Armelle Yart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550881/publications.pdf

Version: 2024-02-01

26 papers 1,995 citations

331670 21 h-index 28 g-index

28 all docs

 $\begin{array}{c} 28 \\ \text{docs citations} \end{array}$

28 times ranked

2783 citing authors

#	Article	IF	CITATIONS
1	The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular Signalling, 2008, 20, 453-459.	3.6	275
2	The HRPT2 Tumor Suppressor Gene Product Parafibromin Associates with Human PAF1 and RNA Polymerase II. Molecular and Cellular Biology, 2005, 25, 5052-5060.	2.3	184
3	SHP2 sails from physiology to pathology. European Journal of Medical Genetics, 2015, 58, 509-525.	1.3	182
4	A Novel Role for Gab1 and SHP2 in Epidermal Growth Factor-induced Ras Activation. Journal of Biological Chemistry, 2005, 280, 5350-5360.	3.4	169
5	The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocrine Reviews, 2018, 39, 676-700.	20.1	157
6	A Critical Role for Phosphoinositide 3-Kinase Upstream of Gab1 and SHP2 in the Activation of Ras and Mitogen-activated Protein Kinases by Epidermal Growth Factor. Journal of Biological Chemistry, 2001, 276, 8856-8864.	3.4	127
7	Noonan syndrome-causing SHP2 mutants inhibit insulin-like growth factor 1 release via growth hormone-induced ERK hyperactivation, which contributes to short stature. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4257-4262.	7.1	102
8	Functional Effects of <i>PTPN11</i> (SHP2) Mutations Causing LEOPARD Syndrome on Epidermal Growth Factor-Induced Phosphoinositide 3-Kinase/AKT/Glycogen Synthase Kinase 3β Signaling. Molecular and Cellular Biology, 2010, 30, 2498-2507.	2.3	85
9	An Epidermal Growth Factor Receptor/Gab1 Signaling Pathway Is Required for Activation of Phosphoinositide 3-Kinase by Lysophosphatidic Acid. Journal of Biological Chemistry, 1999, 274, 32835-32841.	3.4	71
10	A Function for Phosphoinositide 3-Kinase \hat{l}^2 Lipid Products in Coupling $\hat{l}^2\hat{l}^3$ to Ras Activation in Response to Lysophosphatidic Acid. Journal of Biological Chemistry, 2002, 277, 21167-21178.	3.4	71
11	Phosphoinositide 3-kinases in lysophosphatidic acid signaling: regulation and cross-talk with the Ras/mitogen-activated protein kinase pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 107-111.	2.4	57
12	The Adaptor Protein Gab1 Couples the Stimulation of Vascular Endothelial Growth Factor Receptor-2 to the Activation of Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 2006, 281, 23285-23295.	3.4	55
13	LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4494-503.	7.1	52
14	Modulation of phosphoinositide 3-kinase activation by cholesterol level suggests a novel positive role for lipid rafts in lysophosphatidic acid signalling. FEBS Letters, 2003, 534, 164-168.	2.8	50
15	Signal Strength Dictates Phosphoinositide 3-Kinase Contribution to Ras/Extracellular Signal-Regulated Kinase 1 and 2 Activation via Differential Gab1/Shp2 Recruitment: Consequences for Resistance to Epidermal Growth Factor Receptor Inhibition. Molecular and Cellular Biology, 2008, 28, 587-600.	2.3	50
16	Sporadic human renal tumors display frequent allelic imbalances and novel mutations of the HRPT2 gene. Oncogene, 2007, 26, 3440-3449.	5.9	47
17	How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms?. Cellular and Molecular Life Sciences, 2007, 64, 1585-1590.	5.4	42
18	Growth patterns of patients with Noonan syndrome: correlation with age and genotype. European Journal of Endocrinology, 2016, 174, 641-650.	3.7	40

#	Article	IF	CITATION
19	Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth. Human Molecular Genetics, 2018, 27, 2276-2289.	2.9	31
20	Noonan syndrome: an update on growth and development. Current Opinion in Endocrinology, Diabetes and Obesity, 2018, 25, 67-73.	2.3	30
21	SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations. Science Translational Medicine, 2021, 13, .	12.4	26
22	Gab1, SHP-2 and Other Novel Regulators of Ras: Targets for Anticancer Drug Discovery?. Current Cancer Drug Targets, 2003, 3, 177-192.	1.6	24
23	Catalytic dysregulation of SHP2 leading to Noonan syndromes affects platelet signaling and functions. Blood, 2019, 134, 2304-2317.	1.4	23
24	Noonan syndrome males display Sertoli cell-specific primary testicular insufficiency. European Journal of Endocrinology, 2018, 179, 409-418.	3.7	16
25	Low bone mass in Noonan syndrome children correlates with decreased muscle mass and low IGF-1 levels. Bone, 2021, 153, 116170.	2.9	9
26	Nuclear HMGB1 protects from nonalcoholic fatty liver disease through negative regulation of liver X receptor. Science Advances, 2022, 8, eabg9055.	10.3	7