Licia Rivoltini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3549246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Y ⁹⁰ -radioembolisation in hepatocellular carcinoma induces immune responses calling for early treatment with multiple checkpoint blockers. Gut, 2023, 72, 406-407.	12.1	12
2	Extracellular vesicles in anti-tumor immunity. Seminars in Cancer Biology, 2022, 86, 64-79.	9.6	21
3	Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with Cancer. Cancer Discovery, 2022, 12, 90-107.	9.4	124
4	Genetic Layout of Melanoma Lesions Is Associated with BRAF/MEK-Targeted Therapy Resistance and Transcriptional Profiles. Journal of Investigative Dermatology, 2022, 142, 3030-3040.e5.	0.7	6
5	Immunological Features of Melanoma: Clinical Implications in the Era of New Therapies. , 2021, , 99-128.		0
6	Back to simplicity: a four-marker blood cell score to quantify prognostically relevant myeloid cells in melanoma patients. , 2021, 9, e001167.		11
7	Integrated transcriptionalâ€phenotypic analysis captures systemic immunomodulation following antiangiogenic therapy in renal cell carcinoma patients. Clinical and Translational Medicine, 2021, 11, e434.	4.0	3
8	Preventive Anti-inflammatory Diet to Reduce Gastrointestinal Inflammation in Familial Adenomatous Polyposis Patients: A Prospective Pilot Study. Cancer Prevention Research, 2021, 14, 963-972.	1.5	8
9	Genetic Variants and Somatic Alterations Associated with MITF-E318K Germline Mutation in Melanoma Patients. Genes, 2021, 12, 1440.	2.4	2
10	miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators. Cell Communication and Signaling, 2020, 18, 156.	6.5	18
11	microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1214.	4.8	12
12	Fasting-mimicking diet plus chemotherapy in breast cancer treatment. Nature Communications, 2020, 11, 4274.	12.8	24
13	Metabolism and Immune Modulation in Patients with Solid Tumors: Systematic Review of Preclinical and Clinical Evidence. Cancers, 2020, 12, 1153.	3.7	4
14	Oral Capecitabine-Vinorelbine Is Associated with Longer Overall Survival When Compared to Single-Agent Capecitabine in Patients with Hormone Receptor-Positive Advanced Breast Cancer. Cancers, 2020, 12, 617.	3.7	4
15	Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 2020, 52, 494-504.	21.4	138
16	Angiogenesis and Immunity in Renal Carcinoma: Can We Turn an Unhappy Relationship into a Happy Marriage?. Journal of Clinical Medicine, 2020, 9, 930.	2.4	25
17	Selective modulation of immune transcripts in extracellular vesicles from plasma of renal cell carcinoma patients receiving nivolumab Journal of Clinical Oncology, 2020, 38, 719-719.	1.6	1
18	Angiogenic and immunological pathways in metastatic renal cell carcinoma: A counteracting paradigm or two faces of the same medal? The GIANUS Review. Critical Reviews in Oncology/Hematology, 2019, 139, 149-157.	4.4	10

#	Article	IF	CITATIONS
19	The AURORA of a New Way to Value Myeloid Immunosuppression in Cancer. Cancer Research, 2019, 79, 3169-3171.	0.9	5
20	The density and spatial tissue distribution of CD8+ and CD163+ immune cells predict response and outcome in melanoma patients receiving MAPK inhibitors. , 2019, 7, 308.		51
21	A Pilot Low-Inflammatory Dietary Intervention to Reduce Inflammation and Improve Quality of Life in Patients With Familial Adenomatous Polyposis: Protocol Description and Preliminary Results. Integrative Cancer Therapies, 2019, 18, 153473541984640.	2.0	10
22	Antibody–Fc/FcR Interaction on Macrophages as a Mechanism for Hyperprogressive Disease in Non–small Cell Lung Cancer Subsequent to PD-1/PD-L1 Blockade. Clinical Cancer Research, 2019, 25, 989-999.	7.0	315
23	Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 407-420.	2.8	39
24	Hepatocellular Carcinoma Is Associated With Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease. Hepatology, 2019, 69, 107-120.	7.3	433
25	A phase II study of cabozantinib as first-line treatment in metastatic collecting ducts carcinoma: The BONSAI trial Journal of Clinical Oncology, 2019, 37, 578-578.	1.6	5
26	A phase II open-label study of cabozantinib in patients with advanced or unresectable renal cell carcinoma pretreated with one immune-checkpoint inhibitor: The BREAKPOINT trial Journal of Clinical Oncology, 2019, 37, TPS685-TPS685.	1.6	2
27	The ACC melanoma pilot project: "Real-world―evaluation of an NGS platform for molecular characterization of melanoma in Italy Journal of Clinical Oncology, 2019, 37, e14600-e14600.	1.6	0
28	pH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. Oncolmmunology, 2018, 7, e1445452.	4.6	54
29	Immuno-oncology in head and neck squamous cell cancers: News from clinical trials, emerging predictive factors and unmet needs. Cancer Treatment Reviews, 2018, 65, 78-86.	7.7	32
30	Mechanisms of tumor immunotherapy, with a focus on thoracic cancers. Journal of Thoracic Disease, 2018, 10, 4619-4631.	1.4	8
31	Complex Immune Contextures Characterise Malignant Peritoneal Mesothelioma: Loss of Adaptive Immunological Signature in the More Aggressive Histological Types. Journal of Immunology Research, 2018, 2018, 1-13.	2.2	19
32	Potent natural killer (NK) and myeloid blood cell remodeling by cabozantinib (Cabo) in pre-treated metastatic renal cell carcinoma (mRCC) patients (pts). Annals of Oncology, 2018, 29, viii312.	1.2	12
33	Immune landscape and in vivo immunogenicity of NY-ESO-1 tumor antigen in advanced neuroblastoma patients. BMC Cancer, 2018, 18, 983.	2.6	11
34	A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections. BMC Bioinformatics, 2018, 19, 357.	2.6	17
35	The neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict efficacy of platinum-based chemotherapy in patients with metastatic triple negative breast cancer. Scientific Reports, 2018, 8, 8703.	3.3	43
36	Abstract B022: Metabolic and immunologic effects of the fasting mimicking diet in cancer patients. , 2018, , .		2

#	Article	IF	CITATIONS
37	Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. Journal of Clinical Investigation, 2018, 128, 5505-5516.	8.2	193
38	Safety and metabolic effects of cyclic fasting mimicking diet (FMD) in cancer patients Journal of Clinical Oncology, 2018, 36, e14549-e14549.	1.6	2
39	Abstract 4981: Circulating mir-320 promotes immunosuppressive macrophages M2 phenotype associated with lung cancer progression. , 2018, , .		0
40	Abstract 3517: Targeting pH regulators to modulate human hepatocellular carcinoma microenvironment. , 2018, , .		0
41	Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in Cancer Biology, 2017, 43, 74-89.	9.6	414
42	Adaptive Immunity in Fibrosarcomatous Dermatofibrosarcoma Protuberans and Response to Imatinib Treatment. Journal of Investigative Dermatology, 2017, 137, 484-493.	0.7	29
43	Broad immunomodulating effect of first-line Pazopanib in metastatic renal cell carcinoma patients. Annals of Oncology, 2017, 28, vi17.	1.2	1
44	MIAQuant, a novel system for automatic segmentation, measurement, and localization comparison of different biomarkers from serialized histological slices. European Journal of Histochemistry, 2017, 61, 2838.	1.5	11
45	Retrospective analysis of patients (pts) with metastatic melanoma (MM) showing long-term response (LTR) to vemurafenib (Vb) Journal of Clinical Oncology, 2017, 35, e21001-e21001.	1.6	0
46	Targeting Immune Regulatory Networks to Counteract Immune Suppression in Cancer. Vaccines, 2016, 4, 38.	4.4	20
47	microRNA Expression in Sentinel Nodes from Progressing Melanoma Patients Identifies Networks Associated with Dysfunctional Immune Response. Genes, 2016, 7, 124.	2.4	8
48	Immunomodulatory Factors Control the Fate of Melanoma Tumor Initiating Cells. Stem Cells, 2016, 34, 2449-2460.	3.2	21
49	Salivary Cytokine Levels and Oral Mucositis in Head and Neck Cancer Patients Treated With Chemotherapy and Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, 959-966.	0.8	48
50	Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: results of a phase I dose escalation study. ESMO Open, 2016, 1, e000068.	4.5	54
51	Melanoma and immunotherapy bridge 2015. Journal of Translational Medicine, 2016, 14, 65.	4.4	12
52	TNF-Related Apoptosis-Inducing Ligand (TRAIL)–Armed Exosomes Deliver Proapoptotic Signals to Tumor Site. Clinical Cancer Research, 2016, 22, 3499-3512.	7.0	158
53	Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget, 2016, 7, 4428-4441.	1.8	84
54	Melanoma Cells Homing to the Brain: An <i>In Vitro</i> Model. BioMed Research International, 2015, 2015, 1-11.	1.9	13

#	Article	IF	CITATIONS
55	Dose-finding/phase II trial: bevacizumab, immunotherapy, and chemotherapy (BIC) in metastatic renal cell cancer (mRCC). Antitumor effects and variations of circulating T regulatory cells (Treg). Targeted Oncology, 2015, 10, 277-286.	3.6	8
56	ITOC2 – 038. Role of exosomes in immune suppression. European Journal of Cancer, 2015, 51, S13.	2.8	3
57	Melan-A/MART-1 immunity in a EWS-ATF1 translocated clear cell sarcoma patient treated with sunitinib: a case report. BMC Cancer, 2015, 15, 58.	2.6	14
58	Modulation of the myeloid compartment of the immune system by angiogenic- and kinase inhibitor-targeted anti-cancer therapies. Cancer Immunology, Immunotherapy, 2015, 64, 83-89.	4.2	17
59	Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals. Oncotarget, 2014, 5, 4516-4528.	1.8	29
60	Immune cells in the melanoma microenvironment hold information for prediction of the risk of recurrence and response to treatment. Expert Review of Molecular Diagnostics, 2014, 14, 643-646.	3.1	23
61	Immune response markers in sentinel nodes may predict melanoma progression. Oncolmmunology, 2014, 3, e28498.	4.6	6
62	Adaptive immune contexture at the tumour site and downmodulation of circulating myeloid-derived suppressor cells in the response of solitary fibrous tumour patients to anti-angiogenic therapy. British Journal of Cancer, 2014, 111, 1350-1362.	6.4	21
63	Longitudinal Study of Recurrent Metastatic Melanoma Cell Lines Underscores the Individuality of Cancer Biology. Journal of Investigative Dermatology, 2014, 134, 1389-1396.	0.7	3
64	Monitoring the Frequency and Function of Regulatory T Cells and Summary of the Approaches Currently Used to Inhibit Regulatory T Cells in Cancer Patients. Methods in Molecular Biology, 2014, 1139, 201-221.	0.9	3
65	Transcriptional Profiling of Melanoma Sentinel Nodes Identify Patients with Poor Outcome and Reveal an Association of CD30+ T Lymphocytes with Progression. Cancer Research, 2014, 74, 130-140.	0.9	27
66	Lymphocyte activation gene-3 (LAG-3, CD223) in plasmacytoid dendritic cells (pDCs): a molecular target for the restoration of active antitumor immunity. Oncolmmunology, 2014, 3, e967146.	4.6	16
67	Alternative Activation of Human Plasmacytoid DCs In Vitro and in Melanoma Lesions: Involvement of LAG-3. Journal of Investigative Dermatology, 2014, 134, 1893-1902.	0.7	74
68	A large de novo9p21.3 deletion in a girl affected by astrocytoma and multiple melanoma. BMC Medical Genetics, 2014, 15, 59.	2.1	18
69	Effects of cyclophosphamide and IL-2 on regulatory CD4+ T cell frequency and function in melanoma patients vaccinated with HLA-class I peptides: impact on the antigen-specific T cell response. Cancer Immunology, Immunotherapy, 2013, 62, 897-908.	4.2	31
70	Tumor Exosomes and Their Impact on Immunity and Cancer Progression. , 2013, , 517-535.		0
71	Structured myeloid cells and anti-angiogenic therapy in alveolar soft part sarcoma. Journal of Translational Medicine, 2013, 11, 237.	4.4	6
72	A variant in FTO shows association with melanoma risk not due to BMI. Nature Genetics, 2013, 45, 428-432.	21.4	111

#	Article	IF	CITATIONS
73	Clinical and immunologic responses in melanoma patients vaccinated with MAGEâ€A3â€genetically modified lymphocytes. International Journal of Cancer, 2013, 132, 2557-2566.	5.1	20
74	The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncolmmunology, 2013, 2, e22058.	4.6	121
75	Modulation of Microenvironment Acidity Reverses Anergy in Human and Murine Tumor-Infiltrating T Lymphocytes. Cancer Research, 2012, 72, 2746-2756.	0.9	470
76	Don't run before you can walk. Nature Reviews Urology, 2012, 9, 602-602.	3.8	0
77	Limited Induction of Tumor Cross-Reactive T Cells without a Measurable Clinical Benefit in Early Melanoma Patients Vaccinated with Human Leukocyte Antigen Class I–Modified Peptides. Clinical Cancer Research, 2012, 18, 6485-6496.	7.0	61
78	Promoter methylation of aminopeptidase N/CD13 in malignant melanoma. Carcinogenesis, 2012, 33, 781-790.	2.8	13
79	Immune Surveillance Properties of Human NK Cell-Derived Exosomes. Journal of Immunology, 2012, 189, 2833-2842.	0.8	358
80	lpilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncology, The, 2012, 13, 879-886.	10.7	273
81	Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Seminars in Cancer Biology, 2012, 22, 342-349.	9.6	246
82	Potential role of HER2â€overexpressing exosomes in countering trastuzumabâ€based therapy. Journal of Cellular Physiology, 2012, 227, 658-667.	4.1	410
83	Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunology, Immunotherapy, 2012, 61, 255-263.	4.2	230
84	Identification of MET and SRC Activation in Melanoma Cell Lines Showing Primary Resistance to PLX4032. Neoplasia, 2011, 13, 1132-IN17.	5.3	89
85	Defining the critical hurdles in cancer immunotherapy. Journal of Translational Medicine, 2011, 9, 214.	4.4	139
86	Frequency of Circulating Tregs with Demethylated <i>FOXP3</i> Intron 1 in Melanoma Patients Receiving Tumor Vaccines and Potentially Treg-Depleting Agents. Clinical Cancer Research, 2011, 17, 841-848.	7.0	70
87	Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clinical Cancer Research, 2011, 17, 3064-3076.	7.0	108
88	Spheres of Influence in Cancer Stem Cell Biology. Journal of Investigative Dermatology, 2011, 131, 546-547.	0.7	6
89	HLA-A*0201-restricted CEA-derived Peptide CAP1 Is Not a Suitable Target for T-cell-based Immunotherapy. Journal of Immunotherapy, 2010, 33, 402-413.	2.4	17
90	Rapid Generation of Full Clinical-Grade Human Antiadenovirus Cytotoxic T Cells for Adoptive Immunotherapy. Journal of Immunotherapy, 2010, 33, 414-424.	2.4	25

#	Article	IF	CITATIONS
91	pHâ€dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. International Journal of Cancer, 2010, 127, 207-219.	5.1	237
92	LAC-3 Expression Defines a Subset of CD4+CD25highFoxp3+ Regulatory T Cells That Are Expanded at Tumor Sites. Journal of Immunology, 2010, 184, 6545-6551.	0.8	278
93	Heterogeneous Phenotype of Human Melanoma Cells with In Vitro and In Vivo Features of Tumor-Initiating Cells. Journal of Investigative Dermatology, 2010, 130, 1877-1886.	0.7	77
94	Response to Griewank and Bastian. Journal of Investigative Dermatology, 2010, 130, 2331-2332.	0.7	0
95	Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells. Cell Death and Disease, 2010, 1, e87-e87.	6.3	155
96	Proton dynamics in cancer. Journal of Translational Medicine, 2010, 8, 57.	4.4	97
97	Exploiting liver immunity for the prevention of hepatic metastases. Journal of Hepatology, 2010, 53, 596-598.	3.7	2
98	Final results of a dose-finding phase II trial with a triple combination therapy in metastatic renal cell cancer (mRCC): Bevacizumab (B) plus immunotherapy (IT) plus chemotherapy (C) (BIC), antitumor effects, and variations of circulating T-regulatory cells (TREC) Journal of Clinical Oncology, 2010, 28, 4615-4615.	1.6	2
99	CCN3 Promotes Melanoma Progression by Regulating Integrin Expression, Adhesion and Apoptosis Induced by Cytotoxic Drugs. , 2010, , 205-211.		0
100	High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients. PLoS ONE, 2009, 4, e5219.	2.5	806
101	Class I HLA Folding and Antigen Presentation in β2-Microglobulin-Defective Daudi Cells. Journal of Immunology, 2009, 182, 3609-3617.	0.8	20
102	Multipeptide vaccination in cancer patients. Expert Opinion on Biological Therapy, 2009, 9, 1043-1055.	3.1	57
103	Antitumor activity of delimotecan against human metastatic melanoma: Pharmacokinetics and molecular determinants. International Journal of Cancer, 2009, 125, 2456-2464.	5.1	8
104	Modified peptides in anti-cancer vaccines: are we eventually improving anti-tumour immunity?. Cancer Immunology, Immunotherapy, 2009, 58, 1159-1167.	4.2	21
105	Cutaneous Melanoma in Childhood and Adolescence Shows Frequent Loss of INK4A and Gain of KIT. Journal of Investigative Dermatology, 2009, 129, 1759-1768.	0.7	54
106	New common variants affecting susceptibility to basal cell carcinoma. Nature Genetics, 2009, 41, 909-914.	21.4	303
107	Vaccination with Survivin and PSMA-derived Peptides: A Pilot Study in Prostate Cancer Patients Failing Radiotherapy or Surgery. International Journal of Radiation Oncology Biology Physics, 2009, 75, S14.	0.8	0

108 Tumor-Derived Exosomes as Dendritic Cell Modulators. , 2009, , 119-128.

#	Article	IF	CITATIONS
109	Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunology, Immunotherapy, 2008, 57, 303-315.	4.2	193
110	Tumour-released exosomes and their implications in cancer immunity. Cell Death and Differentiation, 2008, 15, 80-88.	11.2	452
111	More insights into the immunosuppressive potential of tumor exosomes. Journal of Translational Medicine, 2008, 6, 63.	4.4	33
112	A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers". Journal of Translational Medicine, 2008, 6, 81.	4.4	45
113	Human Lymphocyte Activation Gene-3 Molecules Expressed by Activated T Cells Deliver Costimulation Signal for Dendritic Cell Activation. Journal of Immunology, 2008, 180, 3782-3788.	0.8	13
114	Human Plasmacytoid Dendritic Cells Interact with gp96 via CD91 and Regulate Inflammatory Responses. Journal of Immunology, 2008, 181, 6525-6535.	0.8	24
115	Correction: CCN3 Increases Integrin Expression and Adhesion. Cancer Research, 2008, 68, 2051-2051.	0.9	1
116	Induction of Both CD8+ and CD4+ T-Cell–Mediated Responses in Colorectal Cancer Patients by Colon Antigen-1. Clinical Cancer Research, 2008, 14, 7292-7303.	7.0	10
117	CCN3/Nephroblastoma Overexpressed Matricellular Protein Regulates Integrin Expression, Adhesion, and Dissemination in Melanoma. Cancer Research, 2008, 68, 715-723.	0.9	64
118	Bevacizumab (B) plus low-doses immunotherapy (IT) plus chemotherapy (CT) (BIC) in metastatic renal cell cancer (mRCC): Antitumor effects and variations of T-regulatory cells (Treg) and other T lymphocytes subsets. A study of the Italian Oncology Group for Clinical Research (GOIRC). Journal of Clinical Oncology, 2008, 26, 5121-5121.	1.6	2
119	Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Annals of Oncology, 2007, 18, 226-232.	1.2	252
120	Universal and Stemness-Related Tumor Antigens: Potential Use in Cancer Immunotherapy. Clinical Cancer Research, 2007, 13, 5675-5679.	7.0	32
121	NKG2D-Mediated Antitumor Activity by Tumor-Infiltrating Lymphocytes and Antigen-Specific T-Cell Clones Isolated from Melanoma Patients. Clinical Cancer Research, 2007, 13, 7459-7468.	7.0	26
122	Tumor-Released Microvesicles as Vehicles of Immunosuppression. Cancer Research, 2007, 67, 2912-2915.	0.9	377
123	Melanoma immunology: past, present and future. Current Opinion in Oncology, 2007, 19, 121-127.	2.4	57
124	Identification of a New Subset of Myeloid Suppressor Cells in Peripheral Blood of Melanoma Patients With Modulation by a Granulocyte-Macrophage Colony-Stimulation Factor–Based Antitumor Vaccine. Journal of Clinical Oncology, 2007, 25, 2546-2553.	1.6	606
125	Detection of mutated BRAFV600E variant in circulating DNA of stage III–IV melanoma patients. International Journal of Cancer, 2007, 120, 2439-2444.	5.1	76
126	Vaccination therapy in prostate cancer. Cancer Immunology, Immunotherapy, 2007, 56, 429-445.	4.2	21

#	Article	IF	CITATIONS
127	Low TCR avidity and lack of tumor cell recognition in CD8+ T cells primed with the CEA-analogue CAP1-6D peptide. Cancer Immunology, Immunotherapy, 2007, 56, 1979-1991.	4.2	19
128	Heat shock proteins gp96 as immunogens in cancer patients. International Journal of Hyperthermia, 2006, 22, 223-227.	2.5	13
129	A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunology, Immunotherapy, 2006, 55, 958-968.	4.2	134
130	Interferon-activated neutrophils store a TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) intracellular pool that is readily mobilizable following exposure to proinflammatory mediators. Journal of Leukocyte Biology, 2006, 79, 123-132.	3.3	72
131	Soluble Human LAG-3 Molecule Amplifies the In vitro Generation of Type 1 Tumor-Specific Immunity. Cancer Research, 2006, 66, 4450-4460.	0.9	52
132	Cannibalism of Live Lymphocytes by Human Metastatic but Not Primary Melanoma Cells. Cancer Research, 2006, 66, 3629-3638.	0.9	242
133	Human Tumor-Released Microvesicles Promote the Differentiation of Myeloid Cells with Transforming Growth Factor-β–Mediated Suppressive Activity on T Lymphocytes. Cancer Research, 2006, 66, 9290-9298.	0.9	455
134	Vaccination: role in metastatic melanoma. Expert Review of Anticancer Therapy, 2006, 6, 1305-1318.	2.4	22
135	Immunization of Stage IV Melanoma Patients with Melan-A/MART-1 and gp100 Peptides plus IFN-α Results in the Activation of Specific CD8+ T Cells and Monocyte/Dendritic Cell Precursors. Cancer Research, 2006, 66, 4943-4951.	0.9	108
136	Evaluation of Myeloid Suppressive Cells in Peripheral Blood of Melanoma Patients and Their Modulation by A Heat-shock Protein (HSP)-96 and GM-CSF-based Vaccine. Journal of Immunotherapy, 2005, 28, 659.	2.4	0
137	Microarray Analysis for Monitoring the Response to Interferon. Journal of Immunotherapy, 2005, 28, 619-620.	2.4	2
138	DHCR24 gene expression is upregulated in melanoma metastases and associated to resistance to oxidative stress-induced apoptosis. International Journal of Cancer, 2005, 115, 224-230.	5.1	72
139	Reconstitution of Human Telomerase Reverse Transcriptase Expression Rescues Colorectal Carcinoma Cells from In vitro Senescence: Evidence against Immortality as a Constitutive Trait of Tumor Cells. Cancer Research, 2005, 65, 2321-2329.	0.9	26
140	Natural Killer and NK-Like T-Cell Activation in Colorectal Carcinoma Patients Treated with Autologous Tumor-Derived Heat Shock Protein 96. Cancer Research, 2005, 65, 3942-3949.	0.9	47
141	Chemokine Receptor 7, A New Player in Regulating Apoptosis of CD8+ T Cells in Cancer Patients. Clinical Cancer Research, 2005, 11, 7587-7588.	7.0	3
142	Escape strategies and reasons for failure in the interaction between tumour cells and the immune system: how can we tilt the balance towards immune-mediated cancer control?. Expert Opinion on Biological Therapy, 2005, 5, 463-476.	3.1	63
143	Enhanced antitumour efficacy of gimatecan in combination with Bcl-2 antisense oligonucleotide in human melanoma xenografts. European Journal of Cancer, 2005, 41, 1213-1222.	2.8	23
144	T cell responses against tumor associated antigens and prognosis in colorectal cancer patients. Journal of Translational Medicine, 2005, 3, 3.	4.4	23

#	Article	IF	CITATIONS
145	Human Colorectal Cancer Cells Induce T-Cell Death Through Release of Proapoptotic Microvesicles: Role in Immune Escape. Gastroenterology, 2005, 128, 1796-1804.	1.3	453
146	Effect of Proton Pump Inhibitor Pretreatment on Resistance of Solid Tumors to Cytotoxic Drugs. Journal of the National Cancer Institute, 2004, 96, 1702-1713.	6.3	395
147	Heat Shock Proteins and Their Use as Anticancer Vaccines. Clinical Cancer Research, 2004, 10, 8142-8146.	7.0	62
148	Role of Cross-Talk between IFN-α-Induced Monocyte-Derived Dendritic Cells and NK Cells in Priming CD8+ T Cell Responses against Human Tumor Antigens. Journal of Immunology, 2004, 172, 5363-5370.	0.8	103
149	Effect Of Human Natural Killer and γδT Cells on the Growth of Human Autologous Melanoma Xenografts in SCID Mice. Cancer Research, 2004, 64, 378-385.	0.9	90
150	Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunology, Immunotherapy, 2004, 53, 227-233.	4.2	116
151	IFNα-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity on leukemic cells. Blood, 2004, 103, 3837-3844.	1.4	146
152	Immunotherapy of melanoma. Seminars in Cancer Biology, 2003, 13, 391-400.	9.6	48
153	Adoptive transfer of an anti-MART-12735-specific CD8+ T cell clone leads to immunoselection of human melanoma antigen-loss variants in SCID mice. European Journal of Immunology, 2003, 33, 556-566.	2.9	48
154	Molecular and Functional Bases of Self-Antigen Recognition in Long-Term Persistent Melanocyte-Specific CD8+ T Cells in One Vitiligo Patient. Journal of Investigative Dermatology, 2003, 121, 308-314.	0.7	28
155	Potent Phagocytic Activity Discriminates Metastatic and Primary Human Malignant Melanomas: A Key Role of Ezrin. Laboratory Investigation, 2003, 83, 1555-1567.	3.7	89
156	Vaccination of patients with solid tumours. Annals of Oncology, 2003, 14, 817-824.	1.2	31
157	Human Tumor-Derived Heat Shock Protein 96 Mediates In Vitro Activation and In Vivo Expansion of Melanoma- and Colon Carcinoma-Specific T Cells. Journal of Immunology, 2003, 171, 3467-3474.	0.8	116
158	Identification of a Mutated Receptor-Like Protein Tyrosine Phosphatase κ as a Novel, Class II HLA-Restricted Melanoma Antigen. Journal of Immunology, 2003, 170, 6363-6370.	0.8	53
159	Altered peptide ligands of tumor T-cell epitopes. , 2003, , 97-110.		Ο
160	Suboptimal activation of CD8(+) T cells by melanoma-derived altered peptide ligands: role of Melan-A/MART-1 optimized analogues. Cancer Research, 2003, 63, 1560-7.	0.9	30
161	The apoptosis inhibitor protein survivin induces tumor-specific CD8+ and CD4+ T cells in colorectal cancer patients. Cancer Research, 2003, 63, 4507-15.	0.9	78
162	Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clinical Cancer Research, 2003, 9, 3235-45.	7.0	197

#	Article	IF	CITATIONS
163	Antigen-specific immunity in neuroblastoma patients: antibody and T-cell recognition of NY-ESO-1 tumor antigen. Cancer Research, 2003, 63, 6948-55.	0.9	55
164	Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of FasL-bearing Microvesicles. Journal of Experimental Medicine, 2002, 195, 1303-1316.	8.5	660
165	Vaccination of Metastatic Melanoma Patients With Autologous Tumor-Derived Heat Shock Protein gp96-Peptide Complexes: Clinical and Immunologic Findings. Journal of Clinical Oncology, 2002, 20, 4169-4180.	1.6	361
166	Cytotoxic T-lymphocyte responses in melanoma through in vitro stimulation with the Melan-A peptide analogue A27L: a qualitative analysis. Melanoma Research, 2002, 12, 491-498.	1.2	7
167	Cancer Immunotherapy With Peptide-Based Vaccines: What Have We Achieved? Where Are We Going?. Journal of the National Cancer Institute, 2002, 94, 805-818.	6.3	381
168	Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunological Reviews, 2002, 188, 97-113.	6.0	246
169	T-cell response to unique and shared antigens and vaccination of cancer patients. Cancer Immunity, 2002, 2, 6.	3.2	18
170	Tumor necrosis factor-α induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface. Blood, 2001, 98, 1108-1115.	1.4	102
171	Simultaneous transduction of B7-1 and IL-2 genes into human melanoma cells to be used as vaccine: enhancement of stimulatory activity for autologous and allogeneic lymphocytes. Cancer Immunology, Immunotherapy, 2001, 50, 199-211.	4.2	16
172	T cell response to tumor antigens and its therapeutic use in cancer patients. Advances in Experimental Medicine and Biology, 2001, 495, 403-410.	1.6	2
173	Amino Acid Substitutions in the Melanoma Antigen Recognized by T Cell 1 Peptide Modulate Cytokine Responses in Melanoma-Specific T Cells. Journal of Immunotherapy, 2000, 23, 405-411.	2.4	5
174	T-cell recognition of melanoma-associated antigens. Journal of Cellular Physiology, 2000, 182, 323-331.	4.1	106
175	Murine granulocytes control human tumor growth in SCID mice. International Journal of Cancer, 2000, 87, 569-573.	5.1	24
176	Cytokines in cancer therapy. Immunology Letters, 2000, 74, 41-44.	2.5	78
177	Quantitation of antigen-reactive T cells in peripheral blood by IFNÎ ³ -ELISPOT assay and chromium-release assay: a four-centre comparative trial. Journal of Immunological Methods, 2000, 244, 81-89.	1.4	131
178	Selective Histocompatibility Leukocyte Antigen (Hla)-A2 Loss Caused by Aberrant Pre-mRNA Splicing in 624mel28 Melanoma Cells. Journal of Experimental Medicine, 1999, 190, 205-216.	8.5	98
179	Vaccination of Melanoma Patients with Interleukin 4 Gene-Transduced Allogeneic Melanoma Cells. Human Gene Therapy, 1999, 10, 2907-2916.	2.7	61
180	Immunogenicity of the ALLAVGATK (gp10017 – 25) peptide in HLA-A3.1 melanoma patients. Europea of Immunology, 1998, 28, 1143-1154.	n Journal 2.9	18

#	Article	IF	CITATIONS
181	beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma Journal of Clinical Investigation, 1998, 101, 2720-2729.	8.2	151
182	Recognition of Melanoma-Derived Antigens by CTL: Possible Mechanisms Involved in Down-Regulating Anti-Tumor T-Cell Reactivity. Critical Reviews in Immunology, 1998, 18, 55-63.	0.5	23
183	T-cell recognition of melanoma antigens and its therapeutic applications. International Journal of Clinical and Laboratory Research, 1997, 27, 103-110.	1.0	9
184	Analysis of Expression of the Melanoma-Associated Antigens MART-1 and gp IOO in Metastatic Melanoma Cell Lines and in In Situ Lesions. Journal of Immunotherapy, 1996, 19, 192-205.	2.4	130
185	Differences in Frequency Distribution of HLA-A2 Subtypes Between North American and Italian White Melanoma Patients: Relevance for Epitope Specific Vaccination Protocols. Journal of Immunotherapy, 1996, 19, 357-363.	2.4	43
186	Differential Anti-MART-1/MelanA CTL Activity in Peripheral Blood of HLA-A2 Melanoma Patients in Comparison to Healthy Donors. Journal of Immunotherapy, 1996, 19, 266-277.	2.4	121
187	Limited Antitumor T Cell Response in Melanoma Patients Vaccinated with Interleukin-2 Gene-Transduced Allogeneic Melanoma Cells. Human Gene Therapy, 1996, 7, 1955-1963.	2.7	83
188	Identification of epitope mimics recognized by CTL reactive to the melanoma/melanocyte-derived peptide MART-1(27-35) Journal of Experimental Medicine, 1996, 184, 647-657.	8.5	164
189	HLA Associations in the Antitumor Response Against Malignant Melanoma. Journal of Immunotherapy, 1995, 18, 242-252.	2.4	57
190	Cytotoxic T-lymphocyte clones from different patients display limited T-cell-receptor variable-region gene usage in HLA-A2-restricted recognition of the melanoma antigen Melan-A/MART-1 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5674-5678.	7.1	95
191	Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes Journal of Experimental Medicine, 1994, 180, 347-352.	8.5	771
192	Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunology, Immunotherapy, 1994, 39, 193-197.	4.2	64
193	Melanoma-specific CD4+ T lymphocytes recognize human melanoma antigens processed and presented by epstein-barr virus-transformed B cells. International Journal of Cancer, 1994, 58, 69-79.	5.1	78
194	Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9461-9465.	7.1	254
195	Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3515-3519.	7.1	987
196	Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunology, Immunotherapy, 1994, 39, 193-197.	4.2	7
197	<i>In vitro</i> antiâ€ŧumor activity of eosinophils from cancer patients treated with subcutaneous administration of interleukin 2. Role of interleukin 5. International Journal of Cancer, 1993, 54, 8-15.	5.1	68
198	The Detection and Biological Activity of Human Antibodies to IL-2 in Normal Donors. Scandinavian Journal of Immunology, 1993, 38, 472-476.	2.7	35

#	ARTICLE	IF	CITATIONS
199	Adoptive immunotherapy of advanced melanoma patients with interleukin-2 (IL-2) and tumor-infiltrating lymphocytes selected in vitro with low doses of IL-2. Cancer Immunology, Immunotherapy, 1993, 36, 315-322.	4.2	57
200	Factors, including transforming growth factor β, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells. Cancer Immunology, Immunotherapy, 1993, 36, 409-416.	4.2	63
201	Neuropsychological and neurophysiological assessment of the central effects of interleukin-2 administration. European Journal of Cancer, 1993, 29, 1266-1269.	2.8	45
202	Increased susceptibility to lymphokine activated killer (LAK) lysis of relapsing vs. newly diagnosed acute leukemic cells without changes in drug resistance or in the expression of adhesion molecules. Annals of Oncology, 1992, 3, 155-162.	1.2	9
203	Treatment of recurrent in transit metastases from cutaneous melanoma by isolation perfusion in extracorporeal circulation with interleukin-2 and lymphokine activated killer cells. A pilot study. Melanoma Research, 1992, 2, 263-272.	1.2	10
204	Phenotypic and functional analysis of lymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype. Cancer Immunology, Immunotherapy, 1992, 34, 241-251.	4.2	42
205	Biologic agents as modifiers of chemotherapeutic effects. Current Opinion in Oncology, 1991, 3, 1078-1086.	2.4	11
206	Selective purging by human interleukin-2 activated lymphocytes of bone marrows contaminated with a lymphoma line or autologous leukaemic cells. British Journal of Haematology, 1991, 78, 197-205.	2.5	24
207	The high lysability by lak cells of colon-carcinoma cells resistant to doxorubicin is associated with a high expression of ICAM-1, LFA-3, NCA and a less-differentiated phenotype. International Journal of Cancer, 1991, 47, 746-754.	5.1	52
208	Modulation of multidrug resistance by verapamil ormdr1 anti-sense oligodeoxynucleotide does not change the high susceptibility to lymphokine-activated killers inmdr-resistant human carcinoma (LoVo) line. International Journal of Cancer, 1990, 46, 727-732.	5.1	55
209	Local Adoptive Immunotherapy of Advanced Head and Neck Tumors with Lak Cells and Interleukin-2. Tumori, 1990, 76, 566-571.	1.1	29
210	Generation and partial characterization of melanoma sublines resistant to lymphokine activated killer (LAK) cells. Relevance to doxorubicin resistance. International Journal of Cancer, 1989, 43, 880-885.	5.1	18
211	Differential lysis of melanoma clones by autologous recombinant interleukin 2-activated lymphocytes. Relationship with spontaneous resistance to doxorubicin (Dx). International Journal of Cancer, 1988, 42, 544-548.	5.1	11
212	Susceptibility of human and murine drug-resistant tumor cells to the lytic activity of rIL2 - activated lymphocytes (LAK). Cancer and Metastasis Reviews, 1988, 7, 335-345.	5.9	9
213	A new Procedure for Large Scale Production and Freezing of Lymphokine Activated Killer (LAK) Cells to be used in Adoptive Immunotherapy of Cancer. Tumori, 1988, 74, 523-530.	1.1	2