Christopher J Easley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3546256/publications.pdf

Version: 2024-02-01

218381 214527 2,665 49 26 47 citations g-index h-index papers 50 50 50 3296 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Electrochemical Sensing of the Peptide Drug Exendin-4 Using a Versatile Nucleic Acid Nanostructure. ACS Sensors, 2022, 7, 784-789.	4.0	6
2	(Invited) Fast and Generalizable Electrochemical Sensing of Small Molecules, Peptides, and Proteins Using a Nucleic Acid Nanostructure with Analyte-DNA Conjugates. ECS Meeting Abstracts, 2022, MA2022-01, 2233-2233.	0.0	0
3	Nucleic-Acid Driven Cooperative Bioassays Using Probe Proximity or Split-Probe Techniques. Analytical Chemistry, 2021, 93, 198-214.	3.2	18
4	Active Flow Control and Dynamic Analysis in Droplet Microfluidics. Annual Review of Analytical Chemistry, 2021, 14, 133-153.	2.8	9
5	Programmable µChopper Device with On-Chip Droplet Mergers for Continuous Assay Calibration. Micromachines, 2020, $11,620$.	1.4	7
6	Rapid lipolytic oscillations in <i>ex vivo</i> adipose tissue explants revealed through microfluidic droplet sampling at high temporal resolution. Lab on A Chip, 2020, 20, 1503-1512.	3.1	18
7	Tissue Engineering and Analysis in Droplet Microfluidics. RSC Soft Matter, 2020, , 223-260.	0.2	1
8	A Nucleic Acid Nanostructure Built through On-Electrode Ligation for Electrochemical Detection of a Broad Range of Analytes. Journal of the American Chemical Society, 2019, 141, 11721-11726.	6.6	33
9	Nonfaradaic Current Suppression in DNA-Based Electrochemical Assays with a Differential Potentiostat. Analytical Chemistry, 2019, 91, 15833-15839.	3.2	10
10	Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry. Analytical Chemistry, 2018, 90, 3584-3591.	3.2	12
11	Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Analytical and Bioanalytical Chemistry, 2018, 410, 791-800.	1.9	24
12	Microfluidics systems with societal impact in Analytical Methods. Analytical Methods, 2018, 10, 4968-4969.	1.3	1
13	In celebration of the 60th birthday of 2 microfluidics pioneers: Professor Susan Lunte and Professor James Landers. Analytical Methods, 2018, 10, 3433-3435.	1.3	1
14	Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. Lab on A Chip, 2018, 18, 2926-2935.	3.1	31
15	Advancement of analytical modes in a multichannel, microfluidic droplet-based sample chopper employing phase-locked detection. Analytical Methods, 2018, 10, 3436-3443.	1.3	8
16	Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems. Methods in Molecular Biology, 2017, 1566, 185-201.	0.4	11
17	Automated Microfluidic Droplet-Based Sample Chopper for Detection of Small Fluorescence Differences Using Lock-In Analysis. Analytical Chemistry, 2017, 89, 6153-6159.	3.2	18
18	3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling. Lab on A Chip, 2017, 17, 341-349.	3.1	50

#	Article	IF	Citations
19	Homogeneous Assays of Second Messenger Signaling and Hormone Secretion Using Thermofluorimetric Methods That Minimize Calibration Burden. Analytical Chemistry, 2017, 89, 8517-8523.	3.2	14
20	Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue. Analyst, The, 2016, 141, 5714-5721.	1.7	33
21	Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials, 2016, 83, 383-395.	5.7	76
22	Quantifying aptamer–protein binding via thermofluorimetric analysis. Analytical Methods, 2015, 7, 7358-7362.	1.3	20
23	A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes. Analyst, The, 2015, 140, 1019-1025.	1.7	31
24	Protein Quantification Using Controlled DNA Melting Transitions in Bivalent Probe Assemblies. Analytical Chemistry, 2015, 87, 9576-9579.	3.2	13
25	A Reusable Electrochemical Proximity Assay for Highly Selective, Real-Time Protein Quantitation in Biological Matrices. Journal of the American Chemical Society, 2014, 136, 8467-8474.	6.6	112
26	Creating Biocompatible Oil–Water Interfaces without Synthesis: Direct Interactions between Primary Amines and Carboxylated Perfluorocarbon Surfactants. Analytical Chemistry, 2013, 85, 10556-10564.	3.2	34
27	Measurement of microchannel fluidic resistance with a standard voltage meter. Analytica Chimica Acta, 2013, 758, 101-107.	2.6	24
28	Lysozyme Dispersed Single-Walled Carbon Nanotubes: Interaction and Activity. Journal of Physical Chemistry C, 2012, 116, 10341-10348.	1.5	56
29	Self-Regulated, Droplet-Based Sample Chopper for Microfluidic Absorbance Detection. Analytical Chemistry, 2012, 84, 1510-1516.	3.2	40
30	Quantitation of Femtomolar Protein Levels via Direct Readout with the Electrochemical Proximity Assay. Journal of the American Chemical Society, 2012, 134, 7066-7072.	6.6	154
31	Passively Operated Microfluidic Device for Stimulation and Secretion Sampling of Single Pancreatic Islets. Analytical Chemistry, 2011, 83, 7166-7172.	3.2	43
32	A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis. Analyst, The, 2011, 136, 3461.	1.7	67
33	Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis, 2011, 3, 227-239.	0.6	151
34	Improvement of Sensitivity and Dynamic Range in Proximity Ligation Assays by Asymmetric Connector Hybridization. Analytical Chemistry, 2010, 82, 6976-6982.	3.2	50
35	Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nature Physics, 2009, 5, 231-235.	6.5	171
36	Quantitative Measurement of Zinc Secretion from Pancreatic Islets with High Temporal Resolution Using Droplet-Based Microfluidics. Analytical Chemistry, 2009, 81, 9086-9095.	3.2	59

#	Article	IF	CITATIONS
37	Rapid and inexpensive fabrication of polymeric microfluidic devices via toner transfer masking. Lab on A Chip, 2009, 9, 1119.	3.1	35
38	Optical Lock-In Detection of FRET Using Synthetic and Genetically Encoded Optical Switches. Biophysical Journal, 2008, 94, 4515-4524.	0.2	99
39	Thermal isolation of microchip reaction chambers for rapid non-contact DNA amplification. Journal of Micromechanics and Microengineering, 2007, 17, 1758-1766.	1.5	28
40	Infrared Temperature Control System for a Completely Noncontact Polymerase Chain Reaction in Microfluidic Chips. Analytical Chemistry, 2007, 79, 1294-1300.	3.2	76
41	An active microfluidic system packaging technology. Sensors and Actuators B: Chemical, 2007, 122, 337-346.	4.0	26
42	Chitosan as a Polymer for pH-Induced DNA Capture in a Totally Aqueous System. Analytical Chemistry, 2006, 78, 7222-7228.	3.2	147
43	On-chip pressure injection for integration of infrared-mediated DNA amplification with electrophoretic separation. Lab on A Chip, 2006, 6, 601.	3.1	77
44	Rapid DNA Amplification in Glass Microdevices., 2006, 339, 217-232.		2
45	A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19272-19277.	3.3	517
46	Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry. Lab on A Chip, 2005, 5, 619.	3.1	42
47	Advances in Polymerase Chain Reaction on Microfluidic Chips. Analytical Chemistry, 2005, 77, 3887-3894.	3.2	149
48	Extrinsic Fabryâ^'Perot Interferometry for Noncontact Temperature Control of Nanoliter-Volume Enzymatic Reactions in Glass Microchips. Analytical Chemistry, 2005, 77, 1038-1045.	3.2	36
49	Capillary electrophoresis with laser-induced fluorescence detection for laboratory diagnosis of galactosemia. Journal of Chromatography A, 2003, 1004, 29-37.	1.8	25