Oliver H Weiergräber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3549600/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of Pyrrolidine-2,3-diones as Novel Inhibitors of P. aeruginosa PBP3. Antibiotics, 2021, 10, 529.	3.7	11
2	Biochemical and Initial Structural Characterization of the Monocot Chimeric Jacalin OsJAC1. International Journal of Molecular Sciences, 2021, 22, 5639.	4.1	8
3	Interaction Mode of the Novel Monobactam AIC499 Targeting Penicillin Binding Protein 3 of Gram-Negative Bacteria. Biomolecules, 2021, 11, 1057.	4.0	10
4	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 6 9.1	22 Td (editio 1,430
5	Conformational heterogeneity coupled with \hat{l}^2 -fibril formation of a scaffold protein involved in chronic mental illnesses. Translational Psychiatry, 2021, 11, 639.	4.8	9

6	Deficiency of GABARAP but Not Its Paralogs Causes Enhanced EGF-Induced EGFR Degradation. Cells, 2020, 9, 1296.	4.1	3
7	Solution structure of the autophagy-related protein LC3C reveals a polyproline II motif on a mobile tether with phosphorylation site. Scientific Reports, 2019, 9, 14167.	3.3	15
8	Autophagy-Related Proteins GABARAP and LC3B Label Structures of Similar Size but Different Shape in Super-Resolution Imaging. Molecules, 2019, 24, 1833.	3.8	4
9	Phosphorylated tyrosine 93 of hepatitis C virus nonstructural protein 5A is essential for interaction with host c-Src and efficient viral replication. Journal of Biological Chemistry, 2019, 294, 7388-7402.	3.4	5
10	Structural Studies of Autophagy-Related Proteins. Methods in Molecular Biology, 2019, 1880, 17-56.	0.9	2
11	Biophysical insights from a single chain camelid antibody directed against the Disrupted-in-Schizophrenia 1 protein. PLoS ONE, 2018, 13, e0191162.	2.5	7
12	A structural organization for the Disrupted in Schizophrenia 1 protein, identified by high-throughput screening, reveals distinctly folded regions, which are bisected by mental illness-related mutations. Journal of Biological Chemistry, 2017, 292, 6468-6477.	3.4	22
13	The Atg8 Family of Proteins—Modulating Shape and Functionality of Autophagic Membranes. Frontiers in Genetics, 2017, 8, 109.	2.3	36
14	Investigating Structure and Dynamics of Atg8 Family Proteins. Methods in Enzymology, 2017, 587, 115-142.	1.0	5
15	TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics. Plant Cell, 2016, 28, 930-948.	6.6	88
16	Statically Adsorbed Coatings for High Separation Efficiency and Resolution in CE–MS Peptide Analysis: Strategies and Implementation. Methods in Molecular Biology, 2016, 1483, 53-75.	0.9	2
17	Trading off stability against activity in extremophilic aldolases. Scientific Reports, 2016, 6, 17908.	3.3	48
18	Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate	7.4	49

Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies. Chemical Science, 2016, 7, 4492-4502. 18 7.4

Oliver H Weiergrãøer

#	Article	IF	CITATIONS
19	Sequence-specific 1H, 15N, and 13C resonance assignments of the autophagy-related protein LC3C. Biomolecular NMR Assignments, 2016, 10, 41-43.	0.8	2
20	The mammalian autophagy initiator complex contains 2 HORMA domain proteins. Autophagy, 2015, 11, 2300-2308.	9.1	26
21	Conformational Polymorphism in Autophagy-Related Protein GATE-16. Biochemistry, 2015, 54, 5469-5479.	2.5	17
22	Interaction of Bcl-2 with the Autophagy-related GABAA Receptor-associated Protein (GABARAP). Journal of Biological Chemistry, 2013, 288, 37204-37215.	3.4	27
23	Revisiting Disrupted-in-Schizophrenia 1 as a scaffold protein. Biological Chemistry, 2013, 394, 1425-1437.	2.5	35
24	Three-dimensional structure of a schistosome serpin revealing an unusual configuration of the helical subdomain. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 686-694.	2.5	6
25	Assessment of GABARAP self-association by its diffusion properties. Journal of Biomolecular NMR, 2010, 48, 49-58.	2.8	10
26	Comparative modeling of human NSF reveals a possible binding mode of GABARAP and GATEâ€16. Proteins: Structure, Function and Bioinformatics, 2009, 77, 637-646.	2.6	17
27	Structural framework of the GABARAP–calreticulin interface – implications for substrate binding to endoplasmic reticulum chaperones. FEBS Journal, 2009, 276, 1140-1152.	4.7	42
28	Structural characterization of GABARAP–ligand interactions. Molecular BioSystems, 2009, 5, 575.	2.9	6
29	Ligand Binding Mode of GABAA Receptor-Associated Protein. Journal of Molecular Biology, 2008, 381, 1320-1331.	4.2	46
30	Hepatic Encephalopathy. Seminars in Liver Disease, 2008, 28, 070-080.	3.6	105
31	Crystal structure of a plant immunophilin domain involved in regulation of MDR-type ABC transporters. FEBS Letters, 2006, 580, 251-255.	2.8	22
32	Crystal Structure of a Multi-domain Immunophilin from Arabidopsis thaliana: A Paradigm for Regulation of Plant ABC Transporters. Journal of Molecular Biology, 2006, 364, 799-809.	4.2	27
33	The Twisted Dwarf's ABC. Plant Signaling and Behavior, 2006, 1, 277-280.	2.4	20
34	Tuning of a Neuronal Calcium Sensor. Journal of Biological Chemistry, 2006, 281, 37594-37602.	3.4	53
35	Crystallization and preliminary X-ray analysis of immunophilin-like FKBP42 fromArabidopsis thaliana. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 363-365.	0.7	5
36	One of the Ca2+ binding sites of recoverin exclusively controls interaction with rhodopsin kinase. Biological Chemistry, 2005, 386, 285-9.	2.5	9

Oliver H Weiergrã

#	Article	IF	CITATIONS
37	Functional Restoration of the Ca2+-myristoyl Switch in a Recoverin Mutant. Journal of Molecular Biology, 2003, 330, 409-418.	4.2	13
38	Involvement of Integrins in Osmosensing and Signaling toward Autophagic Proteolysis in Rat Liver. Journal of Biological Chemistry, 2003, 278, 27088-27095.	3.4	95
39	Impact of N-terminal Myristoylation on the Ca2+-dependent Conformational Transition in Recoverin. Journal of Biological Chemistry, 2003, 278, 22972-22979.	3.4	42
40	Glutamine and Cell Signaling in Liver. Journal of Nutrition, 2001, 131, 2509S-2514S.	2.9	51
41	Hepatocellular Hydration: Signal Transduction and Functional Implications. Cellular Physiology and Biochemistry, 2000, 10, 409-416.	1.6	23
42	Short-Term Regulation of Canalicular Transport. Seminars in Liver Disease, 2000, Volume 20, 307-322.	3.6	74
43	Endocytosis of interleukin-6—soluble interleukin-6 receptor complex and its intralysosomal degradation. Bulletin of Experimental Biology and Medicine, 1997, 124, 1085-1087.	0.8	4
44	Use of immobilized synthetic peptides for the identification of contact sites between human interleukin-6 and its receptor. FEBS Letters, 1996, 379, 122-126.	2.8	29
45	A complex of the soluble interleukin-6 receptor and interleukin-6 is internalized via the signal transducer gp130. FEBS Letters, 1996, 399, 131-134.	2.8	26
46	Human CNTF and related cytokines: effects on DRG neurone survival. NeuroReport, 1995, 7, 153-157.	1.2	18
47	Soluble Human Interleukin-6 Receptor. Expression in Insect Cells, Purification and Characterization. FEBS Journal, 1995, 234, 661-669.	0.2	85