Tracey Chapman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3545519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature, 1995, 373, 241-244.	27.8	1,276
2	Sexual conflict. Trends in Ecology and Evolution, 2003, 18, 41-47.	8.7	963
3	The evolution and significance of male mate choice. Trends in Ecology and Evolution, 2011, 26, 647-654.	8.7	466
4	The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9923-9928.	7.1	453
5	Sex Peptide Causes Mating Costs in Female Drosophila melanogaster. Current Biology, 2005, 15, 316-321.	3.9	429
6	Seminal fluid-mediated fitness traits in Drosophila. Heredity, 2001, 87, 511-521.	2.6	379
7	Female fitness in <i>Drosophila melanogaster</i> : an interaction between the effect of nutrition and of encounter rate with males. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 755-759.	2.6	375
8	Seminal Fluid Protein Allocation and Male Reproductive Success. Current Biology, 2009, 19, 751-757.	3.9	309
9	Running with the Red Queen: the role of biotic conflicts in evolution. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141382.	2.6	225
10	Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies. Peptides, 2004, 25, 1477-1490.	2.4	223
11	Sex Differences in the Effect of Dietary Restriction on Life Span and Mortality Rates in Female and Male Drosophila Melanogaster. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B3-B9.	3.6	212
12	Plastic responses of male <i>Drosophila melanogaster</i> to the level of sperm competition increase male reproductive fitness. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1705-1711.	2.6	212
13	FEMALE RESISTANCE TO MALE HARM EVOLVES IN RESPONSE TO MANIPULATION OF SEXUAL CONFLICT. Evolution; International Journal of Organic Evolution, 2004, 58, 1028-1037.	2.3	179
14	Quick-change artists: male plastic behavioural responses to rivals. Trends in Ecology and Evolution, 2011, 26, 467-473.	8.7	171
15	Evolutionary Conflicts of Interest between Males and Females. Current Biology, 2006, 16, R744-R754.	3.9	158
16	The role of male accessory gland protein Acp36DE in sperm competition in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1097-1105.	2.6	142
17	Feeding, fecundity and lifespan in female <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1675-1683.	2.6	123
18	Sexual Conflict and Seminal Fluid Proteins: A Dynamic Landscape of Sexual Interactions. Cold Spring Harbor Perspectives in Biology, 2015, 7, a017533.	5.5	123

#	Article	IF	CITATIONS
19	EJACULATE DEPLETION PATTERNS EVOLVE IN RESPONSE TO EXPERIMENTAL MANIPULATION OF SEX RATIO INDROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2007, 61, 2027-2034.	2.3	120
20	Effects of body size, accessory gland and testis size on pre- and postcopulatory success in Drosophila melanogaster. Animal Behaviour, 2002, 64, 915-921.	1.9	119
21	ADULT MALE NUTRITION AND REPRODUCTIVE SUCCESS IN <i>DROSOPHILA MELANOGASTER</i> . Evolution; International Journal of Organic Evolution, 2008, 62, 3170-3177.	2.3	108
22	Exposure to rivals and plastic responses to sperm competition in Drosophila melanogaster. Behavioral Ecology, 2010, 21, 317-321.	2.2	104
23	Mating-induced inhibition of remating in female Mediterranean fruit flies Ceratitis capitata. Journal of Insect Physiology, 1999, 45, 1021-1028.	2.0	102
24	Males Use Multiple, Redundant Cues to Detect Mating Rivals. Current Biology, 2011, 21, 617-622.	3.9	97
25	Introduction. Sexual conflict: a new paradigm?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 229-234.	4.0	94
26	The benefits of male ejaculate sex peptide transfer in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2009, 22, 275-286.	1.7	90
27	Evolution of ageing as a tangle of trade-offs: energy versus function. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191604.	2.6	88
28	Female nutritional status determines the magnitude and sign of responses to a male ejaculate signal in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2010, 23, 157-165.	1.7	84
29	No reduction in the cost of mating for Drosophila melanogaster females mating with spermless males. Proceedings of the Royal Society B: Biological Sciences, 1993, 253, 211-217.	2.6	83
30	The Soup in My Fly: Evolution, Form and Function of Seminal Fluid Proteins. PLoS Biology, 2008, 6, e179.	5.6	83
31	The conditional economics of sexual conflict. Biology Letters, 2009, 5, 671-674.	2.3	77
32	The Acp26Aa seminal fluid protein is a modulator of early egg hatchability inDrosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1647-1654.	2.6	76
33	Sex peptide of <i>Drosophila melanogaster</i> males is a global regulator of reproductive processes in females. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4423-4432.	2.6	73
34	COSTS AND BENEFITS OF LIFETIME EXPOSURE TO MATING RIVALS IN MALEDROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2013, 67, 2413-2422.	2.3	73
35	Evolutionary biology and genetic techniques for insect control. Evolutionary Applications, 2016, 9, 212-230.	3.1	71
36	Gut microbiomes and reproductive isolation in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12767-12772.	7.1	71

#	Article	IF	CITATIONS
37	No extension of lifespan by ablation of germ line in Drosophila. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 939-947.	2.6	68
38	Mating and hormonal triggers regulate accessory gland gene expression in male Drosophila. Journal of Insect Physiology, 1997, 43, 1117-1123.	2.0	66
39	Mechanisms underlying reproductive trade-offs: Costs of reproduction. , 2011, , 137-152.		66
40	Sperm competition. Current Biology, 2004, 14, R100-R103.	3.9	65
41	Increased density and male–male interactions reduce male longevity in the medfly, Ceratitis capitata. Animal Behaviour, 2002, 63, 121-129.	1.9	63
42	Sexual conflict as fuel for evolution. Nature, 1996, 381, 189-190.	27.8	61
43	A mating plug protein reduces early female remating in Drosophila melanogaster. Journal of Insect Physiology, 2010, 56, 107-113.	2.0	61
44	Remating and male-derived nutrients in Drosophila melanogaster. Journal of Evolutionary Biology, 1994, 7, 51-69.	1.7	59
45	Identification of genes expressed in the accessory glands of male Mediterranean Fruit Flies (Ceratitis) Tj ETQq1	1 0.784314 2.7	မ rဋ္ဌရွT /Overlo
46	Genetic elimination of field-cage populations of Mediterranean fruit flies. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141372.	2.6	57
47	Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata:) Tj ETQq1	. 0.784314 2.5	rgßT /Overlo
48	Effects of male sterility on female remating in the Mediterranean fruitfly, Ceratitis capitata. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S209-11.	2.6	53
49	Insulin signalling regulates remating in female <i>Drosophila</i> . Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 424-431.	2.6	49
50	Male control of mating duration following exposure to rivals in fruitflies. Journal of Insect Physiology, 2013, 59, 824-827.	2.0	48
51	Genomic responses to the socio-sexual environment in male <i>Drosophila melanogaster</i> exposed to conspecific rivals. Rna, 2017, 23, 1048-1059.	3.5	47
52	Adaptations to sexual selection and sexual conflict: insights from experimental evolution and artificial selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2541-2548.	4.0	46
53	Individual plastic responses by males to rivals reveal mismatches between behaviour and fitness outcomes. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2868-2876.	2.6	45
54	Experimental evolution reveals that sperm competition intensity selects for longer, more costly sperm. Evolution Letters, 2017, 1, 102-113.	3.3	45

#	Article	IF	CITATIONS
55	Remating in wild females of the Mediterranean fruit fly, Ceratitis capitata. Animal Behaviour, 2005, 69, 771-776.	1.9	44
56	ADAPTATION TO EXPERIMENTAL ALTERATIONS OF THE OPERATIONAL SEX RATIO IN POPULATIONS OF DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2008, 62, 401-412.	2.3	43
57	MicroRNAs Influence Reproductive Responses by Females to Male Sex Peptide in <i>Drosophila melanogaster</i> . Genetics, 2014, 198, 1603-1619.	2.9	36
58	SPERM COMPETITIVE ABILITY AND INDICES OF LIFETIME REPRODUCTIVE SUCCESS. Evolution; International Journal of Organic Evolution, 2010, 64, 2746-2757.	2.3	34
59	Age-dependent female responses to a male ejaculate signal alter demographic opportunities for selection. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130428.	2.6	34
60	Sexual Conflict: Mechanisms and Emerging Themes in Resistance Biology. American Naturalist, 2018, 192, 217-229.	2.1	34
61	Sex-specific selection on time to remate inDrosophila melanogaster. Animal Behaviour, 1998, 56, 1267-1278.	1.9	33
62	The effect of diet, sex and mating status on longevity in Mediterranean fruit flies (), Diptera: Tephritidae. Experimental Gerontology, 2005, 40, 784-792.	2.8	33
63	Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162381.	2.6	32
64	The role of complex cues in social and reproductive plasticity. Behavioral Ecology and Sociobiology, 2018, 72, 124.	1.4	30
65	Transmission efficiency drives host–microbe associations. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200820.	2.6	30
66	Variation in adult sex ratio alters the association between courtship, mating frequency and paternity in the lekâ€forming fruitfly <i>Ceratitis capitata</i> . Journal of Evolutionary Biology, 2012, 25, 1732-1740.	1.7	29
67	Lack of response to sex-peptide results in increased cost of mating in dunce Drosophila melanogaster females. Journal of Insect Physiology, 1996, 42, 1007-1015.	2.0	28
68	Sexual conflict and reproductive isolation in flies. Biology Letters, 2009, 5, 697-699.	2.3	28
69	Effect of competitive cues on reproductive morphology and behavioral plasticity in male fruitflies. Behavioral Ecology, 2016, 27, 452-461.	2.2	28
70	Microguards and micromessengers of the genome. Heredity, 2016, 116, 125-134.	2.6	28
71	Implementing the sterile insect technique with <scp>RNA</scp> interference – a review. Entomologia Experimentalis Et Applicata, 2017, 164, 155-175.	1.4	27
72	Sex peptide receptor-regulated polyandry modulates the balance of pre- and post-copulatory sexual selection in Drosophila. Nature Communications, 2019, 10, 283.	12.8	26

#	Article	IF	CITATIONS
73	SEXUAL CONFLICT AND INTERACTING PHENOTYPES: A QUANTITATIVE GENETIC ANALYSIS OF FECUNDITY AND COPULA DURATION IN <i>DROSOPHILA MELANOGASTER</i> . Evolution; International Journal of Organic Evolution, 2014, 68, 1651-1660.	2.3	25
74	Sex-Specific Responses of Life Span and Fitness to Variation in Developmental Versus Adult Diets in Drosophila melanogaster. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1431-1438.	3.6	25
75	Comparison of alternative approaches for analysing multi-level RNA-seq data. PLoS ONE, 2017, 12, e0182694.	2.5	25
76	Sperm competition. Current Biology, 2004, 14, R100-2.	3.9	24
77	Stalk-eyed flies. Current Biology, 2005, 15, R533-R535.	3.9	23
78	Lifespan extension without fertility reduction following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster. PLoS ONE, 2018, 13, e0190105.	2.5	23
79	Divergence in Transcriptional and Regulatory Responses to Mating in Male and Female Fruitflies. Scientific Reports, 2019, 9, 16100.	3.3	23
80	Sexual conflict over remating interval is modulated by the <i>sex peptide</i> pathway. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162394.	2.6	21
81	Resource-dependent evolution of female resistance responses to sexual conflict. Evolution Letters, 2020, 4, 54-64.	3.3	20
82	Adaptation to divergent larval diets in the medfly, <i>Ceratitis capitata</i> . Evolution; International Journal of Organic Evolution, 2017, 71, 289-303.	2.3	18
83	Manipulation of feeding regime alters sexual dimorphism for lifespan and reduces sexual conflict in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170391.	2.6	16
84	The role of speciesâ€specific sensory cues in male responses to mating rivals in <i>Drosophila melanogaster</i> fruitflies. Ecology and Evolution, 2017, 7, 9247-9256.	1.9	16
85	Transgenerational fitness effects of lifespan extension by dietary restriction in <i>Caenorhabditis elegans</i> . Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210701.	2.6	16
86	Sexual Conflict and Evolutionary Psychology: Towards a Unified Framework. Evolutionary Psychology, 2015, , 1-28.	1.8	15
87	Control of seminal fluid protein expression via regulatory hubs in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181681.	2.6	15
88	Fitness benefits of dietary restriction. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211787.	2.6	15
89	Plastic male mating behavior evolves in response to the competitive environment*. Evolution; International Journal of Organic Evolution, 2021, 75, 101-115.	2.3	13
90	Variation in the postâ€mating fitness landscape in fruit flies. Journal of Evolutionary Biology, 2017, 30, 1250-1261.	1.7	12

#	Article	IF	CITATIONS
91	Reply to Obadia et al.: Effect of methyl paraben on host–microbiota interactions in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4549-E4550.	7.1	12
92	Sex ratio and the evolution of aggression in fruit flies. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203053.	2.6	12
93	Small RNA populations revealed by blocking rRNA fragments in Drosophila melanogaster reproductive tissues. PLoS ONE, 2018, 13, e0191966.	2.5	12
94	A functioning ovary is not required for sex peptide to reduce receptivity to mating in D. melanogaster. Journal of Insect Physiology, 2007, 53, 343-348.	2.0	10
95	Sexâ€specific effects of developmental environment on reproductive trait expression in <i>Drosophila melanogaster</i> . Ecology and Evolution, 2012, 2, 1362-1370.	1.9	10
96	Diet, Gut Microbes and Host Mate Choice. BioEssays, 2018, 40, e1800053.	2.5	10
97	Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	10
98	Sexual conflict and sex allocation. Biology Letters, 2009, 5, 660-662.	2.3	9
99	No reduction of female sexual receptivity following mating in a stalk-eyed fly, Cyrtodiopsis dalmanni (Diptera: Diopsidae). Journal of Evolutionary Biology, 2002, 15, 210-215.	1.7	8
100	Resource limitation and responses to rivals in males of the fruit fly <i><scp>D</scp>rosophila melanogaster</i> . Journal of Evolutionary Biology, 2016, 29, 2010-2021.	1.7	8
101	Reply to Rosenberg et al.: Diet, gut bacteria, and assortative mating in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2154-E2155.	7.1	8
102	Fitness consequences of redundant cues of competition in male <i>Drosophila melanogaster</i> . Ecology and Evolution, 2020, 10, 5517-5526.	1.9	7
103	Genome-Wide Responses of Female Fruit Flies Subjected to Divergent Mating Regimes. PLoS ONE, 2013, 8, e68136.	2.5	7
104	Finding the Right Plugin: Mosquitoes Have the Answer. PLoS Biology, 2009, 7, e1000273.	5.6	6
105	Mate choice and gene expression signatures associated with nutritional adaptation in the medfly (Ceratitis capitata). Scientific Reports, 2019, 9, 6704.	3.3	4
106	Contribution of maternal effects to dietary selection in Mediterranean fruit flies. Evolution; International Journal of Organic Evolution, 2019, 73, 278-292.	2.3	4
107	Evolutionary history of sexual selection affects microRNA profiles in <i>Drosophila</i> sperm. Evolution; International Journal of Organic Evolution, 2022, 76, 310-319.	2.3	4
108	Satyrization in <i>Drosophila</i> fruitflies. Journal of Evolutionary Biology, 2021, 34, 319-330.	1.7	3

#	Article	IF	CITATIONS
109	Characterisation of the symbionts in the Mediterranean fruit fly gut. Microbial Genomics, 2022, 8, .	2.0	3
110	Experimental evolution under varying sex ratio and nutrient availability modulates male mating success in <i>Drosophila melanogaster</i> . Biology Letters, 2022, 18, .	2.3	3
111	Reproductive interference and Satyrisation: mechanisms, outcomes and potential use for insect control. Journal of Pest Science, 2022, 95, 1023-1036.	3.7	2
112	Evolutionary Biology: Sterile Saviours. Current Biology, 2008, 18, R261-R263.	3.9	1
113	Matthew J. G. Gage (1967–2022). Nature Ecology and Evolution, 2022, 6, 660-661.	7.8	1
114	Testing for Assortative Mating by Diet in Drosophila melanogaster. Bio-protocol, 2018, 8, .	0.4	0