates c -myc and Epstein-Barr Virus-Transformed Lymphoblast Growth. Journal of Virology, 2003, 77, 999-1010.	3.4	55
13	EBNA3C Coactivation with EBNA2 Requires a SUMO Homology Domain. Journal of Virology, 2004, 78, 367-377.	3.4	53
14	Epstein-Barr Virus Nuclear Protein EBNA3A Is Critical for Maintaining Lymphoblastoid Cell Line Growth. Journal of Virology, 2003, 77, 10437-10447.	3.4	51
15	Epstein–Barr virus nuclear antigen 3C regulated genes in lymphoblastoid cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 337-342.	7.1	51
16	An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription. PLoS Pathogens, 2016, 12, e1005718.	4.7	47
17	The Epstein-Barr Virus LF2 Protein Inhibits Viral Replication. Journal of Virology, 2008, 82, 8509-8519.	3.4	40
18	EBV nuclear antigen EBNALP dismisses transcription repressors NCoR and RBPJ from enhancers and EBNA2 increases NCoR-deficient RBPJ DNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7808-7813.	7.1	40

#	Article	IF	CITATIONS
19	The EBNA3 Family of Epstein-Barr Virus Nuclear Proteins Associates with the USP46/USP12 Deubiquitination Complexes to Regulate Lymphoblastoid Cell Line Growth. PLoS Pathogens, 2015, 11, e1004822.	4.7	40
20	Differentiation-Dependent LMP1 Expression Is Required for Efficient Lytic Epstein-Barr Virus Reactivation in Epithelial Cells. Journal of Virology, 2017, 91, .	3.4	40
21	Epstein-Barr Virus Nuclear Protein 3A Domains Essential for Growth of Lymphoblasts: Transcriptional Regulation through RBP-Jî ^o /CBF1 Is Critical. Journal of Virology, 2005, 79, 10171-10179.	3.4	36
22	Epstein-Barr Virus Nuclear Antigen 3 (EBNA3) Proteins Regulate EBNA2 Binding to Distinct RBPJ Genomic Sites. Journal of Virology, 2016, 90, 2906-2919.	3.4	35
23	Genome-Wide Analysis of Epstein-Barr Virus Rta DNA Binding. Journal of Virology, 2012, 86, 5151-5164.	3.4	34
24	CAGE-seq analysis of Epstein-Barr virus lytic gene transcription: 3 kinetic classes from 2 mechanisms. PLoS Pathogens, 2018, 14, e1007114.	4.7	34
25	Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1033-1038.	7.1	33
26	Epstein-Barr Virus Nuclear Protein 3C Domains Necessary for Lymphoblastoid Cell Growth: Interaction with RBP-Jκ Regulates TCL1. Journal of Virology, 2009, 83, 12368-12377.	3.4	29
27	Epstein-Barr Virus LF2 Protein Regulates Viral Replication by Altering Rta Subcellular Localization. Journal of Virology, 2010, 84, 9920-9931.	3.4	28
28	Epstein-Barr Virus Infection Promotes Epithelial Cell Growth by Attenuating Differentiation-Dependent Exit from the Cell Cycle. MBio, 2019, 10, .	4.1	25
29	An RS Motif within the Epstein-Barr Virus BLRF2 Tegument Protein Is Phosphorylated by SRPK2 and Is Important for Viral Replication. PLoS ONE, 2013, 8, e53512.	2.5	19
30	Epstein–Barr virus nuclear protein 3C binds to the N-terminal (NTD) and beta trefoil domains (BTD) of RBP/CSL; Only the NTD interaction is essential for lymphoblastoid cell growth. Virology, 2011, 414, 19-25.	2.4	17
31	Negative Autoregulation of Epstein-Barr Virus (EBV) Replicative Gene Expression by EBV SM Protein. Journal of Virology, 2009, 83, 8041-8050.	3.4	12
32	Epstein-Barr virus nuclear antigen 3C (EBNA3C) interacts with the metabolism sensing C-terminal binding protein (CtBP) repressor to upregulate host genes. PLoS Pathogens, 2021, 17, e1009419.	4.7	8
33	Accurate Quantification of Overlapping Herpesvirus Transcripts from RNA Sequencing Data. Journal of Virology, 2022, 96, JVI0163521.	3.4	6
34	Genome-Wide Analysis Reveals Conserved and Divergent Features of Notch1/RBPJ Binding in Human and Murine T Lymphoblastic Leukemia Cells. Blood, 2011, 118, 5236-5236.	1.4	0