Fabiany Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 2011, 190, 724-739.	7.3	445
2	Late Paleocene fossils from the CerrejÃ ³ n Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18627-18632.	7.1	256
3	Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 2021, 372, 63-68.	12.6	115
4	Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. American Journal of Botany, 2009, 96, 1300-1312.	1.7	63
5	Menispermaceae from the Cerrejón Formation, middle to late Paleocene, Colombia. American Journal of Botany, 2008, 95, 954-973.	1.7	42
6	Phytogeographic implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. American Journal of Botany, 2011, 98, 2004-2017.	1.7	39
7	Early Cretaceous <i>Umkomasia</i> from Mongolia: implications for homology of corystosperm cupules. New Phytologist, 2016, 210, 1418-1429.	7.3	38
8	Phytogeographic History and Phylogeny of the Humiriaceae. International Journal of Plant Sciences, 2010, 171, 392-408.	1.3	37
9	Permineralized fruits from the late Eocene of Panama give clues of the composition of forests established early in the uplift of Central America. Review of Palaeobotany and Palynology, 2012, 175, 10-24.	1.5	36
10	Mesozoic cupules and the origin of the angiosperm second integument. Nature, 2021, 594, 223-226.	27.8	33
11	Fruits of an "Old World―tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America. Systematic Botany, 2012, 37, 784-794.	0.5	32
12	A New Voltzian Seed Cone from the Early Cretaceous of Mongolia and Its Implications for the Evolution of Ancient Conifers. International Journal of Plant Sciences, 2015, 176, 791-809.	1.3	32
13	Fruit Morphology and Anatomy of the Spondioid Anacardiaceae. Botanical Review, The, 2018, 84, 315-393.	3.9	31
14	The presumed ginkgophyte <i>Umaltolepis</i> has seed-bearing structures resembling those of Peltaspermales and Umkomasiales. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2385-E2391.	7.1	29
15	Middle to Late Paleocene Leguminosae fruits and leaves from Colombia. Australian Systematic Botany, 2019, 32, 385-408.	0.9	29
16	X-ray micro-computed tomography (micro-CT) of pyrite-permineralized fruits and seeds from the London Clay Formation (Ypresian) conserved in silicone oil: a critical evaluation. Botany, 2016, 94, 697-711.	1.0	24
17	Cupressaceae Conifers from the Early Cretaceous of Mongolia. International Journal of Plant Sciences, 2017, 178, 19-41.	1.3	24
18	Biotic community and landscape changes around the Eocene–Oligocene transition at Shapaja, Peruvian Amazonia: Regional or global drivers?. Global and Planetary Change, 2021, 202, 103512.	3.5	24

FABIANY HERRERA

#	Article	IF	CITATIONS
19	Leaves of <i>Podozamites</i> and <i>Pseudotorellia</i> from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships. Journal of Systematic Palaeontology, 2018, 16, 111-137.	1.5	22
20	Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers. PLoS ONE, 2020, 15, e0226779.	2.5	22
21	Canopy structure in Late Cretaceous and Paleocene forests as reconstructed from carbon isotope analyses of fossil leaves. Geology, 2019, 47, 977-981.	4.4	19
22	Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia. Journal of Systematic Palaeontology, 2019, 17, 997-1029.	1.5	19
23	Phytogeographic History of the Humiriaceae (Part 2). International Journal of Plant Sciences, 2014, 175, 828-840.	1.3	17
24	New fossil Pinaceae from the Early Cretaceous of Mongolia. Botany, 2016, 94, 885-915.	1.0	15
25	Paleogene Salvinia (Salviniaceae) from Colombia and their paleobiogeographic implications. Review of Palaeobotany and Palynology, 2017, 246, 85-108.	1.5	15
26	An exquisitely preserved filmy fern (Hymenophyllaceae) from the Early Cretaceous of Mongolia. American Journal of Botany, 2017, 104, 1370-1381.	1.7	15
27	Fruits and wood of <i>Parinari</i> from the early Miocene of Panama and the fossil record of Chrysobalanaceae. American Journal of Botany, 2016, 103, 277-289.	1.7	14
28	A new Choerospondias (Anacardiaceae) endocarp from the middle Miocene of Southeast China and its paleoecological implications. Review of Palaeobotany and Palynology, 2020, 283, 104312.	1.5	13
29	Ovulate Cones of <i>Schizolepidopsis ediae</i> sp. nov. Provide Insights into the Evolution of Pinaceae. International Journal of Plant Sciences, 2021, 182, 490-507.	1.3	12
30	An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning. PhytoKeys, 2021, 187, 93-128.	1.0	12
31	Oligocene Age of the Classic Belén Fruit and Seed Assemblage of North Coastal Peru based on Diatom Biostratigraphy. Journal of Geology, 2012, 120, 467-476.	1.4	11
32	Paleocene wind-dispersed fruits and seeds from Colombia and their implications for early Neotropical rainforests. Acta Palaeobotanica, 2014, 54, 197-229.	0.7	9
33	19-Million-Year-Old Spondioid Fruits from Panama Reveal a Dynamic Dispersal History for Anacardiaceae. International Journal of Plant Sciences, 2019, 180, 479-492.	1.3	8
34	Eocene Fossil Legume Leaves Referable to the Extant Genus <i>Arcoa</i> (Caesalpinioideae,) Tj ETQq0 0 0 rgB	T /Overlock	10 ₈ Tf 50 142
35	Early Records of Melastomataceae from the Middle–Late Paleocene Rain Forests of South America Conflict with Laurasian Origins. International Journal of Plant Sciences, 2021, 182, 401-412.	1.3	7

36Fossil papilionoids of the Bowdichia clade (Leguminosae) from the Paleogene of North America.1.7736American Journal of Botany, 2022, 109, 130-150.1.77

FABIANY HERRERA

#	Article	IF	CITATIONS
37	New records of Humiriaceae fossil fruits from the Oligocene and Early Miocene of the western Azuero Peninsula, Panamá. Boletin De La Sociedad Geologica Mexicana, 2018, 70, 223-239.	0.3	6
38	A permineralized Early Cretaceous lycopsid from China and the evolution of crown clubmosses. New Phytologist, 2022, 233, 2310-2322.	7.3	6
39	Leaves of Taxus with cuticle micromorphology from the Early Cretaceous of eastern Inner Mongolia, Northeast China. Review of Palaeobotany and Palynology, 2022, 298, 104588.	1.5	5
40	<i>Belenocarpa tertiara</i> (Berry) gen. et comb. nov. (Euphorbiaceae): Fossil Fruits with Carunculate Seeds from the Oligocene of Peru. International Journal of Plant Sciences, 0, , 000-000.	1.3	3
41	Early Cretaceous abietoid Pinaceae from Mongolia and the history of seed scale shedding. American Journal of Botany, 2021, 108, 1483-1499.	1.7	2
42	Ancient trouble in paradise: Seed beetle predation on coconuts from middle–late Paleocene rainforests of Colombia. Review of Palaeobotany and Palynology, 2022, 300, 104630.	1.5	2
43	Systematics of Ulmaceae and Placement of the Extinct <i>Cedrelopsermum</i> . The Paleontological Society Special Publications, 2014, 13, 18-19.	0.0	0
44	Neotropical Floras Reveal the Biogeographic Evolution of Paleocene to Miocene (60 to 19 Ma) Forests. The Paleontological Society Special Publications, 2014, 13, 25-25.	0.0	0
45	Revisiting the Oligocene Belén Fruit and Seed Flora of Northwestern Peru. The Paleontological Society Special Publications, 2014, 13, 84-84.	0.0	0
46	Symplocos Fruits from the Pliocene of Colombia. Systematic Botany, 2021, 46, 416-421.	0.5	0