Brian Stevenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3547751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete <i>Borrelia burgdorferi</i> . Molecular Microbiology, 2000, 35, 490-516.	2.5	730
2	Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nature Reviews Microbiology, 2012, 10, 87-99.	28.6	602
3	Differential Binding of Host Complement Inhibitor Factor H by Borrelia burgdorferi Erp Surface Proteins: a Possible Mechanism Underlying the Expansive Host Range of Lyme Disease Spirochetes. Infection and Immunity, 2002, 70, 491-497.	2.2	221
4	Leptospira interrogans Endostatin-Like Outer Membrane Proteins Bind Host Fibronectin, Laminin and Regulators of Complement. PLoS ONE, 2007, 2, e1188.	2.5	189
5	<i>Borrelia burgdorferi</i> Erp Proteins Are Immunogenic in Mammals Infected by Tick Bite, and Their Synthesis Is Inducible in Cultured Bacteria. Infection and Immunity, 1998, 66, 2648-2654.	2.2	174
6	LfhA, a Novel Factor H-Binding Protein of Leptospira interrogans. Infection and Immunity, 2006, 74, 2659-2666.	2.2	165
7	Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1. Molecular Microbiology, 2006, 61, 1220-1236.	2.5	153
8	Analysis of Borrelia burgdorferi gene expression during life cycle phases of the tick vector Ixodes scapularis. Microbes and Infection, 2001, 3, 799-808.	1.9	122
9	Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks and Tick-borne Diseases, 2013, 4, 26-34.	2.7	113
10	Coordinated Expression of Borrelia burgdorferi Complement Regulator-Acquiring Surface Proteins during the Lyme Disease Spirochete's Mammal-Tick Infection Cycle. Infection and Immunity, 2007, 75, 4227-4236.	2.2	110
11	Temporal Analysis of Borrelia burgdorferi Erp Protein Expression throughout the Mammal-Tick InfectiousCycle. Infection and Immunity, 2003, 71, 6943-6952.	2.2	103
12	<i>Borrelia burgdorferi</i> Infection-Associated Surface Proteins ErpP, ErpA, and ErpC Bind Human Plasminogen. Infection and Immunity, 2009, 77, 300-306.	2.2	103
13	Oligopeptide permease in Borrelia burgdorferi: putative peptide-binding components encoded by both chromosomal and plasmid loci. Microbiology (United Kingdom), 1998, 144, 1033-1044.	1.8	99
14	TheBorrelia burgdorfericircular plasmid cp26: conservation of plasmid structure and targeted inactivation of theospCgene. Molecular Microbiology, 1997, 25, 361-373.	2.5	97
15	Identification of Novel DNAâ€Binding Proteins Using DNAâ€Affinity Chromatography/Pull Down. Current Protocols in Microbiology, 2012, 24, Unit1F.1.	6.5	81
16	Humoral Immunity to <i>Borrelia burgdorferi</i> N40 Decorin Binding Proteins during Infection of Laboratory Mice. Infection and Immunity, 1998, 66, 2827-2835.	2.2	80
17	<i>Borrelia burgdorferi</i> RevA Antigen Binds Host Fibronectin. Infection and Immunity, 2009, 77, 2802-2812.	2.2	79
18	Leptospiral Endostatin-Like Protein A Is a Bacterial Cell Surface Receptor for Human Plasminogen. Infection and Immunity, 2010, 78, 2053-2059.	2.2	78

#	Article	IF	CITATIONS
19	Complement Factor H-Related Proteins CFHR2 and CFHR5 Represent Novel Ligands for the Infection-Associated CRASP Proteins of Borrelia burgdorferi. PLoS ONE, 2010, 5, e13519.	2.5	78
20	Temperature-Regulated Protein Synthesis by Leptospira interrogans. Infection and Immunity, 2001, 69, 400-404.	2.2	77
21	Carbohydrate utilization by the Lyme borreliosis spirochete,Borrelia burgdorferi. FEMS Microbiology Letters, 2005, 243, 173-179.	1.8	74
22	LuxS-Mediated Quorum Sensing in Borrelia burgdorferi, the Lyme Disease Spirochete. Infection and Immunity, 2002, 70, 4099-4105.	2.2	69
23	Borrelia burgdorferi Regulates Expression of Complement Regulator-Acquiring Surface Protein 1 during the Mammal-Tick Infection Cycle. Infection and Immunity, 2005, 73, 7398-7405.	2.2	69
24	RNA-Seq of Borrelia burgdorferi in Multiple Phases of Growth Reveals Insights into the Dynamics of Gene Expression, Transcriptome Architecture, and Noncoding RNAs. PLoS ONE, 2016, 11, e0164165.	2.5	67
25	Molecular Characterization of Borrelia burgdorferi erp Promoter/Operator Elements. Journal of Bacteriology, 2004, 186, 2745-2756.	2.2	66
26	<i>Borrelia burgdorferi</i> BmpA Is a Laminin-Binding Protein. Infection and Immunity, 2009, 77, 4940-4946.	2.2	66
27	The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin. Microbiology (United) Tj ETQq1	1 0.784314 1.8	rg₿Ţ /Overl⊙
28	Deciphering the Ligand-binding Sites in the Borrelia burgdorferi Complement Regulator-acquiring Surface Protein 2 Required for Interactions with the Human Immune Regulators Factor H and Factor H-like Protein 1. Journal of Biological Chemistry, 2008, 283, 34855-34863.	3.4	64
29	Surface exposure and protease insensitivity of Borrelia burgdorferi Erp (OspEF-related) lipoproteins. Microbiology (United Kingdom), 2001, 147, 821-830.	1.8	63
30	Intra- and Interbacterial Genetic Exchange of Lyme Disease Spirochete erp Genes Generates Sequence Identity Amidst Diversity. Journal of Molecular Evolution, 2003, 57, 309-324.	1.8	62
31	Immunological characterization of the complement regulator factor H-binding CRASP and Erp proteins of Borrelia burgdorferi. International Journal of Medical Microbiology Supplements, 2004, 293, 152-157.	0.4	58
32	Distinct Regulatory Pathways Control Expression ofBorrelia burgdorferi Infection-Associated OspC and Erp Surface Proteins. Infection and Immunity, 2001, 69, 4146-4153.	2.2	57
33	BBA70 of Borrelia burgdorferi Is a Novel Plasminogen-binding Protein. Journal of Biological Chemistry, 2013, 288, 25229-25243.	3.4	57
34	Borrelia burgdorferi RevA Antigen Is a Surface-Exposed Outer Membrane Protein Whose Expression Is Regulated in Response to Environmental Temperature and pH. Infection and Immunity, 2001, 69, 5286-5293.	2.2	53
35	Changes in Bacterial Growth Rate Govern Expression of the Borrelia burgdorferi OspC and Erp Infection-Associated Surface Proteins. Journal of Bacteriology, 2013, 195, 757-764.	2.2	53
36	Borrelia burgdorferi complement regulator-acquiring surface proteins (BbCRASPs): Expression patterns during the mammal–tick infection cycle. International Journal of Medical Microbiology, 2008, 298, 249-256.	3.6	51

#	Article	IF	CITATIONS
37	Interleukin-10 Mediated Autoregulation of Murine B-1 B-Cells and Its Role in Borrelia hermsii Infection. PLoS ONE, 2010, 5, e11445.	2.5	51
38	A Second Allele of eppA in Borrelia burgdorferi Strain B31 Is Located on the Previously Undetected Circular Plasmid cp9-2. Journal of Bacteriology, 2000, 182, 6254-6258.	2.2	50
39	Transcriptional Regulation of the Borrelia burgdorferi Antigenically Variable VIsE Surface Protein. Journal of Bacteriology, 2006, 188, 4879-4889.	2.2	47
40	Complement Evasion Contributes to Lyme Borreliae–Host Associations. Trends in Parasitology, 2020, 36, 634-645.	3.3	46
41	Lyme borreliosis spirochete Erp proteins, their known host ligands, and potential roles in mammalian infection. International Journal of Medical Microbiology, 2008, 298, 257-267.	3.6	45
42	Controversies in bacterial taxonomy: The example of the genus Borrelia. Ticks and Tick-borne Diseases, 2020, 11, 101335.	2.7	45
43	EbfC (YbaB) Is a New Type of Bacterial Nucleoid-Associated Protein and a Global Regulator of Gene Expression in the Lyme Disease Spirochete. Journal of Bacteriology, 2012, 194, 3395-3406.	2.2	43
44	Rejection of the name Borreliella and all proposed species comb. nov. placed therein. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3577-3581.	1.7	43
45	Eubacterial SpoVG Homologs Constitute a New Family of Site-Specific DNA-Binding Proteins. PLoS ONE, 2013, 8, e66683.	2.5	42
46	Natural Selection Promotes Antigenic Evolvability. PLoS Pathogens, 2013, 9, e1003766.	4.7	40
47	Borrelia burgdorferi EbfC, a Novel, Chromosomally Encoded Protein, Binds Specific DNA Sequences Adjacent to erp Loci on the Spirochete's Resident cp32 Prophages. Journal of Bacteriology, 2006, 188, 4331-4339.	2.2	38
48	Direct PCR of Intact Bacteria (Colony PCR). Current Protocols in Microbiology, 2016, 42, A.3D.1-A.3D.7.	6.5	38
49	Synthesis of Autoinducer 2 by the Lyme Disease Spirochete, Borrelia burgdorferi. Journal of Bacteriology, 2005, 187, 3079-3087.	2.2	37
50	Simultaneous Coexpression of Borrelia burgdorferi Erp Proteins Occurs through a Specific, erp Locus-Directed Regulatory Mechanism. Journal of Bacteriology, 2002, 184, 4536-4543.	2.2	36
51	Borrelia burgdorferi Binding of Host Complement Regulator Factor H Is Not Required for Efficient Mammalian Infection. Infection and Immunity, 2007, 75, 3131-3139.	2.2	36
52	Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins. Nucleic Acids Research, 2009, 37, 1973-1983.	14.5	36
53	Regulation of Gene and Protein Expression in the Lyme Disease Spirochete. Current Topics in Microbiology and Immunology, 2017, 415, 83-112.	1.1	35
54	Expression of Borrelia burgdorferi erp genes during infection of non-human primates. Microbial Pathogenesis, 2005, 39, 27-33.	2.9	33

4

#	Article	IF	CITATIONS
55	Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. International Journal of Medical Microbiology, 2006, 296, 185-194.	3.6	33
56	BpaB and EbfC DNA-Binding Proteins Regulate Production of the Lyme Disease Spirochete's Infection-Associated Erp Surface Proteins. Journal of Bacteriology, 2012, 194, 778-786.	2.2	33
57	Distribution of cp32 Prophages among Lyme Disease-Causing Spirochetes and Natural Diversity of Their Lipoprotein-Encoding <i>erp</i> Loci. Applied and Environmental Microbiology, 2013, 79, 4115-4128.	3.1	32
58	<i>Borrelia burgdorferi</i> B31 Erp Proteins That Are Dominant Immunoblot Antigens of Animals Infected with Isolate B31 Are Recognized by Only a Subset of Human Lyme Disease Patient Sera. Journal of Clinical Microbiology, 2000, 38, 1569-1574.	3.9	31
59	Evolving models of Lyme disease spirochete gene regulation. Wiener Klinische Wochenschrift, 2006, 118, 643-652.	1.9	30
60	BpaB, a novel protein encoded by the Lyme disease spirochete's cp32 prophages, binds to erp Operator 2 DNA. Nucleic Acids Research, 2010, 38, 5443-5455.	14.5	30
61	DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in Borrelia burgdorferi. Journal of Bacteriology, 2018, 200, .	2.2	30
62	Quorum sensing by the Lyme disease spirochete. Microbes and Infection, 2003, 5, 991-997.	1.9	29
63	Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microbial Pathogenesis, 2006, 41, 43-47.	2.9	28
64	Borrelia burgdorferi erp (ospE -Related) Gene Sequences Remain Stable during Mammalian Infection. Infection and Immunity, 2002, 70, 5307-5311.	2.2	26
65	Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein IpLA7 (P22, P22-A) during the Lyme disease spirochaete's mammal–tick infectious cycle. Microbiology (United Kingdom), 2007, 153, 1361-1371.	1.8	26
66	Bpur, the Lyme Disease Spirochete's PUR Domain Protein. Journal of Biological Chemistry, 2013, 288, 26220-26234.	3.4	26
67	Transcriptomic insights on the virulence-controlling CsrA, BadR, RpoN, and RpoS regulatory networks in the Lyme disease spirochete. PLoS ONE, 2018, 13, e0203286.	2.5	26
68	Functionality of Borrelia burgdorferi LuxS: The Lyme disease spirochete produces and responds to the pheromone autoinducer-2 and lacks a complete activated-methyl cycle. International Journal of Medical Microbiology, 2006, 296, 92-102.	3.6	25
69	DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family. BMC Microbiology, 2009, 9, 137.	3.3	25
70	Posttranscriptional Self-Regulation by the Lyme Disease Bacterium's BpuR DNA/RNA-Binding Protein. Journal of Bacteriology, 2013, 195, 4915-4923.	2.2	25
71	Public health and patient safety concerns merit retention of Lyme borreliosis-associated spirochetes within the genus Borrelia, and rejection of the genus novum Borreliella. Ticks and Tick-borne Diseases, 2019, 10, 1-4.	2.7	25
72	Gene Regulation and Transcriptomics. Current Issues in Molecular Biology, 2022, 42, 223-266.	2.4	22

#	Article	IF	CITATIONS
73	Intracellular Concentrations of Borrelia burgdorferi Cyclic Di-AMP Are Not Changed by Altered Expression of the CdaA Synthase. PLoS ONE, 2015, 10, e0125440.	2.5	22
74	Borrelia burgdorferi cp32 BpaB Modulates Expression of the Prophage NucP Nuclease and SsbP Single-Stranded DNA-Binding Protein. Journal of Bacteriology, 2012, 194, 4570-4578.	2.2	20
75	Epitope-Specific Evolution of Human B Cell Responses toBorrelia burgdorferiVlsE Protein from Early to Late Stages of Lyme Disease. Journal of Immunology, 2016, 196, 1036-1043.	0.8	20
76	Borrelia burgdorferi SpoVG DNA- and RNA-Binding Protein Modulates the Physiology of the Lyme Disease Spirochete. Journal of Bacteriology, 2018, 200, .	2.2	20
77	Genetic and physiological characterization of the Borrelia burgdorferi ORF BB0374-pfs-metK-luxS operon. Microbiology (United Kingdom), 2007, 153, 2304-2311.	1.8	19
78	Borrelia burgdorferi RevA Significantly Affects Pathogenicity and Host Response in the Mouse Model of Lyme Disease. Infection and Immunity, 2015, 83, 3675-3683.	2.2	19
79	Immunological and genetic characterization of Borrelia burgdorferi BapA and EppA proteins. Microbiology (United Kingdom), 2003, 149, 1113-1125.	1.8	17
80	Increased expression of Borrelia burgdorferi factor H-binding surface proteins during transmission from ticks to mice. International Journal of Medical Microbiology Supplements, 2004, 293, 120-125.	0.4	16
81	Common Bacterial Culture Techniques and Media. Current Protocols in Microbiology, 2006, Appendix 4, Appendix 4A.	6.5	15
82	Apparent Role for Borrelia burgdorferi LuxS during Mammalian Infection. Infection and Immunity, 2015, 83, 1347-1353.	2.2	15
83	Borrelia burgdorferi-Specific Monoclonal Antibodies Derived from Mice Primed with Lyme Disease Spirochete-InfectedIxodes scapularisTicks. Hybridoma, 2002, 21, 179-182.	0.4	14
84	Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens. Ticks and Tick-borne Diseases, 2014, 5, 415-422.	2.7	13
85	The Lyme disease spirochete's BpuR DNA/RNAâ€binding protein is differentially expressed during the mammal–tick infectious cycle, which affects translation of the SodA superoxide dismutase. Molecular Microbiology, 2019, 112, 973-991.	2.5	11
86	The Consistent Tick-Vertebrate Infectious Cycle of the Lyme Disease Spirochete Enables Borrelia burgdorferi To Control Protein Expression by Monitoring Its Physiological Status. Journal of Bacteriology, 2022, 204, e0060621.	2.2	10
87	Roles for phagocytic cells and complement in controlling relapsing fever infection. Journal of Leukocyte Biology, 2009, 86, 727-736.	3.3	8
88	Culture of Escherichia coli and Related Bacteria. Current Protocols in Essential Laboratory Techniques, 2008, 00, 4.2.1.	2.6	7
89	Evidence of taxonomic bias in public databases: The example of the genus Borrelia. Ticks and Tick-borne Diseases, 2022, 13, 101994.	2.7	7
90	Comment on: Gupta, 2019, distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: Response to Margos' et al. "The genus Borrelia reloaded―(PLoS One 13(12): e0208432). PLoS One 14(8):e02213 Ticks and Tick-borne Diseases, 2020, 11, 101320.	977	6

#	Article	IF	CITATIONS
91	Report of the Pathogenesis and Pathophysiology of Lyme Disease Subcommittee of the HHS Tick Borne Disease Working Group. Frontiers in Medicine, 2021, 8, 643235.	2.6	6
92	7 Genetic Methods in Borrelia and Other Spirochaetes. Methods in Microbiology, 1999, 29, 209-227.	0.8	4
93	Aseptic Technique. Current Protocols in Essential Laboratory Techniques, 2008, 00, 4.1.1.	2.6	4
94	Culture of Escherichia coli and Related Bacteria. Current Protocols in Essential Laboratory Techniques, 2017, 15, 4.2.1.	2.6	3
95	Aseptic Technique. Current Protocols in Microbiology, 2020, 56, e98.	6.5	3
96	Aseptic Technique. Current Protocols in Essential Laboratory Techniques, 2019, 18, e31.	2.6	1