
Samuel Marguerat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3545748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 2008, 453, 1239-1243.	27.8	888
2	Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nature Reviews Genetics, 2008, 9, 583-593.	16.3	857
3	Quantitative Analysis of Fission Yeast Transcriptomes and Proteomes in Proliferating and Quiescent Cells. Cell, 2012, 151, 671-683.	28.9	513
4	RNA-seq: from technology to biology. Cellular and Molecular Life Sciences, 2010, 67, 569-579.	5.4	423
5	Post-transcriptional control of gene expression: a genome-wide perspective. Trends in Biochemical Sciences, 2005, 30, 506-514.	7.5	247
6	The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron, 2017, 96, 98-114.e7.	8.1	245
7	Proportionality: A Valid Alternative to Correlation for Relative Data. PLoS Computational Biology, 2015, 11, e1004075.	3.2	232
8	Coordinating genome expression with cell size. Trends in Genetics, 2012, 28, 560-565.	6.7	188
9	A Network of Multiple Regulatory Layers Shapes Gene Expression in Fission Yeast. Molecular Cell, 2007, 26, 145-155.	9.7	184
10	Quantitative Impact of Thymic Clonal Deletion on the T Cell Repertoire. Journal of Experimental Medicine, 1997, 185, 377-384.	8.5	178
11	Interferon-α-Induced Endogenous Superantigen. Immunity, 2001, 15, 591-601.	14.3	133
12	A Coordinated Global Control over Cellular Transcription. Current Biology, 2010, 20, 2010-2015.	3.9	129
13	Next-generation sequencing: applications beyond genomes. Biochemical Society Transactions, 2008, 36, 1091-1096.	3.4	111
14	Exploring long non-coding RNAs through sequencing. Seminars in Cell and Developmental Biology, 2012, 23, 200-205.	5.0	108
15	Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nature Structural and Molecular Biology, 2008, 15, 873-880.	8.2	97
16	A Pre-mRNA Degradation Pathway that Selectively Targets Intron-Containing Genes Requires the Nuclear Poly(A)-Binding Protein. Molecular Cell, 2011, 44, 108-119.	9.7	93
17	Spt6 Regulates Intragenic and Antisense Transcription, Nucleosome Positioning, and Histone Modifications Genome-Wide in Fission Yeast. Molecular and Cellular Biology, 2013, 33, 4779-4792.	2.3	93
18	A simple method for directional transcriptome sequencing using Illumina technology. Nucleic Acids Research, 2009, 37, e148-e148.	14.5	88

SAMUEL MARGUERAT

#	Article	IF	CITATIONS
19	Size-Dependent Increase in RNA Polymerase II Initiation Rates Mediates Gene Expression Scaling with Cell Size. Current Biology, 2020, 30, 1217-1230.e7.	3.9	87
20	The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nature Structural and Molecular Biology, 2014, 21, 919-926.	8.2	86
21	Size-Dependent Expression of the Mitotic Activator Cdc25 Suggests a Mechanism of Size Control in Fission Yeast. Current Biology, 2017, 27, 1491-1497.e4.	3.9	84
22	The <i>S. pombe</i> SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes and Development, 2008, 22, 3184-3195.	5.9	81
23	bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics, 2020, 36, 1174-1181.	4.1	79
24	Defining transcribed regions using RNA-seq. Nature Protocols, 2010, 5, 255-266.	12.0	70
25	Natural genetic variation impacts expression levels of coding, nonâ€coding, and antisense transcripts in fission yeast. Molecular Systems Biology, 2014, 10, 764.	7.2	65
26	LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Research, 2014, 24, 1169-1179.	5.5	64
27	Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO Journal, 2011, 30, 2843-2852.	7.8	63
28	The more the merrier: comparative analysis of microarray studies on cell cycle-regulated genes in fission yeast. Yeast, 2006, 23, 261-277.	1.7	61
29	Connecting growth with gene expression: of noise and numbers. Current Opinion in Microbiology, 2015, 25, 127-135.	5.1	58
30	Association of Human Endogenous Retrovirus K-18 Polymorphisms With Type 1 Diabetes. Diabetes, 2004, 53, 852-854.	0.6	56
31	Elimination of a specific histone H3K14 acetyltransferase complex bypasses the RNAi pathway to regulate pericentric heterochromatin functions. Genes and Development, 2011, 25, 214-219.	5.9	55
32	urg1: A Uracil-Regulatable Promoter System for Fission Yeast with Short Induction and Repression Times. PLoS ONE, 2008, 3, e1428.	2.5	55
33	Single-cell imaging and RNA sequencing reveal patterns of gene expression heterogeneity during fission yeast growth and adaptation. Nature Microbiology, 2019, 4, 480-491.	13.3	51
34	Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast. EMBO Journal, 2009, 28, 3400-3412.	7.8	46
35	The Nrd1-like protein Seb1 coordinates cotranscriptional 3′ end processing and polyadenylation site selection. Genes and Development, 2016, 30, 1558-1572.	5.9	46
36	Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast. Rna, 2018, 24, 1195-1213.	3.5	45

SAMUEL MARGUERAT

#	Article	IF	CITATIONS
37	The Fission Yeast Homeodomain Protein Yox1p Binds to MBF and Confines MBF-Dependent Cell-Cycle Transcription to G1-S via Negative Feedback. PLoS Genetics, 2009, 5, e1000626.	3.5	39
38	Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast. Genome Biology, 2011, 12, R82.	9.6	39
39	Spt6 Is Required for Heterochromatic Silencing in the Fission Yeast Schizosaccharomyces pombe. Molecular and Cellular Biology, 2011, 31, 4193-4204.	2.3	37
40	Genome-wide analysis of poly(A) site selection in <i>Schizosaccharomyces pombe</i> . Rna, 2013, 19, 1617-1631.	3.5	37
41	Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast. Genome Research, 2015, 25, 884-896.	5.5	37
42	Division rate, cell size and proteome allocation: impact on gene expression noise and implications for the dynamics of genetic circuits. Royal Society Open Science, 2018, 5, 172234.	2.4	37
43	The white matter is a pro-differentiative niche for glioblastoma. Nature Communications, 2021, 12, 2184.	12.8	37
44	Negative thymocyte selection to HERV-K18 superantigens in humans. Blood, 2005, 105, 4377-4382.	1.4	34
45	The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast. Nucleic Acids Research, 2014, 42, 5644-5656.	14.5	27
46	Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress. RNA Biology, 2014, 11, 702-714.	3.1	26
47	A bacterial size law revealed by a coarse-grained model of cell physiology. PLoS Computational Biology, 2020, 16, e1008245.	3.2	25
48	Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription. ELife, 2018, 7, .	6.0	24
49	The fission yeast Rpb4 subunit of RNA polymerase II plays a specialized role in cell separation. Molecular Genetics and Genomics, 2006, 276, 545-554.	2.1	22
50	Transcriptional activation by bidirectional RNA polymerase II elongation over a silent promoter. EMBO Reports, 2005, 6, 956-960.	4.5	16
51	Growth-rate-dependent and nutrient-specific gene expression resource allocation in fission yeast. Life Science Alliance, 2022, 5, e202101223.	2.8	9
52	Functional profiling of long intergenic non-coding RNAs in fission yeast. ELife, 2022, 11, .	6.0	7
53	Transcriptional Activation of the General Amino Acid Permease Gene per1 by the Histone Deacetylase Clr6 Is Regulated by Oca2 Kinase. Molecular and Cellular Biology, 2010, 30, 3396-3410.	2.3	6
54	Editorial: Determinants of Cell Size. Frontiers in Cell and Developmental Biology, 2017, 5, 115.	3.7	6

#	Article	IF	CITATIONS
55	Exploiting the multiplexing capabilities of tandem mass tags for high-throughput estimation of cellular protein abundances by mass spectrometry. Methods, 2015, 85, 100-107.	3.8	5
56	R-loops and regulatory changes in chronologically ageing fission yeast cells drive non-random patterns of genome rearrangements. PLoS Genetics, 2021, 17, e1009784.	3.5	2
57	RNA-seq. , 2013, , 1877-1877.		Ο