Hajime Shibata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3547149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negative Thermal Quenching Curves in Photoluminescence of Solids. Japanese Journal of Applied Physics, 1998, 37, 550-553.	1.5	177
2	How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy and Environmental Science, 2018, 11, 582-593.	30.8	169
3	Restriction landmark genomic scanning method and its various applications. Electrophoresis, 1993, 14, 251-258.	2.4	156
4	Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se2 thin films. Journal of Applied Physics, 2009, 106, .	2.5	148
5	Band-gap modified Al-doped Zn1â^'xMgxO transparent conducting films deposited by pulsed laser deposition. Applied Physics Letters, 2004, 85, 1374-1376.	3.3	131
6	Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency. Applied Physics Express, 2016, 9, 102301.	2.4	129
7	Two-dimensional electron gas in Zn polar ZnMgOâ^•ZnO heterostructures grown by radical source molecular beam epitaxy. Applied Physics Letters, 2006, 89, 132113.	3.3	118
8	Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. Journal of Applied Physics, 2016, 120, .	2.5	105
9	Optical absorption and photoluminescence studies of βâ€FeSi2prepared by heavy implantation of Fe+ions into Si. Journal of Applied Physics, 1996, 80, 5955-5962.	2.5	103
10	Inhibitions of acid secretion by E3810 and omeprazole, and their reversal by glutathione. Biochemical Pharmacology, 1991, 42, 321-328.	4.4	98
11	Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10%. Solar Energy Materials and Solar Cells, 2016, 144, 488-492.	6.2	95
12	Group III Elemental Composition Dependence of RbF Postdeposition Treatment Effects on Cu(In,Ga)Se ₂ Thin Films and Solar Cells. Journal of Physical Chemistry C, 2018, 122, 3809-3817.	3.1	86
13	Afferent projections to the interpeduncular nucleus in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Journal of Comparative Neurology, 1986, 248, 272-284.	1.6	72
14	Direct observation of plasma-lens effect. Physical Review Letters, 1991, 66, 1870-1873.	7.8	67
15	Effects of the surface Cu2â^'xSe phase on the growth and properties of CuInSe2 films. Applied Physics Letters, 1999, 74, 1630-1632.	3.3	66
16	Degenerate layers in epitaxial ZnO films grown on sapphire substrates. Applied Physics Letters, 2004, 84, 4412-4414.	3.3	65
17	Potential-induced degradation of Cu(In,Ga)Se ₂ photovoltaic modules. Japanese Journal of Applied Physics, 2015, 54, 08KC13.	1.5	64
18	Determination of crystallographic polarity of ZnO layers. Applied Physics Letters, 2005, 87, 141904.	3.3	63

#	Article	IF	CITATIONS
19	Structural tuning of wide-gap chalcopyrite CuGaSe ₂ thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se ₂ . Progress in Photovoltaics: Research and Applications, 2014, 22, 821-829.	8.1	61
20	In ₂ O ₃ â€Based Transparent Conducting Oxide Films with High Electron Mobility Fabricated at Low Process Temperatures. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700506.	1.8	60
21	Strong excitonic transition of Zn1â^'xMgxO alloy. Applied Physics Letters, 2007, 91, .	3.3	55
22	Excitonic emissions from CulnSe2 on GaAs(001) grown by molecular beam epitaxy. Applied Physics Letters, 1995, 67, 1289-1291.	3.3	53
23	Effects of long-term heat-light soaking on Cu(In,Ga)Se ₂ solar cells with KF postdeposition treatment. Applied Physics Express, 2017, 10, 092301.	2.4	51
24	Photoluminescence characterization of Zn1â^'xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy. Applied Physics Letters, 2007, 90, 124104.	3.3	49
25	Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications. Thin Solid Films, 2013, 536, 111-114.	1.8	49
26	Molecular Cloning of Polymorphic Markers on RLGS Gel Using the Spot Target Cloning Method. Biochemical and Biophysical Research Communications, 1993, 194, 1406-1412.	2.1	48
27	Excitation-Power Dependence of Free Exciton Photoluminescence of Semiconductors. Japanese Journal of Applied Physics, 2005, 44, 6113-6114.	1.5	48
28	Crystal growth of ZnO. Journal of Crystal Growth, 2002, 237-239, 509-513.	1.5	47
29	Negative thermal quenching of photoluminescence in ZnO. Physica B: Condensed Matter, 2006, 376-377, 711-714.	2.7	46
30	Switching Dynamics of Bi2Sr2CaCu2O8+l̂´Intrinsic Josephson Junctions: Macroscopic Quantum Tunneling and Self-Heating Effect. Journal of the Physical Society of Japan, 2008, 77, 104708.	1.6	45
31	Effect of Se/(Ga+In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell. Journal of Crystal Growth, 2009, 311, 2212-2214.	1.5	40
32	Dielectric functions of Cu2ZnSnSe4 and Cu2SnSe3 semiconductors. Journal of Applied Physics, 2015, 117, 015702.	2.5	40
33	Tail state formation in solar cell materials: First principles analyses of zincblende, chalcopyrite, kesterite, and hybrid perovskite crystals. Physical Review Materials, 2018, 2, .	2.4	39
34	Crystal growth of rare-earth orthovanadate (RVO4) by the floating-zone method. Journal of Crystal Growth, 2006, 286, 288-293.	1.5	38
35	Improvement of minority carrier lifetime and conversion efficiency by Na incorporation in Cu2ZnSnSe4 solar cells. Journal of Applied Physics, 2017, 122, .	2.5	37
36	Band-edge photoluminescence of CuGaSe2 films grown by molecular beam epitaxy. Journal of Applied Physics, 1996, 79, 4318.	2.5	36

#	Article	IF	CITATIONS
37	A shallow state in molecular beam epitaxial grown CuGaSe2film detectable by 1.62 eV photoluminescence. Journal of Applied Physics, 1997, 81, 2794-2798.	2.5	36
38	Improving the Open Circuit Voltage through Surface Oxygen Plasma Treatment and 11.7% Efficient Cu ₂ ZnSnSe ₄ Solar Cell. ACS Applied Materials & Interfaces, 2019, 11, 13319-13325.	8.0	36
39	Correlation between oxygen stoichiometry, structure, and opto-electrical properties in amorphous In2O3:H films. Journal of Applied Physics, 2012, 111, .	2.5	35
40	Characterization of Zn1â^'xMgxO transparent conducting thin films fabricated by multi-cathode RF-magnetron sputtering. Thin Solid Films, 2010, 518, 2949-2952.	1.8	34
41	The effects of thermal treatments on the electrical properties of phosphorus doped ZnO layers grown by MBE. Journal of Crystal Growth, 2005, 278, 268-272.	1.5	33
42	High electron mobility Zn polar ZnMgO/ZnO heterostructures grown by molecular beam epitaxy. Journal of Crystal Growth, 2007, 301-302, 358-361.	1.5	33
43	Progress in the Efficiency of Wide-Gap Cu(In1-xGax)Se2Solar Cells Using CIGSe Layers Grown in Water Vapor. Japanese Journal of Applied Physics, 2005, 44, L679-L682.	1.5	32
44	Band profiles of ZnMgO/ZnO heterostructures confirmed by Kelvin probe force microscopy. Applied Physics Letters, 2009, 94, .	3.3	32
45	Effect of Multiple-Step Annealing on the Formation of Semiconducting β-FeSi2and Metallic α-Fe2Si5on Si (100) by Ion Beam Synthesis. Japanese Journal of Applied Physics, 1997, 36, 2802-2812.	1.5	31
46	Characterization of electronic structure of Cu2ZnSn(S Se1â^')4 absorber layer and CdS/Cu2ZnSn(S) Tj ETQq0 C 2015, 582, 166-170.	0 rgBT /O 1.8	verlock 10 Tf : 31
47	Single-crystal Cu(In,Ga)Se ₂ solar cells grown on GaAs substrates. Applied Physics Express, 2018, 11, 082302.	2.4	30
48	Growth of polycrystalline Cu(In,Ga)Se2 thin films using a radio frequency-cracked Se-radical beam source and application for photovoltaic devices. Applied Physics Letters, 2007, 91, .	3.3	29
49	Structural and optical characterization of β-FeSi2 layers on Si formed by ion beam synthesis. Thin Solid Films, 1995, 270, 406-410.	1.8	28
50	Very small tail state formation in Cu2ZnGeSe4. Applied Physics Letters, 2018, 113, .	3.3	28
51	Buried <i>p-n</i> junction formation in CuGaSe ₂ thin-film solar cells. Applied Physics Letters, 2014, 104, 031606.	3.3	27
52	Cu(In,Ga)Se ₂ Solar Cells With Amorphous Oxide Semiconducting Buffer Layers. IEEE Journal of Photovoltaics, 2015, 5, 956-961.	2.5	26
53	Effects of Mo back contact thickness on the properties of CIGS solar cells. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1063-1066.	1.8	25
54	Development of high-efficiency CIGS integrated submodules using in-line deposition technology. Solar Energy Materials and Solar Cells, 2011, 95, 254-256.	6.2	25

#	Article	IF	CITATIONS
55	Effects of RbF postdeposition treatment and heat-light soaking on the metastable acceptor activation of CuInSe2 thin film photovoltaic devices. Applied Physics Letters, 2018, 113, .	3.3	25
56	Large grain Cu(In,Ga)Se2 thin film growth using a Se-radical beam source. Solar Energy Materials and Solar Cells, 2009, 93, 792-796.	6.2	24
57	Impact of a binary Ga2Se3 precursor on ternary CuGaSe2 thin-film and solar cell device properties. Applied Physics Letters, 2013, 103, .	3.3	24
58	Determination and interpretation of the optical constants for solar cell materials. Applied Surface Science, 2017, 421, 276-282.	6.1	24
59	Interfacial Alkali Diffusion Control in Chalcopyrite Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 14123-14130.	8.0	23
60	Band Alignment of the CdS/Cu ₂ Zn(Sn _{1–<i>x</i>} Ge <i>_x</i>)Se ₄ Heterointerface and Electronic Properties at the Cu ₂ Zn(Sn _{1–<i>x</i>} Ge <i>_x</i>)Se ₄ Surface: <i>x</i> = 0.0.2 and 0.4 ACS Applied Materials & amount of faces 2019, 11, 4637,4648	8.0	23
61	Characterization of ZnO crystals by photoluminescence spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 872-875.	0.8	22
62	Photoluminescence characterization of excitonic centers in ZnO epitaxial films. Applied Physics Letters, 2005, 86, 221907.	3.3	22
63	Effects of the Proton Pump Inhibitor, E3810, on Gastric Secretion and Gastric and Duodenal Ulcers or Erosions in Rats. Drug Investigation, 1991, 3, 328-332.	0.6	21
64	Formation of four new shallow emissions in Mn+ionâ€implanted GaAs grown by molecular beam epitaxy having extremely low concentration of background impurities. Applied Physics Letters, 1993, 63, 1780-1782.	3.3	21
65	Growth of CuGaSe2 film by molecular beam epitaxy. Microelectronics Journal, 1996, 27, 53-58.	2.0	21
66	Composition control of Cu2ZnSnSe4-based solar cells grown by coevaporation. Thin Solid Films, 2014, 551, 27-31.	1.8	21
67	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.2	> 21
68	Revie Narrow-bandgap Cu2Sn1â^'xGexSe3 thin film solar cells. Materials Letters, 2015, 158, 205-207.	2.6	21
69	Cu ₂ ZnSnSe ₄ thin-film solar cells fabricated using Cu ₂ SnSe ₃ and ZnSe bilayers. Applied Physics Express, 2015, 8, 042301.	2.4	21
70	Determination of deep-level defects in Cu2ZnSn(S,Se)4 thin-films using photocapacitance method. Applied Physics Letters, 2015, 106, .	3.3	20
71	Carrier Compensation Induced by Thermal Annealing in Al-Doped ZnO Films. Materials, 2017, 10, 141.	2.9	20
72	Analysis of future generation solar cells and materials. Japanese Journal of Applied Physics, 2018, 57, 04FS03.	1.5	20

#	Article	IF	CITATIONS
73	Cu(In,Ga)Se2 solar cells and mini-modules fabricated on thin soda-lime glass substrates. Solar Energy Materials and Solar Cells, 2013, 119, 163-168.	6.2	19
74	Comparison of ZnO:B and ZnO:Al layers for Cu(In,Ga)Se2 submodules. Thin Solid Films, 2016, 614, 79-83.	1.8	18
75	Effect of Combined Alkali (KF + CsF) Postâ€Deposition Treatment on Cu(InGa)Se ₂ Solar Ce Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800372.	^{lls.} 2.4	17
76	Synthesis of β-FeSi2 for optical applications by Fe triple-energy ion implantation into Si(100) and Si(111) substrates. Thin Solid Films, 1996, 281-282, 252-255.	1.8	16
77	Improved efficiency of Cu(In,Ga)Se ₂ miniâ€module via highâ€mobility In ₂ O ₃ :W,H transparent conducting oxide layer. Progress in Photovoltaics: Research and Applications, 2019, 27, 491-500.	8.1	16
78	Effects of annealing on CulnSe2 films grown by molecular beam epitaxy. Solar Energy Materials and Solar Cells, 1997, 49, 319-326.	6.2	15
79	Experimental study of macroscopic quantum tunnelling in Bi2212 intrinsic Josephson junctions. Superconductor Science and Technology, 2007, 20, S10-S13.	3.5	15
80	CIGS thin films, solar cells, and submodules fabricated using a rf-plasma cracked Se-radical beam source. Thin Solid Films, 2011, 519, 7216-7220.	1.8	15
81	Highly Efficient Cu(In,Ga)Se ₂ Thin-Film Submodule Fabricated Using a Three-Stage Process. Applied Physics Express, 2013, 6, 112303.	2.4	15
82	Effects of Mo surface oxidation on Cu(In,Ga)Se ₂ solar cells fabricated by three-stage process with KF postdeposition treatment. Japanese Journal of Applied Physics, 2016, 55, 022304.	1.5	15
83	Efficient Narrow Band Gap Cu(In,Ga)Se2 Solar Cells with Flat Surface. ACS Applied Materials & Interfaces, 2020, 12, 45485-45492.	8.0	15
84	Measurement of the cosmic-ray muon spectrum and charge ratio at large zenith angles in the momentum range 100 GeV/cto 10 TeV/cusing a magnet spectrometer. Physical Review D, 1983, 28, 40-48.	4.7	14
85	Optical dielectric constant inhomogeneity along the growth axis in ZnO-based transparent electrodes deposited on glass substrates. Journal of Applied Physics, 2009, 105, .	2.5	14
86	Highâ€efficiency CIGS submodules. Progress in Photovoltaics: Research and Applications, 2012, 20, 595-599.	8.1	14
87	Selective corticotropin-releasing factor 1 receptor antagonist E2508 reduces restraint stress-induced defecation and visceral pain in rat models. Psychoneuroendocrinology, 2017, 75, 110-115.	2.7	14
88	Cu(In,Ga)Se ₂ Solar Cells with Amorphous In ₂ O ₃ -Based Front Contact Layers. ACS Applied Materials & Interfaces, 2017, 9, 29677-29686.	8.0	14
89	Effect of thermal annealing on the redistribution of alkali metals in Cu(In,Ga)Se2solar cells on glass substrate. Journal of Applied Physics, 2018, 123, 093101.	2.5	14
90	Effect of Water Supply and Defoliation on Photosynthesis, Transpiration and Yield of Soybean Japanese Journal of Crop Science, 1992, 61, 264-270.	0.2	14

#	Article	IF	CITATIONS
91	Dopamine infused continuously at high concentration with a low flow rate affects arterial blood pressure fluctuation waves. Critical Care Medicine, 1993, 21, 801-804.	0.9	13
92	New nonlinear-laser effects in YbVO4 crystal: Sesqui-octave stokes and anti-Stokes comb generation and the cascaded self-frequency "tripling―of χ(3)-Stokes components under a one-micron picosecond pumping. Laser Physics, 2008, 18, 1546-1552.	1.2	13
93	Measurement of Cosmic-Ray Muon Spectrum and Charge Ratio at Large Zenith Angles in the Momentum Range 100 GeV/cto 10 TeV/cUsing a Magnet Spectrograph. Physical Review Letters, 1979, 43, 974-977.	7.8	12
94	Temperature induced phase transformation in coevaporated Cu2SnSe3 thin films. Materials Letters, 2014, 116, 61-63.	2.6	12
95	Exploring suitable damp heat and potential induced degradation test procedures for Cu(In,Ga)(S,Se) photovoltaic modules. Japanese Journal of Applied Physics, 2018, 57, 08RG02.	1.5	12
96	Study and optimization of alternative MBEâ€deposited metallic precursors for highly efficient kesterite CZTSe:Ge solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 779-788.	8.1	12
97	The trigger system of mutron, a cosmic ray magnetic spectrometer. Nuclear Instruments & Methods, 1978, 150, 387-400.	1.2	11
98	Control of the thin film properties of Cu(In,Ga)Se2 using water vapor introduction during growth. Journal of Applied Physics, 2006, 100, 096106.	2.5	11
99	Si-Doping Effects in Cu(In,Ga)Se ₂ Thin Films and Applications for Simplified Structure High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31119-31128.	8.0	11
100	Impact of front contact layers on performance of Cu(In,Ga)Se ₂ solar cells in relaxed and metastable states. Progress in Photovoltaics: Research and Applications, 2018, 26, 789-799.	8.1	11
101	Optical and Structural Properties of High-Efficiency Epitaxial Cu(In,Ga)Se ₂ Grown on GaAs. ACS Applied Materials & Interfaces, 2020, 12, 3150-3160.	8.0	11
102	Wakefield accelerator using twin linacs. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 328, 596-598.	1.6	10
103	Observation of stimulated Raman scattering in the tetragonal crystal YbVO4. Laser Physics Letters, 2006, 3, 263-267.	1.4	10
104	CIGS solar cell with CdS buffer layer deposited by ammoniaâ€free process. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1072-1075.	1.8	10
105	Degradation mechanism of Cu(In,Ga)Se ₂ solar cells induced by exposure to air. Japanese Journal of Applied Physics, 2016, 55, 072301.	1.5	10
106	Interface oxygen and heat sensitivity of Cu(In,Ga)Se2 and CuGaSe2 solar cells. Applied Physics Letters, 2016, 108, 203902.	3.3	10
107	A comparative study on charge carrier recombination across the junction region of Cu2ZnSn(S,Se)4 and Cu(In,Ga)Se2 thin film solar cells. AIP Advances, 2016, 6, .	1.3	10
108	Evaluation of femtosecond laser-scribed Cu(In,Ga)Se2 solar cells using scanning spreading resistance microscopy. Applied Physics Express, 2018, 11, 032301.	2.4	10

#	Article	IF	CITATIONS
109	Effects of low temperature buffer layer treatments on the growth of high quality ZnO films. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 888-891.	0.8	9
110	Characterization of electronic structure of oxysulfide buffers and band alignment at buffer/absorber interfaces in Cu(In,Ga)Se ₂ -based solar cells. Japanese Journal of Applied Physics, 2014, 53, 05FW09.	1.5	9
111	Influence of electron irradiation on electroluminescence of Cu(In,Ga)Se ₂ solar cells. Japanese Journal of Applied Physics, 2014, 53, 05FW08.	1.5	9
112	Reduced recombination in a surface-sulfurized Cu(InGa)Se ₂ thin-film solar cell. Japanese Journal of Applied Physics, 2018, 57, 055701.	1.5	9
113	Electronic structure of Cu ₂ ZnSn(S _{<i>x</i>} Se _{1â[^]<i>x</i>}) ₄ surface and CdS/Cu ₂ ZnSn(S _{<i>x</i>} Se _{1â[^]<i>x</i>}) ₄ interface. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, .	0.8	9
114	Deposition of SiO2Thin Films by Combined Low-Energy Ion-Beam and Molecular-Beam Epitaxial Method. Japanese Journal of Applied Physics, 2000, 39, 1327-1328.	1.5	8
115	Two-dimensional polaron mass in ZnO quantum Hall systems. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1599-1601.	0.8	8
116	Structure of chemically deposited Zn(S,O,OH) buffer layer and the effects on the performance of Cu(in,Ga)Se ₂ solar cell. Progress in Photovoltaics: Research and Applications, 2016, 24, 397-404.	8.1	8
117	Siâ€Đoped Cu(In,Ga)Se ₂ Photovoltaic Devices with Energy Conversion Efficiencies Exceeding 16.5% without a Buffer Layer. Advanced Energy Materials, 2018, 8, 1702391.	19.5	8
118	Characterization of Ca+ionâ€implanted GaAs by photoluminescence. Applied Physics Letters, 1994, 65, 1427-1429.	3.3	7
119	Crystal growth of La2â^'xCexCuO4. Physica C: Superconductivity and Its Applications, 2003, 388-389, 389-390.	1.2	7
120	Fabrication of weak-link Nb-based nano-SQUIDs by FIB process. Physica C: Superconductivity and Its Applications, 2011, 471, 1246-1248.	1.2	7
121	Bilayer contacts composed of amorphous and solid-phase crystallized transparent conducting oxides for solar cells. Japanese Journal of Applied Physics, 2014, 53, 05FA08.	1.5	7
122	Effect of pre-annealing on Cu2ZnSnSe4 thin-film solar cells prepared from stacked Zn/Cu/Sn metal precursors. Materials Letters, 2016, 176, 78-82.	2.6	7
123	Electronic structures of Cu ₂ ZnSnSe ₄ surface and CdS/Cu ₂ ZnSnSe ₄ heterointerface. Japanese Journal of Applied Physics, 2017, 56, 065701.	1.5	7
124	Significance of metastable acceptors in Cu(In,Ga)Se ₂ solar cells in accelerated lifetime testing. Japanese Journal of Applied Physics, 2018, 57, 092301.	1.5	7
125	Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices. Solar Energy Materials and Solar Cells, 2020, 206, 110300.	6.2	7
126	Characterization of Surface and Heterointerface of Cu 2 ZnSn 1– x Ge x Se 4 for Solar Cell Applications. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900708.	2.4	7

#	Article	IF	CITATIONS
127	Analysis for non-radiative recombination and resistance loss in chalcopyrite and kesterite solar cells. Japanese Journal of Applied Physics, 2021, 60, SBBF05.	1.5	7

128 Electromagnetic interactions of cosmic-ray muons up to 10 TeV (pair productions and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td (br

129	Measurement of impact parameter dependent probabilities and total cross sections for targetK-shell ionization by He+ ions. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1987, 4, 339-342.	1.0	6
130	Solid-gas effect inK-vacancy production in near symmetric slow heavy-ion-atom collisions. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1992, 22, 451-456.	1.0	6
131	Ion-beam-induced epitaxial crystallisation of metastable Si1â^'xâ^'yGexCy layers fabricated by Ge and C ion implantation. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 289-293.	1.4	6
132	Deposition of Ge1-xCxAlloy on Si by Combined Low-Energy Ion Beam and Molecular Beam Epitaxial Method. Japanese Journal of Applied Physics, 1999, 38, 3459-3465.	1.5	6
133	Anisotropic Optical Conductivity of Nd2-xCexCuO4 Thin Films. Journal of the Physical Society of Japan, 2001, 70, 2833-2835.	1.6	6
134	Crystallographic growth orientation of Cu(InGa)Se2films in relation to substrate material nature. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2639-2643.	1.8	6
135	Infrared reflection–absorption spectroscopy applied to a merocyanine dye J-aggregate deposited on transparent electrodes based on zinc oxide. Thin Solid Films, 2009, 518, 462-465.	1.8	6
136	Multi-Junction Switching in Bi ₂ Sr _{1.6} La _{0.4} CuO _{6+δ} Intrinsic Josephson Junctions. Applied Physics Express, 2010, 3, 043101.	2.4	6
137	Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1â^'x,Gax)Se2 Film Fabricated by Three-Stage Process. Journal of Electronic Materials, 2018, 47, 4944-4949.	2.2	6
138	Analysis of Optical and Recombination Losses in Solar Cells. Springer Series in Optical Sciences, 2018, , 29-82.	0.7	6
139	An over 18%-efficient completely buffer-free Cu(In,Ga)Se ₂ solar cell. Applied Physics Express, 2018, 11, 075502.	2.4	6
140	A comparative study of the effects of light and heavy alkali-halide postdeposition treatment on CuGaSe2 and Cu(In,Ga)Se2 thin-film solar cells. Solar Energy, 2020, 211, 1092-1101.	6.1	6
141	Study on photo-degradation of inverted organic solar cells caused by generation of potential barrier between PEDOT:PSS and PBDB-Ts. Sustainable Energy and Fuels, 2021, 5, 3092-3096.	4.9	6
142	Light Scattering Study of Effect of Hydrostatic-Pressure on the Ferroelectric Relaxational Mode in KH2PO4. Journal of the Physical Society of Japan, 1986, 55, 2543-2546.	1.6	6
143	High-Pressure Brillouin Scattering Cell with Crystal Rotation Axis. Japanese Journal of Applied Physics, 1986, 25, 137-139.	1.5	5
144	Formation of Radiative Binding States for the Pairs Between Acceptors in Heavily Acceptor-Doped Gaas Materials Research Society Symposia Proceedings, 1989, 145, 493.	0.1	5

#	Article	IF	CITATIONS
145	Novel optical features in Cd+ ion-implanted LEC-grown GaAs. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 466-470.	1.4	5
146	Synthesis of metastable group-IV alloy semiconductors by ion implantation and ion-beam-induced epitaxial crystallization. Applied Surface Science, 1996, 100-101, 498-502.	6.1	5
147	Crystallization of SiSn and SiSnC layers in Si by solid phase epitaxy and ion-beam-induced epitaxy. Nuclear Instruments & Methods in Physics Research B, 1997, 121, 199-202.	1.4	5
148	Far-Infrared Reflectance and Transmittance Studies of YBa2Cu3O7-xSingle-Crystal Thin Films. Japanese Journal of Applied Physics, 2001, 40, 3163-3170.	1.5	5
149	Possible observation of energy level quantization in an intrinsic Josephson junction. Physica C: Superconductivity and Its Applications, 2008, 468, 1919-1921.	1.2	5
150	Fabrication of Ultrasmall High-Quality Bi ₂ Sr ₂ CaCu ₂ O _{8+δ} Intrinsic Josephson Junctions. Applied Physics Express, 0, 1, 101701.	2.4	5
151	Local Structure around Dopant Site in Ga-Doped ZnO from Extended X-ray Absorption Fine Structure Measurements. Journal of the Physical Society of Japan, 2011, 80, 074602.	1.6	5
152	Improved performance in Cu2ZnSnSe4 solar cells using a sandwich-structured ZnSe/Cu2SnSe3/ZnSe precursor. Current Applied Physics, 2017, 17, 366-369.	2.4	5
153	A comparative study of the effects of sputtering deposition conditions for ZnO surface electrode layers on Cu(In,Ga)Se2 and CuGaSe2 solar cells. Thin Solid Films, 2017, 633, 49-54.	1.8	5
154	Cosmic-ray muon spectrum derived from the transferred energy spectrum of bursts observed by the mutron calorimeter. Il Nuovo Cimento A, 1983, 73, 209-234.	0.2	4
155	Effects of strain on the growth and properties of CuInSe2 epitaxial films. Journal of Crystal Growth, 1997, 175-176, 1051-1056.	1.5	4
156	Ion-beam-induced epitaxial crystallization (IBIEC) and solid phase epitaxial growth (SPEG) of Si1â´'xCx layers in Si fabricated by C ion implantation. Nuclear Instruments & Methods in Physics Research B, 1997, 127-128, 350-354.	1.4	4
157	Effects of water vapor introduction during Cu(In1-xGax)Se2deposition on thin film properties and solar cell performance. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2609-2614.	1.8	4
158	Study of time-resolved photoluminescence in Cu ₂ ZnSn(S,Se) ₄ thin films with different Cu/Sn ratio. Japanese Journal of Applied Physics, 2015, 54, 08KC15.	1.5	4
159	Individual identification of free hole and electron dynamics in CuIn1â [~] xGaxSe2 thin films by simultaneous monitoring of two optical transitions. Applied Physics Letters, 2015, 106, .	3.3	4
160	Current status of transparent conducting oxide layers with high electron mobility and their application in Cu(In,Ga)Se2 mini-modules. Thin Solid Films, 2019, 673, 26-33.	1.8	4
161	lonization effects on Cu(In, Ga)Se ₂ thinâ€film solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1600168.	0.8	4
162	Measurement System for Switching Current Distribution in Intrinsic Josephson Junctions. IEICE Transactions on Electronics, 2007, E90-C, 605-606.	0.6	4

#	Article	IF	CITATIONS
163	Femtosecond Laser Scribing of Cu(In,Ga)Se2 Thin-Film Solar Cell. Journal of Laser Micro Nanoengineering, 2016, 11, 130-136.	0.1	4
164	Light scattering spectra of low-lying modes in KH2PO4under hydrostatic pressure. Ferroelectrics, 1988, 80, 129-132.	0.6	3
165	Optical and electrical properties of C+-implanted GaAs. Nuclear Instruments & Methods in Physics Research B, 1989, 39, 457-460.	1.4	3
166	Excitedâ€state spectroscopy of identified Mg acceptor in InP. Applied Physics Letters, 1990, 56, 349-351.	3.3	3
167	Vortex core-like structure observed on a surface of superconducting NbN thin film by LT-STM. Physica B: Condensed Matter, 1991, 169, 465-466.	2.7	3
168	Ion implantation of isoelectronic impurities into InP. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 910-914.	1.4	3
169	Steric Effects in Photochemical Cycloadditions of 9-Phenanthrenecarboxylates Bulletin of the Chemical Society of Japan, 1993, 66, 340-343.	3.2	3
170	Highâ€energy implantation of Hg+ ions into GaAs grown by liquid encapsulated Czochralski method: Formation of multiple shallow emissions. Applied Physics Letters, 1995, 67, 2845-2847.	3.3	3
171	Doping Dependence of Superconducting Energy Gap of NCCO Observed by Tunneling Spectroscopy. Journal of Low Temperature Physics, 2003, 131, 327-330.	1.4	3
172	Point Defect Changes in CuGaSe2 Induced by Gas Annealing. Materials Research Society Symposia Proceedings, 2003, 763, 5171.	0.1	3
173	Optical Constants of β-FeSi2Film on Si Substrate Obtained from Transmittance and Reflectance Data and Origin of Urbach Tail. Japanese Journal of Applied Physics, 2007, 46, 2405-2408.	1.5	3
174	Oblique-Incidence Infrared Reflection in Thin ZnO Films Deposited on Sapphire by Gas-Source MBE. AIP Conference Proceedings, 2007, , .	0.4	3
175	Fabrication of intrinsic Josephson junction of bismuth-based cuprates. Physica C: Superconductivity and Its Applications, 2008, 468, 1916-1918.	1.2	3
176	Degradation of Cu(In, Ga)Se 2 thin-film solar cells due to the ionization effect of low-energy electrons. Thin Solid Films, 2015, 582, 91-94.	1.8	3
177	Proposed new damp heat test standards for commercial CIGS modules with bias application or light irradiation. Proceedings of SPIE, 2016, , .	0.8	3
178	Band Alignment of CdS/Cu2ZnSnSe4 Heterointerface and Solar Cell Performances. MRS Advances, 2017, 2, 3157-3162.	0.9	3
179	Accelerated Outdoor PID Testing of CIGS Modules and Comparison with Indoor PID Tests. , 2018, , .		3
180	Impacts of KF Post-Deposition Treatment on the Band Alignment of Epitaxial Cu(In,Ga)Se ₂ Heterojunctions. ACS Applied Materials & Interfaces, 2022, 14, 16780-16790.	8.0	3

#	Article	IF	CITATIONS
181	Pulsed UV laser irradiation effect for Sn+-implanted GaAs. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 578-582.	1.4	2
182	Annealing Effect on Photoluminescence Properties of Be-Doped MBE GaAs. Materials Research Society Symposia Proceedings, 1993, 325, 267.	0.1	2
183	Heavily carbon-doped GaAs layers prepared by low-energy ion-beam impingement during molecular beam epitaxy. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 133-136.	1.4	2
184	Photoluminescence characterization of dually Cd+ and N+ ion-implanted GaAs. Nuclear Instruments & Methods in Physics Research B, 1997, 121, 302-305.	1.4	2
185	Photoluminescence studies of epitaxial Si1â^'xGex and Si1â^'xâ^'yGexCy layers on Si formed by ion beam synthesis. Nuclear Instruments & Methods in Physics Research B, 1997, 121, 146-150.	1.4	2
186	Influence of a Surface on the Franz-Keldysh Effect in n- and p-type GaAs Epitaxial Layers. Journal of the Physical Society of Japan, 2001, 70, 1064-1074.	1.6	2
187	Traveling solvent floating-zone growth and reduction condition optimization of Nd2â^'xCexCuO4 single crystals. Physica C: Superconductivity and Its Applications, 2001, 357-360, 363-366.	1.2	2
188	Far-infrared optical conductivity of YBCO single crystal thin films from transmission and reflection spectra. Journal of Physics and Chemistry of Solids, 2001, 62, 253-256.	4.0	2
189	Far-infrared optical conductivity of NbN1â^'xCx thin films. Physica C: Superconductivity and Its Applications, 2002, 367, 337-342.	1.2	2
190	Superconductivity in NCCO thin films and effect of Gd and Ni doping. Physica C: Superconductivity and Its Applications, 2003, 388-389, 439-440.	1.2	2
191	Orbital-Dependent Two-Band Superconductivity in MgB2. Journal of the Physical Society of Japan, 2003, 72, 1619-1622.	1.6	2
192	Modified thermoelectric figure of merit estimated from enhanced mobility of [100] oriented beta-FeSi2 thin film. Journal of Materials Science: Materials in Electronics, 2008, 19, 311-314.	2.2	2
193	Correlation between Electrical Properties and Crystal c-Axis Orientation of Zinc Oxide Transparent Conducting Films. Japanese Journal of Applied Physics, 2012, 51, 10NC16.	1.5	2
194	Observation of Sodium Diffusion in CIGS Solar Cells with Mo/TCO/Mo Hybrid Back Contacts. Materials Research Society Symposia Proceedings, 2013, 1538, 61-66.	0.1	2
195	Study of Cu2ZnSn(S,Se)4Thin Films for Solar Cell Application. Journal of Physics: Conference Series, 2015, 596, 012019.	0.4	2
196	Ultrafast laser scribing of transparent conductive oxides in Cu(In,Ga)Se ₂ solar cells via laser lift-off process: the control of laser-induced damage. Proceedings of SPIE, 2017, , .	0.8	2
197	Deep level emission in polycrystalline CuGaSe ₂ thin-films observed by micro-photoluminescence. Japanese Journal of Applied Physics, 2018, 57, 08RC02.	1.5	2
198	Fabrication and Characterization of Cu(In,Ga)(S,Se)2-Based Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NC04.	1.5	2

#	Article	IF	CITATIONS
199	Ion-Beam-Induced Epitaxy and Solid Phase Epitaxy of Sigec on Si Formed by Ge and C Ion Implantation and their Structural and Optical Properties. Materials Research Society Symposia Proceedings, 1995, 388, 189.	0.1	1
200	Optical and Electrical Properties of Heavily Carbon-Doped Gaas Fabricated by High-Energy Ion-Implantation. Materials Research Society Symposia Proceedings, 1995, 396, 795.	0.1	1
201	Electrical properties of \hat{l}^2 -FeSi/sub 2/ bulk crystal grown by horizontal gradient freeze method. , 0, , .		1
202	Switching dynamics and MQT in Bi2201 intrinsic Josephson junctions. Physica C: Superconductivity and Its Applications, 2009, 469, 1593-1595.	1.2	1
203	Formation of ionic bonds between a fatty-acid Langmuir–Blodgett monolayer and a zinc oxide substrate. Journal of Colloid and Interface Science, 2010, 352, 299-302.	9.4	1
204	Fabrication and Characterization of Cu(In,Ga)(S,Se)\$_{2}\$-Based Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NC04.	1.5	1
205	Characterization of Electron-Induced Defects in Cu (In, Ga) Se2 Thin-Film Solar Cells using Electroluminescence. Materials Research Society Symposia Proceedings, 2013, 1538, 27-32.	0.1	1
206	Compositional dependence photoluminescence study of polycrystalline CuGaSe2 thin films. , 2015, , .		1
207	Effect of light irradiation and forward bias during PID tests of CIGS PV modules. , 2017, , .		1
208	A seismic test of large-scale liquid-filled piping. Related to liquid boundary conditions , 1990, 33, 357-365.		0
209	Direct observation of plasma wakefield caused by a train of LINAC bunches. , 0, , .		0
210	Discharge-Pumped VUV F2 Molecular Laser Annealing of Heavily Se+-Implanted GaAs. Materials Research Society Symposia Proceedings, 1993, 316, 373.	0.1	0
211	Optical, electrical and structural properties of polycrystalline \hat{l}^2 -FeSi/sub 2/ thin films fabricated by electron beam evaporation of ferrosilicon. , 0, , .		0
212	Structural and optical properties of β-FeSi 2 film prepared by laser ablation method and comparison of β-FeSi 2 films prepared by three different methods. , 1996, , .		0
213	Far-infrared optical conductivity of YBa2Cu3O7 â^ χ thin films. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2197-2200.	1.2	0
214	Far-infrared optical conductivity of Nd2â^'Ce CuO4 thin films. Physica C: Superconductivity and Its Applications, 2001, 357-360, 112-116.	1.2	0
215	Anisotropic pairing symmetry in Nd2â^'xCexCuO4. Physica C: Superconductivity and Its Applications, 2002, 378-381, 173-177.	1.2	0
216	Far-infrared optical conductivity of Nb thin films. Physica B: Condensed Matter, 2003, 329-333, 1369-1370.	2.7	0

#	Article	IF	CITATIONS
217	Anisotropic s-wave superconductivity in MgB2: comparison with experiments on optical properties. Physica C: Superconductivity and Its Applications, 2003, 392-396, 276-280.	1.2	0
218	Photoluminescence recombination centers in ZnO. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1026-1029.	0.8	0
219	Formation of two-dimensional electron gas and enhancement of electron mobility by Zn polar ZnMgO/ZnO heterostructures. , 2007, 6474, 78.		0
220	Figure of Merit for Thermoelectric Generation Obtained by Enhanced Transport Properties of [100] Oriented Beta-FeSi ₂ Film. Key Engineering Materials, 2007, 350, 121-124.	0.4	0
221	Optical constants of β-FeSi2 thin film on Si(001) substrate obtained by simultaneous equations from reflectance and transmittance spectra. Thin Solid Films, 2007, 515, 8154-8157.	1.8	0
222	Structural and transport properties of β-FeSi2 [100] oriented thin film on Si(001) substrate. Journal of Crystal Growth, 2007, 301-302, 400-403.	1.5	0
223	MQT observation in Bi2212 intrinsic Josephson junctions. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1432-1433.	1.2	0
224	Characterization of Electron-Induced Defects in Cu (In, Ga) Se2 Thin Films by Photoluminescence. Materials Research Society Symposia Proceedings, 2015, 1771, 157-161.	0.1	0
225	Device physics of Cu(In,Ga)Se2 solar cells for long-term operation. , 2017, , .		0
226	Heavily carbon-doped GaAs layers prepared by low-energy ion-beam impingement during molecular beam epitaxy. , 1996, , 133-136.		0
227	Novel optical features in Cd+ ion-implanted LEC-grown GaAs. , 1996, , 466-470.		Ο