Angel Irabien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3550113/publications.pdf

Version: 2024-02-01

359 papers 13,136 citations

20817 60 h-index 94 g-index

371 all docs

371 docs citations

371 times ranked

11719 citing authors

#	Article	IF	CITATIONS
1	Towards the electrochemical conversion of carbon dioxide into methanol. Green Chemistry, 2015, 17, 2304-2324.	9.0	441
2	Copperâ€Based Metal–Organic Porous Materials for CO ₂ Electrocatalytic Reduction to Alcohols. ChemSusChem, 2017, 10, 1100-1109.	6.8	316
3	Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Applied Catalysis B: Environmental, 2015, 176-177, 709-717.	20.2	249
4	Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. Journal of Catalysis, 2016, 343, 232-239.	6.2	222
5	Food waste management during the COVID-19 outbreak: a holistic climate, economic and nutritional approach. Science of the Total Environment, 2020, 742, 140524.	8.0	192
6	Environmental assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Santander Bay, Northern Spain. Chemosphere, 2002, 48, 157-165.	8.2	172
7	Ionic liquids in the electrochemical valorisation of CO ₂ . Energy and Environmental Science, 2015, 8, 2574-2599.	30.8	172
8	Carbon Dioxide Capture from Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate. Industrial & Engineering Chemistry Research, 2010, 49, 11045-11051.	3.7	171
9	Magnetic ionic liquids: synthesis, properties and applications. RSC Advances, 2014, 4, 40008-40018.	3.6	164
10	Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols. Journal of CO2 Utilization, 2019, 33, 157-165.	6.8	163
11	Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement. Cement and Concrete Research, 2001, 31, 1213-1219.	11.0	158
12	Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO 2 electroreduction to formate. Journal of CO2 Utilization, 2017, 18, 222-228.	6.8	152
13	Acetate based Supported Ionic Liquid Membranes (SILMs) for CO2 separation: Influence of the temperature. Journal of Membrane Science, 2014, 452, 277-283.	8.2	145
14	A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
15	Nanofiltration separation of polyvalent and monovalent anions in desalination brines. Journal of Membrane Science, 2015, 473, 16-27.	8.2	131
16	Design of ionic liquids: an ecotoxicity (Vibrio fischeri) discrimination approach. Green Chemistry, 2011, 13, 1507.	9.0	130
17	Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. Journal of Environmental Management, 2013, 130, 72-79.	7.8	128
18	Facilitated transport of CO2 and SO2 through Supported Ionic Liquid Membranes (SILMs). Desalination, 2009, 245, 485-493.	8.2	124

#	Article	IF	CITATIONS
19	Methanol electrosynthesis from CO 2 at Cu 2 O/ZnO prompted by pyridine-based aqueous solutions. Journal of CO2 Utilization, 2017, 18, 164-172.	6.8	123
20	Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Separation and Purification Technology, 2015, 144, 46-53.	7.9	118
21	Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Technologies and Environmental Policy, 2015, 17, 1333-1353.	4.1	116
22	Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size. Applied Energy, 2015, 157, 165-173.	10.1	116
23	Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor. Water Research, 2007, 41, 810-818.	11.3	114
24	Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chemical Engineering Journal, 2012, 207-208, 278-284.	12.7	114
25	Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Science of the Total Environment, 2019, 689, 1255-1275.	8.0	113
26	Synthesis of heterometallic metal–organic frameworks and their performance as electrocatalyst for CO ₂ reduction. RSC Advances, 2018, 8, 21092-21099.	3.6	108
27	From linear to circular integrated waste management systems: A review of methodological approaches. Resources, Conservation and Recycling, 2018, 135, 279-295.	10.8	106
28	Zero solvent emission process for sulfur dioxide recovery using a membrane contactor and ionic liquids. Journal of Membrane Science, 2009, 330, 80-89.	8.2	105
29	On the estimation of potential food waste reduction to support sustainable production and consumption policies. Food Policy, 2018, 80, 24-38.	6.0	105
30	Electrochemical membrane reactors for the utilisation of carbon dioxide. Chemical Engineering Journal, 2016, 305, 104-120.	12.7	104
31	Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO ₂ /N ₂ separation. RSC Advances, 2015, 5, 102350-102361.	3.6	102
32	Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment. Chemosphere, 2015, 118, 44-56.	8.2	102
33	The Energy-Water-Food Nexus. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 239-262.	6.8	101
34	Separation performance of CO2 through Supported Magnetic Ionic Liquid Membranes (SMILMs). Separation and Purification Technology, 2012, 97, 26-33.	7.9	98
35	Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. Journal of CO2 Utilization, 2019, 31, 135-142.	6.8	97
36	Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production. Science of the Total Environment, 2019, 663, 738-753.	8.0	95

#	Article	IF	CITATIONS
37	Continuous electrochemical reduction of carbon dioxide into formate using a tin cathode: Comparison with lead cathode. Chemical Engineering Research and Design, 2014, 92, 692-701.	5.6	92
38	Tailoring gas-phase CO ₂ electroreduction selectivity to hydrocarbons at Cu nanoparticles. Nanotechnology, 2018, 29, 014001.	2.6	92
39	Extraction of Cr(VI) with aliquat 336 in hollow fiber contactors: mass transfer analysis and modeling. Chemical Engineering Science, 1994, 49, 901-909.	3.8	89
40	Quantitative structure–activity relationships (QSARs) to estimate ionic liquids ecotoxicity EC50 (Vibrio fischeri). Journal of Molecular Liquids, 2010, 152, 28-33.	4.9	89
41	Synthesis and characterization of Magnetic Ionic Liquids (<scp>MlLs</scp>) for <scp>CO₂</scp> separation. Journal of Chemical Technology and Biotechnology, 2014, 89, 866-871.	3.2	89
42	Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). Journal of Environmental Monitoring, 2010, 12, 1451.	2.1	87
43	Environmental Assessment of Dimethyl Carbonate Production: Comparison of a Novel Electrosynthesis Route Utilizing CO ₂ with a Commercial Oxidative Carbonylation Process. ACS Sustainable Chemistry and Engineering, 2016, 4, 2088-2097.	6.7	85
44	Equilibrium and kinetics of chromium(VI) extraction with Aliquat 336. Industrial & Engineering Chemistry Research, 1992, 31, 1516-1522.	3.7	84
45	Permeability modulation of Supported Magnetic Ionic Liquid Membranes (SMILMs) by an external magnetic field. Journal of Membrane Science, 2013, 430, 56-61.	8.2	83
46	Formic Acid Manufacture: Carbon Dioxide Utilization Alternatives. Applied Sciences (Switzerland), 2018, 8, 914.	2.5	83
47	Global warming footprint of the electrochemical reduction of carbon dioxide to formate. Journal of Cleaner Production, 2015, 104, 148-155.	9.3	82
48	Kinetic Analysis of the Simultaneous Nondispersive Extraction and Back-Extraction of Chromium(VI). Industrial & Engineering Chemistry Research, 1996, 35, 1369-1377.	3.7	81
49	Continuous electroreduction of CO ₂ to formate using Sn gas diffusion electrodes. AICHE Journal, 2014, 60, 3557-3564.	3.6	81
50	Finding an economic and environmental balance in value chains based on circular economy thinking: An eco-efficiency methodology applied to the fish canning industry. Resources, Conservation and Recycling, 2018, 133, 428-437.	10.8	81
51	CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: Influence of membrane wetting and process parameters. Separation and Purification Technology, 2020, 233, 115986.	7.9	79
52	Kinetics of the separation-concentration of chromium(VI) with emulsion liquid membranes. Industrial & Lamp; Engineering Chemistry Research, 1992, 31, 1523-1529.	3.7	76
53	Productivity and Selectivity of Gasâ€Phase CO ₂ Electroreduction to Methane at Copper Nanoparticleâ€Based Electrodes. Energy Technology, 2017, 5, 922-928.	3.8	72
54	Fluidized bed reactor for fluoride removal. Chemical Engineering Journal, 2005, 107, 113-117.	12.7	69

#	Article	IF	CITATIONS
55	A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture. Journal of CO2 Utilization, 2019, 34, 490-499.	6.8	69
56	CO2 electroreduction to formate: Continuous single-pass operation in a filter-press reactor at high current densities using Bi gas diffusion electrodes. Journal of CO2 Utilization, 2019, 34, 12-19.	6.8	68
57	Photoelectrochemical Reactors for CO ₂ Utilization. ACS Sustainable Chemistry and Engineering, 2018, 6, 15877-15894.	6.7	65
58	Physico-chemical and toxicological characterization of the historic estuarine sediments: A multidisciplinary approach. Environment International, 2007, 33, 436-444.	10.0	64
59	Characterisation and management of incinerator wastes. Journal of Hazardous Materials, 2000, 79, 215-227.	12.4	63
60	Sustainability assessment of electrodialysis powered by photovoltaic solar energy for freshwater production. Renewable and Sustainable Energy Reviews, 2015, 47, 604-615.	16.4	63
61	Supported liquid membranes for the separation-concentration of phenol. 1. Viability and mass-transfer evaluation. Industrial & Engineering Chemistry Research, 1992, 31, 877-886.	3.7	62
62	Membrane mass transport coefficient for the recovery of Cr(VI) in hollow fiber extraction and back-extraction modules. Journal of Membrane Science, 1996, 118, 213-221.	8.2	60
63	Combined application of Life Cycle Assessment and linear programming to evaluate food waste-to-food strategies: Seeking for answers in the nexus approach. Waste Management, 2018, 80, 186-197.	7.4	60
64	Extraction of Anions with Aliquat 336: Chemical Equilibrium Modeling. Industrial & Engineering Chemistry Research, 1994, 33, 1765-1770.	3.7	59
65	Kinetics of flue gas desulphurization at low temperatures: fly ash/calcium (31) sorbent behaviour. Chemical Engineering Science, 1997, 52, 715-732.	3.8	59
66	Preparation and characterization of fly ash/hydrated lime sorbents for SO2 removal. Powder Technology, 1997, 94, 133-139.	4.2	58
67	Optimization of global and local pollution control in electricity production from coal burning. Applied Energy, 2012, 92, 369-378.	10.1	58
68	Neural network prediction of unconfined compressive strength of coal fly ash–cement mixtures. Cement and Concrete Research, 2003, 33, 1137-1146.	11.0	57
69	Improving trade-offs in the figures of merit of gas-phase single-pass continuous CO2 electrocatalytic reduction to formate. Chemical Engineering Journal, 2021, 405, 126965.	12.7	57
70	LCA of greywater management within a water circular economy restorative thinking framework. Science of the Total Environment, 2018, 621, 1047-1056.	8.0	56
71	Membrane contactors for the recovery of metallic compounds. Journal of Membrane Science, 2005, 257, 161-170.	8.2	55
72	Bimetallic Cu-based hollow fibre electrodes for CO2 electroreduction. Catalysis Today, 2020, 346, 34-39.	4.4	55

#	Article	IF	Citations
73	Extraction of lactoferrin with hydrophobic ionic liquids. Separation and Purification Technology, 2012, 98, 432-440.	7.9	53
74	CO2 capture with room temperature ionic liquids; coupled absorption/desorption and single module absorption in membrane contactor. Chemical Engineering Science, 2020, 223, 115719.	3.8	52
75	Thermal dehydration of calcium hydroxide. 1. Kinetic model and parameters. Industrial & Chemistry Research, 1990, 29, 1599-1606.	3.7	51
76	Absorption of coal combustion flue gases in ionic liquids using different membrane contactors. Desalination and Water Treatment, 2011, 27, 54-59.	1.0	51
77	Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation. Membranes, 2014, 4, 287-301.	3.0	51
78	Electrodialysis with Bipolar Membranes for Valorization of Brines. Separation and Purification Reviews, 2016, 45, 275-287.	5.5	51
79	Modelling of a hollow fibre ceramic contactor for SO2 absorption. Separation and Purification Technology, 2010, 72, 174-179.	7.9	50
80	Nonâ€dispersive absorption of CO ₂ in parallel and crossâ€flow membrane modules using EMISE. Journal of Chemical Technology and Biotechnology, 2012, 87, 1502-1507.	3.2	50
81	Arsenic Removal from Natural Waters by Adsorption or Ion Exchange: An Environmental Sustainability Assessment. Industrial & Engineering Chemistry Research, 2014, 53, 18920-18927.	3.7	50
82	Kinetic modelling of cadmium removal from phosphoric acid by non-dispersive solvent extraction. Journal of Membrane Science, 1997, 130, 193-203.	8.2	49
83	Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach. Science of the Total Environment, 2017, 580, 147-157.	8.0	48
84	Comparative study of the destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans during Fenton and electrochemical oxidation of landfill leachates. Chemosphere, 2013, 90, 132-138.	8.2	47
85	Environmental and economic assessment of the formic acid electrochemical manufacture using carbon dioxide: Influence of the electrode lifetime. Sustainable Production and Consumption, 2019, 18, 72-82.	11.0	47
86	Separation of Cr (VI) with Aliquat 336: Chemical Equilibrium Modeling. Separation Science and Technology, 1997, 32, 1543-1555.	2.5	46
87	Analysis and optimization of continuous organic solvent nanofiltration by membrane cascade for pharmaceutical separation. AICHE Journal, 2014, 60, 931-948.	3.6	46
88	Separation of propylene/propane mixtures using Ag+–RTIL solutions. Evaluation and comparison of the performance of gas–liquid contactors. Journal of Membrane Science, 2010, 360, 130-141.	8.2	45
89	Environmental management of bottom ash from municipal solid waste incineration based on a life cycle assessment approach. Clean Technologies and Environmental Policy, 2014, 16, 1319-1328.	4.1	45
90	Addressing challenges and opportunities of the European seafood sector under a circular economy framework. Current Opinion in Environmental Science and Health, 2020, 13, 101-106.	4.1	45

#	Article	IF	Citations
91	Chitosan:poly (vinyl) alcohol composite alkaline membrane incorporating organic ionomers and layered silicate materials into a PEM electrochemical reactor. Journal of Membrane Science, 2016, 498, 395-407.	8.2	44
92	Valorization of desalination brines by electrodialysis with bipolar membranes using nanocomposite anion exchange membranes. Desalination, 2017, 406, 16-24.	8.2	44
93	Kinetics of flue gas desulfurization at low temperatures: nonideal surface adsorption model. Chemical Engineering Science, 1992, 47, 1533-1543.	3.8	43
94	Long-range magnetic ordering in magnetic ionic liquid: Emim[FeCl4]. Journal of Physics Condensed Matter, 2010, 22, 296006.	1.8	43
95	Environmental sustainability assessment in the process industry: A case study of waste-to-energy plants in Spain. Resources, Conservation and Recycling, 2014, 93, 144-155.	10.8	43
96	Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes. Separation and Purification Technology, 2020, 242, 116785.	7.9	43
97	Effect of CaSO4 on the structure and use of Ca(OH)2/fly ash sorbents for SO2 removal. Powder Technology, 2001, 119, 201-205.	4.2	42
98	Multi-objective optimization of coal-fired electricity production with CO2 capture. Applied Energy, 2012, 98, 266-272.	10.1	42
99	lonic liquid-based three phase partitioning (ILTPP) systems: lonic liquid recovery and recycling. Fluid Phase Equilibria, 2014, 371, 67-74.	2.5	42
100	Waste management under a life cycle approach as a tool for a circular economy in the canned anchovy industry. Waste Management and Research, 2016, 34, 724-733.	3.9	42
101	Long-term behaviour of toxic metals in stabilized steel foundry dusts. Journal of Hazardous Materials, 1995, 40, 31-42.	12.4	41
102	Fluoride Recovery in a Fluidized Bed:Â Crystallization of Calcium Fluoride on Silica Sand. Industrial & Lamp; Engineering Chemistry Research, 2006, 45, 796-802.	3.7	41
103	Particle growth kinetics of calcium fluoride in a fluidized bed reactor. Chemical Engineering Science, 2007, 62, 2958-2966.	3.8	41
104	Membrane modules for CO 2 capture based on PVDF hollow fibers with ionic liquids immobilized. Journal of Membrane Science, 2016, 498, 218-226.	8.2	41
105	Electrochemical Oxidation of Lignosulfonate: Total Organic Carbon Oxidation Kinetics. Industrial & Engineering Chemistry Research, 2008, 47, 9848-9853.	3.7	40
106	Impact of the global economic crisis on metal levels in particulate matter (PM) at an urban area in the Cantabria Region (Northern Spain). Environmental Pollution, 2011, 159, 1129-1135.	7.5	40
107	Non-dispersive absorption of CO2 in [emim][EtSO4] and [emim][Ac]: Temperature influence. Separation and Purification Technology, 2014, 132, 120-125.	7.9	40
108	Energy–water–food nexus in the Spanish greenhouse tomato production. Clean Technologies and Environmental Policy, 2016, 18, 1307-1316.	4.1	40

#	Article	IF	CITATIONS
109	Regional evaluation of particulate matter composition in an Atlantic coastal area (Cantabria region,) Tj ETQq1 2011, 101, 280-293.	1 0.784314 4.1	rgBT /Overlo 39
110	LTA/Poly(1â€trimethylsilylâ€1â€propyne) Mixedâ€Matrix Membranes for Highâ€Temperature CO ₂ /N ₂ Separation. Chemical Engineering and Technology, 2015, 38, 658-666.	1.5	39
111	Carbon dioxide capture by [emim] [Ac] ionic liquid in a polysulfone hollow fiber membrane contactor. International Journal of Greenhouse Gas Control, 2016, 52, 401-409.	4.6	39
112	Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology. Energies, 2018, 11, 3395.	3.1	39
113	Photovoltaic solar electrochemical oxidation (PSEO) for treatment of lignosulfonate wastewater. Journal of Chemical Technology and Biotechnology, 2010, 85, 821-830.	3.2	37
114	Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 2016, 157, 102-111.	7.9	37
115	Enhancing fouling resistance of polyethylene anion exchange membranes using carbon nanotubes and iron oxide nanoparticles. Desalination, 2017, 411, 19-27.	8.2	37
116	Innovative alternatives to methanol manufacture: Carbon footprint assessment. Journal of Cleaner Production, 2019, 225, 426-434.	9.3	37
117	Experimental study of the waste binder anhydrite in the solidification/ stabilization process of heavy metal sludges. Journal of Hazardous Materials, 1998, 57, 155-168.	12.4	36
118	Microstructural Changes in the Desulfurization Reaction at Low Temperature. Industrial & Engineering Chemistry Research, 1999, 38, 1384-1390.	3.7	36
119	Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal. Waste Management and Research, 2014, 32, 492-499.	3.9	36
120	Hollow Fiber Membrane Contactors in CO ₂ Desorption: A Review. Energy & En	5.1	36
121	Supported liquid membranes for the separation-concentration of phenol. 2. Mass-transfer evaluation according to fundamental equations. Industrial & Engineering Chemistry Research, 1992, 31, 1745-1753.	3.7	35
122	Ionic Liquids: Green Solvents for Chemical Processing. Journal of Chemistry, 2013, 2013, 1-2.	1.9	35
123	Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area. Atmospheric Research, 2014, 145-146, 80-91.	4.1	35
124	Photovoltaic solar electrodialysis with bipolar membranes. Desalination, 2018, 433, 155-163.	8.2	35
125	Catalyst coated membrane electrodes for the gas phase CO2 electroreduction to formate. Catalysis Today, 2020, 346, 58-64.	4.4	35
126	Separation of L-Phenylalanine by Nondispersive Extraction and Backextraction. Equilibrium and Kinetic Parameters. Separation Science and Technology, 1998, 33, 119-139.	2.5	34

#	Article	IF	Citations
127	Modeling of particle growth: Application to water treatment in a fluidized bed reactor. Chemical Engineering Journal, 2007, 134, 66-71.	12.7	34
128	Comparison of Flat and Hollowâ€Fiber Mixedâ€Matrix Composite Membranes for CO ₂ Separation with Temperature. Chemical Engineering and Technology, 2017, 40, 997-1007.	1.5	34
129	Ionic liquidâ€based three phase partitioning (<scp>ILTPP</scp>) systems for whey protein recovery: ionic liquid selection. Journal of Chemical Technology and Biotechnology, 2015, 90, 939-946.	3.2	33
130	Environmental behaviour of stabilised foundry sludge. Journal of Hazardous Materials, 2004, 109, 95-104.	12.4	32
131	Design of the Photovoltaic Solar Electro-Oxidation (PSEO) process for wastewater treatment. Chemical Engineering Research and Design, 2011, 89, 2679-2685.	5.6	32
132	Human Risk Assessment of Contaminated Soils by Oil Products: Total TPH Content Versus Fraction Approach. Human and Ecological Risk Assessment (HERA), 2014, 20, 1231-1248.	3.4	32
133	Life Cycle Assessment model for the chlor-alkali process: A comprehensive review of resources and available technologies. Sustainable Production and Consumption, 2017, 12, 44-58.	11.0	32
134	Nondispersive Extraction of Cr(VI) with Aliquat 336: Influence of Carrier Concentration. Separation Science and Technology, 1996, 31, 271-282.	2.5	31
135	Kinetics of dry flue gas desulfurization at low temperatures using Ca(OH)2: competitive reactions of sulfation and carbonation. Chemical Engineering Science, 2001, 56, 1387-1393.	3.8	31
136	Stochastic MILP model for optimal timing of investments in CO2 capture technologies under uncertainty in prices. Energy, 2013, 54, 343-351.	8.8	31
137	LCA-based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain. Energies, 2019, 12, 1407.	3.1	31
138	Environmental sustainability assessment of seawater reverse osmosis brine valorization by means of electrodialysis with bipolar membranes. Environmental Science and Pollution Research, 2020, 27, 1256-1266.	5.3	31
139	Continuous electroconversion of CO2 into formate using 2 nm tin oxide nanoparticles. Applied Catalysis B: Environmental, 2021, 297, 120447.	20.2	31
140	Kinetic model for desulfurization at low temperatures using calcium hydroxide. Chemical Engineering Science, 1990, 45, 3427-3433.	3.8	30
141	Trade-Offs between Nutrient Circularity and Environmental Impacts in the Management of Organic Waste. Environmental Science & Environmental Environmental Impacts in the Management of Organic Waste & Environmental Environmental Impacts in the Management of Organic Waste & Environmental	10.0	30
142	Integrated countercurrent reverse osmosis cascades for hydrogen peroxide ultrapurification. Computers and Chemical Engineering, 2012, 41, 67-76.	3.8	29
143	Environmental sustainability of alternative marine propulsion technologies powered by hydrogen - a life cycle assessment approach. Science of the Total Environment, 2022, 820, 153189.	8.0	29
144	SO2 reaction with Ca(OH)2 at medium temperatures (300–425°C). Chemical Engineering Science, 1998, 53, 1869-1881.	3.8	28

#	Article	lF	CITATION
145	When product diversification influences life cycle impact assessment: A case study of canned anchovy. Science of the Total Environment, 2017, 581-582, 629-639.	8.0	28
146	Kinetic analysis of thermogravimetric data; discrimination of integral models. Thermochimica Acta, 1984, 73, 101-108.	2.7	27
147	Internal mass transfer in hollow fiber supported liquid membranes. AICHE Journal, 1993, 39, 521-525.	3.6	27
148	Mathematical modelling of phenol photooxidation: Kinetics of the process toxicity. Chemical Engineering Journal, 2007, 134, 23-28.	12.7	27
149	Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature. Membranes, 2016, 6, 28.	3.0	27
150	Introducing life cycle thinking to define best available techniques for products: Application to the anchovy canning industry. Journal of Cleaner Production, 2017, 155, 139-150.	9.3	27
151	Characterization of metal finishing sludges: influence of the pH. Journal of Hazardous Materials, 2000, 79, 63-75.	12.4	26
152	Life cycle assessment of technologies for partial dealcoholisation of wines. Sustainable Production and Consumption, 2015, 2, 29-39.	11.0	26
153	Energy Embedded in Food Loss Management and in the Production of Uneaten Food: Seeking a Sustainable Pathway. Energies, 2019, 12, 767.	3.1	26
154	Viability of the separation of Cd from highly concentrated Niâ°Cd mixtures by non-dispersive solvent extraction. Chemical Engineering Journal, 1998, 70, 237-243.	12.7	25
155	Influence of commercial and residual sorbents and silicates as additives on the stabilisation/solidification of organic and inorganic industrial waste. Journal of Hazardous Materials, 2009, 164, 755-761.	12.4	25
156	Ultrapurification of hydrogen peroxide solution from ionic metals impurities to semiconductor grade by reverse osmosis. Separation and Purification Technology, 2010, 76, 44-51.	7.9	25
157	Analysis and Modeling of the Continuous Electro-oxidation Process for Organic Matter Removal in Urban Wastewater Treatment. Industrial & Engineering Chemistry Research, 2013, 52, 7534-7540.	3.7	25
158	Minimization of Resource Consumption and Carbon Footprint of a Circular Organic Waste Valorization System. ACS Sustainable Chemistry and Engineering, 2018, 6, 3493-3501.	6.7	25
159	Enhancement of the electrochemical reduction of CO2 to methanol and suppression of H2 evolution over CuO nanowires. Electrochimica Acta, 2020, 363, 137207.	5.2	25
160	Desulfurization yield of calcium hydroxide/fly-ash mixtures. Thermogravimetric determination. Thermochimica Acta, 1996, 286, 173-185.	2.7	24
161	Prospective CO2 emissions from energy supplying systems: photovoltaic systems and conventional grid within Spanish frame conditions. International Journal of Life Cycle Assessment, 2010, 15, 557-566.	4.7	24
162	Photovoltaic solar electro-oxidation (PSEO) process for wastewater treatment. Chemical Engineering Journal, 2011, 170, 7-13.	12.7	24

#	Article	IF	Citations
163	Ionic Liquid-Based Three Phase Partitioning (ILTPP) for Lactoferrin Recovery. Separation Science and Technology, 2014, 49, 957-965.	2.5	24
164	Economics of Enhancing Nutrient Circularity in an Organic Waste Valorization System. Environmental Science & Environmental Sci	10.0	24
165	Gas–liquid–solid reaction system for <scp>CO₂</scp> electroreduction to formate without using supporting electrolyte. AICHE Journal, 2020, 66, e16299.	3 . 6	24
166	Post-combustion CO2 capture by coupling [emim] cation based ionic liquids with a membrane contactor; Pseudo-steady-state approach. International Journal of Greenhouse Gas Control, 2020, 99, 103076.	4.6	24
167	Deep Decarbonization of the Cement Sector: A Prospective Environmental Assessment of CO ₂ Recycling to Methanol. ACS Sustainable Chemistry and Engineering, 2022, 10, 267-278.	6.7	24
168	Distribution of butyltin and derivatives in oyster shells and trapped sediments of two estuaries in Cantabria (Northern Spain). Chemosphere, 2007, 67, 623-629.	8.2	23
169	Evaluation of the urban/rural particle-bound PAH and PCB levels in the northern Spain (Cantabria) Tj ETQq $1\ 1\ 0.75$	843]4 rgE 2.7	3T /Overlock
170	Optimum design of reverse osmosis systems for hydrogen peroxide ultrapurification. AICHE Journal, 2012, 58, 3718-3730.	3.6	23
171	Synthesis and Characterization of ETS-10/Chitosan Nanocomposite Membranes for Pervaporation. Separation Science and Technology, 2014, 49, 1903-1909.	2.5	23
172	Local source identification of trace metals in urban/industrial mixed land-use areas with daily PM10 limit value exceedances. Atmospheric Research, 2016, 171, 92-106.	4.1	23
173	The carbon footprint of Power-to-Synthetic Natural Gas by Photovoltaic solar powered Electrochemical Reduction of CO <mml:math altimg="si14.gif" display="inline" id="d1e1488" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub><td>11.0</td><td>23</td></mml:math>	11.0	23
174	A comparison of models for assessing human risks of petroleum hydrocarbons in polluted soils. Environmental Modelling and Software, 2014, 55, 61-69.	4.5	22
175	PHENOL RECOVERY WITH SLM USING "CYANEX 923― Chemical Engineering Communications, 1993, 120, 85-97.	2.6	21
176	Ecotoxicity Assessment of Stabilized/Solidified Foundry Sludge. Environmental Science & Emp; Technology, 2004, 38, 1897-1900.	10.0	21
177	Modeling of zinc solubility in stabilized/solidified electric arc furnace dust. Journal of Hazardous Materials, 2007, 144, 720-724.	12.4	21
178	lonic liquid recovery alternatives in ionic liquidâ€based threeâ€phase partitioning (ILTPP). AICHE Journal, 2014, 60, 3577-3586.	3.6	21
179	Electrosynthesis of dimethyl carbonate from methanol and <scp>CO₂</scp> using potassium methoxide and the ionic liquid [bmim][Br] in a filterâ€press cell: a study of the influence of cell configuration. Journal of Chemical Technology and Biotechnology, 2016, 91, 507-513.	3.2	21
180	Effect of relative humidity on the gas transport properties of zeolite A/PTMSP mixed matrix membranes. RSC Advances, 2018, 8, 3536-3546.	3.6	21

#	Article	IF	Citations
181	Mathematical modeling of CO ₂ absorption with ionic liquids in a membrane contactor, study of absorption kinetics and influence of temperature. Journal of Chemical Technology and Biotechnology, 2020, 95, 1844-1857.	3.2	21
182	Efficient photoelectrochemical conversion of CO2 to ethylene and methanol using a Cu cathode and TiO2 nanoparticles synthesized in supercritical medium as photoanode. Journal of Environmental Chemical Engineering, 2022, 10, 107441.	6.7	21
183	Organochlorine pesticide residues in sediments from coastal environment of Cantabria (northern) Tj ETQq1 1 0.3385-401.	784314 rg 2.7	BT /Overlock 20
184	A group contribution method for the influence of the temperature in the viscosity of magnetic ionic liquids. Fluid Phase Equilibria, 2013, 360, 29-35.	2.5	20
185	The critical role of the operating conditions on the Fenton oxidation of 2-chlorophenol: Assessment of PCDD/Fs formation. Journal of Hazardous Materials, 2014, 279, 579-585.	12.4	20
186	Incorporating linear programing and life cycle thinking into environmental sustainability decision-making: a case study on anchovy canning industry. Clean Technologies and Environmental Policy, 2017, 19, 1897-1912.	4.1	20
187	Separation of CO2-N2 gas mixtures: Membrane combination and temperature influence. Separation and Purification Technology, 2017, 188, 197-205.	7.9	20
188	Optimal design of industrial scale continuous process for fractionation by membrane technologies of protein hydrolysate derived from fish wastes. Separation and Purification Technology, 2018, 197, 137-146.	7.9	20
189	Revisiting the LCA+DEA method in fishing fleets. How should we be measuring efficiency?. Marine Policy, 2018, 91, 34-40.	3.2	20
190	Hydrogen Utilization in the Sustainable Manufacture of CO ₂ -Based Methanol. Industrial & Amp; Engineering Chemistry Research, 2022, 61, 6163-6172.	3.7	20
191	Purification of dilute hydrofluoric acid by commercial ion exchange resins. Separation and Purification Technology, 2007, 56, 118-125.	7.9	19
192	Preparation and characterization of novel chitosanâ€based mixed matrix membranes resistant in alkaline media. Journal of Applied Polymer Science, 2015, 132, .	2.6	19
193	Recovery of desalination brines: separation of calcium, magnesium and sulfate as a pre-treatment step. Desalination and Water Treatment, 2015, 56, 3617-3625.	1.0	19
194	Hybrid Solvent ([emim][Ac]+water) To Improve the CO ₂ Capture Efficiency in a PVDF Hollow Fiber Contactor. ACS Sustainable Chemistry and Engineering, 2017, 5, 734-743.	6.7	19
195	Sustainable Membraneâ€Coated Electrodes for CO ₂ Electroreduction to Methanol in Alkaline Media. ChemElectroChem, 2019, 6, 5273-5282.	3.4	19
196	Continuous electroreduction of CO2 towards formate in gas-phase operation at high current densities with an anion exchange membrane. Journal of CO2 Utilization, 2022, 56, 101822.	6.8	19
197	Binary copper-bismuth catalysts for the electrochemical reduction of CO2: Study on surface properties and catalytic activity. Chemical Engineering Journal, 2022, 445, 136575.	12.7	19
198	Modelling of in-duct desulfurization reactors. Chemical Engineering Journal, 2005, 107, 119-125.	12.7	18

#	Article	IF	Citations
199	Decade-long monitoring reveals a transient distortion of baseline butyltin bioaccumulation pattern in gastropods. Marine Pollution Bulletin, 2010, 60, 931-934.	5.0	18
200	Assessment of PCDD/Fs and PCBs in Sediments from the Spanish Northern Atlantic Coast. Water, Air, and Soil Pollution, 2011, 221, 287-299.	2.4	18
201	Analysis, modelling and simulation of hydrogen peroxide ultrapurification by multistage reverse osmosis. Chemical Engineering Research and Design, 2012, 90, 442-452.	5.6	18
202	Continuous Electrochemical Reduction of CO2 to Formate: Comparative Study of the Influence of the Electrode Configuration with Sn and Bi-Based Electrocatalysts. Molecules, 2020, 25, 4457.	3.8	18
203	Kinetic interpretation of the thermal decomposition of anilinium octamolybdate at different heating rate. Journal of Thermal Analysis, 1984, 29, 1131-1137.	0.6	17
204	Flue gas desulfurization at low temperatures. Characterization of the structural changes in the solid sorbent. Powder Technology, 1993, 75, 167-172.	4.2	17
205	Sulfur dioxide nonâ€dispersive absorption in N,Nâ€dimethylaniline using a ceramic membrane contactor. Journal of Chemical Technology and Biotechnology, 2008, 83, 1570-1577.	3.2	17
206	Environmental Sustainability Normalization of Industrial Processes. Computer Aided Chemical Engineering, 2009, , 1105-1109.	0.5	17
207	Environmental Sustainability Assessment of an Innovative Cr (III) Passivation Process. ACS Sustainable Chemistry and Engineering, 2013, 1, 481-487.	6.7	17
208	CO2electro-valorization to dimethyl carbonate from methanol using potassium methoxide and the ionic liquid [bmim][Br] in a filter-press electrochemical cell. Journal of Chemical Technology and Biotechnology, 2015, 90, 1433-1438.	3.2	17
209	Hybrid Ionic Liquid-Chitosan Membranes for CO2 Separation: Mechanical and Thermal Behavior. International Journal of Chemical Reactor Engineering, 2016, 14, 713-718.	1.1	17
210	Introducing the Green Protein Footprint method as an understandable measure of the environmental cost of anchovy consumption. Science of the Total Environment, 2018, 621, 40-53.	8.0	17
211	Electrochemical Conversion of CO 2 to Value-Added Products. , 2018, , 29-59.		17
212	Nutritional data management of food losses and waste under a life cycle approach: Case study of the Spanish agri-food system. Journal of Food Composition and Analysis, 2019, 82, 103223.	3.9	17
213	Environmental performance of alternatives to treat fly ash from a waste to energy plant. Journal of Cleaner Production, 2019, 231, 1016-1026.	9.3	17
214	Environmental behavior of cement-based stabilized foundry sludge products incorporating additives. Journal of Hazardous Materials, 2004, 109, 45-52.	12.4	16
215	MINLP model for optimizing electricity production from coal-fired power plants considering carbon management. Energy Policy, 2012, 51, 493-501.	8.8	16
216	Effective Lifetime Study of Commercial Reverse Osmosis Membranes for Optimal Hydrogen Peroxide Ultrapurification Processes. Industrial & Engineering Chemistry Research, 2013, 52, 17270-17284.	3.7	16

#	Article	lF	CITATIONS
217	Copper(II) invigorated EHU-30 for continuous electroreduction of CO2 into value-added chemicals. Scientific Reports, 2022, 12, .	3.3	16
218	Kinetic study of the hydrothermal reaction of fly ash with ca(oh)2 in the preparation of desulfurant sorbents. Chemical Engineering Communications, 2002, 189, 310-321.	2.6	15
219	Resources reduction in the fluorine industry: fluoride removal and recovery in a fluidized bed crystallizer. Clean Technologies and Environmental Policy, 2008, 10, 203-210.	4.1	15
220	Improvement of calcium fluoride crystallization by means of the reduction of fines formation. Chemical Engineering Journal, 2009, 154, 231-235.	12.7	15
221	Kinetic analysis and biodegradability of the Fenton mineralization of bisphenol A. Journal of Chemical Technology and Biotechnology, 2014, 89, 1228-1234.	3.2	15
222	High Performance of Alkaline Anion-Exchange Membranes Based on Chitosan/Poly (vinyl) Alcohol Doped with Graphene Oxide for the Electrooxidation of Primary Alcohols. Journal of Carbon Research, 2016, 2, 10.	2.7	15
223	Potential formation of PCDD/Fs in triclosan wastewater treatment: An overall toxicity assessment under a life cycle approach. Science of the Total Environment, 2020, 707, 135981.	8.0	15
224	Toward the Decarbonization of Hard-To-Abate Sectors: A Case Study of the Soda Ash Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 11956-11966.	6.7	15
225	Effect of a variable solute distribution coefficient on mass separation in hollow fibers. Industrial & Lamp; Engineering Chemistry Research, 1992, 31, 1362-1366.	3.7	14
226	Flue gas desulphurization at low temperatures. Thermochimica Acta, 1992, 207, 255-264.	2.7	14
227	The influence of binder/waste ratio on leaching characteristics of solidified/stabilized steel foundry dusts. Environmental Technology (United Kingdom), 1994, 15, 343-351.	2.2	14
228	Environmental and economic evaluation of SO2 recovery in a ceramic hollow fibre membrane contactor. Chemical Engineering and Processing: Process Intensification, 2012, 52, 151-154.	3.6	14
229	A comparative study between the fluxes of trace elements in bulk atmospheric deposition at industrial, urban, traffic, and rural sites. Environmental Science and Pollution Research, 2015, 22, 13427-13441.	5. 3	14
230	Continuous conversion of CO ₂ to alcohols in a TiO ₂ photoanodeâ€driven photoelectrochemical system. Journal of Chemical Technology and Biotechnology, 2020, 95, 1876-1882.	3.2	14
231	Integral kinetic analysis from temperature programmed reaction data: alkaline hydrolysis of ethyl acetate as test reaction. Thermochimica Acta, 1989, 141, 169-180.	2.7	13
232	Leaching Behavior of Lead, Chromium (III), and Zinc in Cement/Metal Oxides Systems. Journal of Environmental Engineering, ASCE, 2003, 129, 532-538.	1.4	13
233	Multiobjective optimization of membrane processes for chemicals ultrapurification. Computer Aided Chemical Engineering, 2012, , 542-546.	0.5	13
234	Microalgae biorefinery alternatives and hazard evaluation. Chemical Engineering Research and Design, 2016, 107, 117-125.	5.6	13

#	Article	IF	CITATIONS
235	Preparation and Identification of Optimal Synthesis Conditions for a Novel Alkaline Anion-Exchange Membrane. Polymers, 2018, 10, 913.	4.5	13
236	Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach. Applied Sciences (Switzerland), 2020, 10, 7461.	2.5	13
237	Application of chitosan to cobalt recovery: Evaluation by factorial design of experiments. Journal of Applied Polymer Science, 1987, 33, 2107-2115.	2.6	12
238	Feasibility analysis of a CO ₂ recycling plant for the decarbonization of formate and dihydroxyacetone production. Green Chemistry, 2021, 23, 4840-4851.	9.0	12
239	Flue-gas desulfurization at medium temperatures. Kinetic model validation from thermogravimetric data. Fuel, 1998, 77, 749-755.	6.4	11
240	Environmental Characterization of Metal Finishing Sludges. Environmental Technology (United) Tj ETQq0 0 0 rgB	T <u> O</u> yerloo	ck 10 Tf 50 5
241	Cement-Waste and Clay-Waste Derived Products from Metal Wastes. Chemical Engineering Research and Design, 2001, 79, 38-44.	5.6	11
242	Mechanistical and non-linear modelling approaches to in-duct desulfurization. Chemical Engineering and Processing: Process Intensification, 2005, 44, 709-715.	3.6	11
243	Hybrid Molecular QSAR Model for Toxicity Estimation: Application to Ionic Liquids. Computer Aided Chemical Engineering, 2009, 26, 63-67.	0.5	11
244	Preliminary assessment of soil contamination by hydrocarbon storage activities: Main site investigation selection. Journal of Geochemical Exploration, 2014, 147, 283-290.	3.2	11
245	Mass Transfer Analysis of CO ₂ Capture by PVDF Membrane Contactor and Ionic Liquid. Chemical Engineering and Technology, 2017, 40, 678-690.	1.5	11
246	Monetizing Environmental Footprints: Index Development and Application to a Solar-Powered Chemicals Self-Supplied Desalination Plant. ACS Sustainable Chemistry and Engineering, 2018, 6, 14533-14541.	6.7	11
247	Supported Ionic Liquid Membranes for Separation of Lignin Aqueous Solutions. Processes, 2018, 6, 143.	2.8	11
248	CO2 Desorption Performance from Imidazolium Ionic Liquids by Membrane Vacuum Regeneration Technology. Membranes, 2020, 10, 234.	3.0	11
249	Noncooperative Game Theory To Ensure the Marketability of Organic Fertilizers within a Sustainable Circular Economy. ACS Sustainable Chemistry and Engineering, 2020, 8, 3809-3819.	6.7	11
250	Effect of Humidity on CO2/N2 and CO2/CH4 Separation Using Novel Robust Mixed Matrix Composite Hollow Fiber Membranes: Experimental and Model Evaluation. Membranes, 2020, 10, 6.	3.0	11
251	Unraveling the links between public spending and Sustainable Development Goals: Insights from data envelopment analysis. Science of the Total Environment, 2021, 786, 147459.	8.0	11
252	CO2 electroreduction: Sustainability analysis of the renewable synthetic natural gas. International Journal of Greenhouse Gas Control, 2022, 114, 103549.	4.6	11

#	Article	IF	CITATIONS
253	Kinetic behaviour of non-isothermal lime hydration. The Chemical Engineering Journal, 1989, 40, 93-99.	0.3	10
254	Thermal dehydration of calcium hydroxide. 2. Surface area evolution. Industrial & Engineering Chemistry Research, 1990, 29, 1606-1611.	3.7	10
255	ALKYD PAINT WASTE CHARACTERIZATION AND DISTILLATION. Chemical Engineering Communications, 2005, 192, 1490-1504.	2.6	10
256	Modeling of the binodal curve of ionic liquid/salt aqueous systems. Fluid Phase Equilibria, 2016, 426, 10-16.	2.5	10
257	Electrochemical impedance spectroscopy of enhanced layered nanocomposite ion exchange membranes. Journal of Membrane Science, 2017, 541, 611-620.	8.2	10
258	From Goods to Services: The Life Cycle Assessment Perspective. Journal of Service Science Research, 2019, 11, 17-45.	0.8	10
259	Effect of Water and Organic Pollutant in CO2/CH4 Separation Using Hydrophilic and Hydrophobic Composite Membranes. Membranes, 2020, 10, 405.	3.0	10
260	Life cycle assessment of zinc and iron recovery from spent pickling acids by membrane-based solvent extraction and electrowinning. Journal of Environmental Management, 2022, 318, 115567.	7.8	10
261	Kinetic analysis for liquid-phase reactions from programmed temperature data. Thermochimica Acta, 1985, 94, 323-331.	2.7	9
262	Waste minimisation in a hard chromiun plating small medium enterprise (SME). Waste Management, 2002, 22, 931-936.	7.4	9
263	Contribution to closing the loop on waste materials: valorization of bottom ash from waste-to-energy plants under a life cycle approach. Journal of Material Cycles and Waste Management, 2018, 20, 1507-1515.	3.0	9
264	Connecting wastes to resources for clean technologies in the chlor-alkali industry: a life cycle approach. Clean Technologies and Environmental Policy, 2018, 20, 229-242.	4.1	9
265	Learning-by-Doing: The Chem-E-Car Competition \hat{A}^{\otimes} in the University of Cantabria as case study. Education for Chemical Engineers, 2019, 26, 14-23.	4.8	9
266	Comparison of Supported Ionic Liquid Membranes and Polymeric Ultrafiltration and Nanofiltration Membranes for Separation of Lignin and Monosaccharides. Membranes, 2020, 10, 29.	3.0	9
267	Modelling and simulation of hollow fiber membrane vacuum regeneration for CO2 desorption processes using ionic liquids. Separation and Purification Technology, 2021, 277, 119465.	7.9	9
268	Kinetics of metal extraction: Model discrimination and parameter estimation. Chemical Engineering and Processing: Process Intensification, 1990, 27, 13-18.	3.6	8
269	INFLUENCE OF PARTICLE SIZE AND STRUCTURAL PROPERTIES OF SORBENTS PREPARED FROM FLY-ASH AND Ca(OH)2 ON THE SO2 REMOVAL ABILITY. Chemical Engineering Communications, 2000, 182, 69-80.	2.6	8
270	SO2Removal in the Filter Cake of a Jet-Pulsed Filter:Â A Combined Filter and Fixed-Bed Reaction Model. Industrial & Engineering Chemistry Research, 2002, 41, 5459-5469.	3.7	8

#	Article	IF	CITATIONS
271	In Silico Evaluation of Ultrafiltration and Nanofiltration Membrane Cascades for Continuous Fractionation of Protein Hydrolysate from Tuna Processing Byproduct. Industrial & Engineering Chemistry Research, 2016, 55, 7493-7504.	3.7	8
272	Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology. Membranes, 2018, 8, 32.	3.0	8
273	Kinetic analysis for liquid-phase reactions from programmed temperature data. Thermochimica Acta, 1985, 94, 333-343.	2.7	7
274	Environmental Characterisation of Ferrous Foundry Wastes. Environmental Technology (United) Tj ETQq0 0 0 rg	BT JOverlo	ock ₇ 10 Tf 50 6
275	Modeling of Amphoteric Heavy Metals Solubility in Stabilized/Solidified Steel Foundry Dust. Environmental Engineering Science, 2009, 26, 251-262.	1.6	7
276	Contribution of point sources to trace metal levels in urban areas surrounded by industrial activities in the Cantabria Region (Northern Spain). Procedia Environmental Sciences, 2011, 4, 76-86.	1.4	7
277	Membrane process optimization for hydrogen peroxide ultrapurification. Computer Aided Chemical Engineering, 2011, , 678-682.	0.5	7
278	Discussion on graphical methods to identify point sources from wind and particulate matter-bound metal data. Urban Climate, 2014, 10, 671-681.	5.7	7
279	Thermal dehydration of (C6H5î—,NH3)4Mo8O26 · 2H2O. Isothermal kinetic analysis. Thermochimica Acta, 1984, 75, 1-8.	2.7	6
280	Reaction scheme in the non-isothermal decomposition of (C6H5NH3)4Mo8O26 $\hat{A}\cdot$ 2 H2O. Journal of Thermal Analysis, 1984, 29, 589-596.	0.6	6
281	Thermogravimetric determination of the influence of water vapour in the FGD in-duct injection at low temperatures. Journal of Chemical Technology and Biotechnology, 2000, 75, 484-490.	3.2	6
282	Prediction of TCLP leachates of electric arc furnace dust/cement products using neural network analysis. Environmental Progress, 2002, 21, 95-104.	0.7	6
283	Sorbent behavior in urban waste incineration: acid gas removal and thermogravimetric characterization. Thermochimica Acta, 2003, 397, 227-236.	2.7	6
284	Use of membrane contactors as an efficient alternative to reduce effluent ecotoxicity. Desalination, 2006, 191, 79-85.	8.2	6
285	Measuring the Vulnerability of an Energy Intensive Sector to the EU ETS under a Life Cycle Approach: The Case of the Chlor-Alkali Industry. Sustainability, 2017, 9, 837.	3.2	6
286	The role of power-to-gas in the European Union. Green Chemical Engineering, 2020, 1, 6-8.	6.3	6
287	Kinetic analysis of the liquid-phase depolymerization of trioxane from programmed-temperature data. Journal of Thermal Analysis, 1987, 32, 997-1004.	0.6	5
288	Life-cycle assessment as a tool to evaluate the environmental impact of hot-dip galvanisation. Journal of Cleaner Production, 2021, 290, 125676.	9.3	5

#	Article	IF	CITATIONS
289	Techno-economic and environmental assessment of methane oxidation layer measures through small-scale clean development mechanism $\hat{a} \in \text{``}$ The case of the Seychelles. Waste Management, 2021, 124, 244-253.	7.4	5
290	Thermogravimetric study of (C6H5NH3)4Mo8O26·2H2O. isothermal decomposition of aniline. Journal of Thermal Analysis, 1984, 29, 251-255.	0.6	4
291	Kinetic modeling of the toluene chloromethylation. Industrial & Engineering Chemistry Research, 1987, 26, 1725-1735.	3.7	4
292	Relation between homogeneous acid catalysis and ion exchange resins using a test reaction. Applied Catalysis, 1987, 31, 179-191.	0.8	4
293	Kinetic studies on low temperature, dry flue gas desulphurization. Coal Science and Technology, 1995, 24, 1859-1862.	0.0	4
294	Life Cycle Assessment as a Tool for Cleaner Production: Application to Aluminium Trifluoride. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	4
295	Recovery of Sulfur Dioxide Using Non-Dispersive Absorption. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	4
296	PERFORMANCE ASSESSMENT OF A POLYMER ELECTROLYTE MEMBRANE ELECTROCHEMICAL REACTOR UNDER ALKALINE CONDITIONS â° A CASE STUDY WITH THE ELECTROOXIDATION OF ALCOHOLS. Electrochimica Acta, 2016, 206, 165-175.	5.2	4
297	Multiobjective Optimization of Membrane Networks for Fractionation of Protein Hydrolysate from Fish By-Products. Computer Aided Chemical Engineering, 2016, , 415-420.	0.5	4
298	The behaviour of thienotriazolodiazepine drugs in acidic medium. Kinetics of hydrolysis of brotizolam. Die Pharmazie, 1988, 43, 212-3.	0.5	4
299	Desulfurization rate at low temperatures using calcium hydroxide and fly ash. Coal Science and Technology, 1995, 24, 1863-1866.	0.0	3
300	Desalination by Renewable Energy-Powered Electrodialysis Processes., 2019,, 111-131.		3
301	Variability in metal deposition among industrial, rural and urban areas in the Cantabria Region (Northern Spain). , 2013, , .		3
302	Analysis and modelling of segregative reactions. 1-Butyl alcohol esterification with hydrobromic acid. Chemical Engineering Science, 1986, 41, 3031-3036.	3.8	2
303	Thermal decomposition of (C6H5-NH3)4Mo8O26 \hat{A} 2H2O. isothermal and non-isothermal kinetic analysis. Thermochimica Acta, 1986, 98, 81-87.	2.7	2
304	Purification of industrial acrylamide by ion exchange. Industrial & Engineering Chemistry Process Design and Development, 1986, 25, 771-776.	0.6	2
305	Analysis and modelling of 1-butyl alcohol esterification with hydrobromic acid and sulfuric acid as homogeneous catalyst. Chemical Engineering Science, 1987, 42, 2467-2472.	3.8	2
306	Kinetic analysis of homogeneous acid catalysis in the chloromethylation of toluene. Journal of Molecular Catalysis, 1987, 39, 105-113.	1.2	2

#	Article	IF	CITATIONS
307	Conversion into powder in the thermal decomposition of a complex solid containing ammonium hexafluoro-aluminate and aluminium oxide. Powder Technology, 1989, 57, 151-155.	4.2	2
308	Inertization of toxic wastes. Toxicological and Environmental Chemistry, 1991, 31, 593-601.	1.2	2
309	Environmental assessment of lubricants before and after wire drawing process. Journal of Hazardous Materials, 2001, 85, 181-191.	12.4	2
310	Simulation of the FGD in-duct injection technology using complex kinetic models. Computer Aided Chemical Engineering, 2001, , 147-152.	0.5	2
311	Binders based on cement/glassy combustion residues for the stabilisation/solidification of industrial wastes. Journal of Chemical Technology and Biotechnology, 2002, 77, 326-330.	3.2	2
312	Environmental assessment of cement/foundry sludge products. Environmental Technology (United) Tj ETQq0 0 C) rgBT /Ove	erlgck 10 Tf 5
313	Influence of the Organic Compounds on the Ecotoxicity in the Treatment of Foundry Sludge and Olive Mill Waste. Annali Di Chimica, 2006, 96, 505-514.	0.6	2
314	Mechanical Properties and Environmental Assessment of Mortars Containing Metallic Oxides. Journal of Environmental Engineering, ASCE, 2006, 132, 949-955.	1.4	2
315	Removal of Arsenic(III), Chromium(III) and Iron(III) Traces from Hydrofluoric Acid Solutions by Specialty Anion Exchangers. Solvent Extraction and Ion Exchange, 2009, 27, 727-744.	2.0	2
316	Intensification of Sulfur Dioxide Absorption: Environmental and Economic Optimization. Computer Aided Chemical Engineering, 2010, , 1003-1008.	0.5	2
317	Assessment of regional metal levels in ambient air by statistical regression models. Journal of Environmental Monitoring, 2011, 13, 1991.	2.1	2
318	Separation of Proteins by Ionic Liquid-Based Three-Phase Partitioning. , 2014, , 207-234.		2
319	An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization. Catalysts, 2020, 10, 1226.	3.5	2
320	Phenol Recovery with Supported Liquid Membranes: Experimental Study., 1991,, 647-651.		2
321	Einfluß der Reaktionsbedingungen bei der Chlormethylierung von Styrol. Angewandte Makromolekulare Chemie, 1982, 105, 91-97.	0.2	1
322	Kinetic analysis of liquid-phase depolymerization of trioxane from programmed temperature data. Journal of Thermal Analysis, 1987, 32, 1333-1344.	0.6	1
323	On the modelling of catalytic activity in homogeneous liquid phase acid-base reactions. Journal of Molecular Catalysis, 1987, 43, 51-63.	1.2	1
324	Integration along the lifecycle of calcium fluoride in the fluorine industry. Computer Aided Chemical Engineering, 2006, , 811-816.	0.5	1

#	Article	IF	CITATIONS
325	Multi-objective optimization of the electricity production from coal burning. Computer Aided Chemical Engineering, 2011, 29, 1814-1818.	0.5	1
326	Decision tool for the selection among different reverse osmosis membranes for hydrogen peroxide ultrapurification. Computer Aided Chemical Engineering, 2013, , 745-750.	0.5	1
327	Integration of quality-dependent prices in the optimization strategy for chemicals ultrapurification by reverse osmosis membrane cascades. Desalination and Water Treatment, 2015, 56, 3486-3493.	1.0	1
328	Life cycle modelling of a handicraft sector: the anchovy canning industry in Cantabria (Northern) Tj ETQq0 0 0 rgl	3T/Qverlo	ck 10 Tf 50 (
329	Estimating airborne heavy metal concentrations in Dunkerque (northern France). Arabian Journal of Geosciences, 2016, 9, 1.	1.3	1
330	Aiding eco-labelling process and its implementation: Environmental Impact Assessment Methodology to define Product Category Rules for canned anchovies. MethodsX, 2017, 4, 143-152.	1.6	1
331	Addressing decision-making in the process industry using life cycle approach coupled to Linear Programming: A case study on anchovy canning industry in Cantabria Region (Northern Spain). Computer Aided Chemical Engineering, 2017, 40, 2023-2028.	0.5	1
332	Environmental Sustainability Assessment of Electricity From Fossil Fuel Combustion: Carbon Footprint. Low Carbon Economy, 2010, 01, 86-91.	1.2	1
333	SIMULATION OF THE FGD IN-DUCT INJECTION PROCESS AT LOW TEMPERATURES WITH COMPETITIVE REACTIONS. Clean Air, 2003, 4, 53-69.	0.0	1
334	Mathematical Modelling of Phenol Recovery Using Supported Liquid Membranes Process Metallurgy, 1992, , 1539-1542.	0.1	1
335	Synergistic Effect of Combining Titanosilicate and 1-Ethyl-3-Methylimidazolium Acetate in Mixed Matrix Membranes for Efficient C02 Separation. European Journal of Sustainable Development (discontinued), 2015, 4, .	0.9	1
336	Mathematical modelling of industrial reactions using thermoanalytical methods. Thermochimica Acta, 1988, 134, 441-444.	2.7	0
337	Solidification/stabilization Process For Steel Foundry Dust Using Cement Based Binders: Influence Of Processing Variables. Waste Management and Research, 1994, 12, 405-415.	3.9	0
338	Response to "Comments on thermal dehydration of calcium hydroxide. 1. Kinetic model and parameters". Industrial & Engineering Chemistry Research, 1994, 33, 448-448.	3.7	0
339	Analysis of literature data from 3,000 cement/waste products. Waste Management Series, 2000, 1, 332-343.	0.0	0
340	BEHAVIOUR OF CEMENT/PLATING WASTE DERIVED PRODUCTS: UNCONFINED COMPRESSIVE STRENGTH AND SETTING TIME. , 2002, , 77-86.		0
341	Modelling and process integration of carbon dioxide capture using membrane contactors. Computer Aided Chemical Engineering, 2011, 29, 1261-1265.	0.5	O
342	Analysis of Hybrid Reverse Osmosis Cascades for Ultrapurification of Chemicals. Procedia Engineering, 2012, 44, 1653-1654.	1.2	0

#	Article	IF	Citations
343	Multiobjective Optimization Applied to the Integration of Polyamide and Cellulose Acetate Reverse Osmosis Membranes in Hybrid Cascades for Ultrapurification of Wet Chemicals. Industrial & Description of Engineering Chemistry Research, 2015, 54, 1006-1014.	3.7	O
344	Estimation of PM10-Bound As, Cd, Ni and Pb Levels by Means of Statistical Modelling: PLSR and ANN Approaches. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	0
345	Regulated metal levels in particulate matter in the Cantabria region (Northern Spain) using multivariate linear regression (MLR). , 2010, , .		O
346	Multi-objective optimization of coal-fired electricity production with CO2 capture. Computer Aided Chemical Engineering, 2012, 30, 277-281.	0.5	0
347	Recovery of Cr(VI) with Emulsion Liquid Membranes (ELM) in Mechanically Stirred Contactors. , 1991, , 641-646.		O
348	Membrane Behaviour in Chromate Recovery Using Emulsion Liquid Membranes. Process Metallurgy, 1992, 7, 1585-1588.	0.1	0
349	MODELLING OF LIQUID-LIQUID NON-DISPERSIVE EXTRACTION PROCESSES IN HOLLOW FIBER MODULES. , 1997, , .		O
350	VIABILITY OF THE LIQUID-LIQUID SEPARATION OF CADMIUM FROM PHOSPHORIC ACID USING ALIQUAT 336 AS EXTRACTANT. , 1997 , , .		0
351	SEPARATION PROCESSES BY NON-DISPERSIVE LIQUID-LIQUID EXTRACTION. MATHEMATICAL MODELLING OF THE SEPARATION SELECTIVITY., 1997, , .		O
352	Optimization of ionic liquid recycling in Ionic Liquid-based Three Phase Partitioning processes. Computer Aided Chemical Engineering, 2015, 37, 1475-1480.	0.5	0
353	Renewable electricity integration at a regional level: Cantabria case study. Computer Aided Chemical Engineering, 2016, 38, 211-216.	0.5	0
354	Supported Magnetic Ionic Liquid Membranes. , 2016, , 1862-1863.		0
355	IMPROVING GAS BARRIER PROPERTIES USING MIXED MATRIX MEMBRANES BASED ON ION EXCHANGE CAPACITIES OF THE POLYMERS. , 0, , .		O
356	Solvent-free synthesis of heterometallic metal–organic frameworks for the electrocatalytic reduction of carbon dioxide. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e282-e282.	0.1	0
357	Study of alcohol diffusion through commercial anion exchange membranes for CO2 electrolyzers. , 0,		O
358	Continuous gas-phase electrochemical reduction of CO2 to formate using Bi Catalyst Coated Membrane Electrodes in a filter press reactor \hat{A} ., 0 ,,.		0
359	How to achieve the sustainability of the seafood sector in the European Atlantic Area?. IOP Conference Series: Materials Science and Engineering, 2021, 1196, 012010.	0.6	O