Joshua A Boyce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3545249/publications.pdf

Version: 2024-02-01

109321 114465 8,084 67 35 63 citations h-index g-index papers 67 67 67 11925 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mediator production and severity of aspirin-induced respiratory reactions: Impact of sampling site and body mass index. Journal of Allergy and Clinical Immunology, 2022, 150, 170-177.e6.	2.9	4
2	Advances in mast cell biology. Journal of Allergy and Clinical Immunology, 2022, 149, 1919-1925.	2.9	8
3	Leukotriene D4 paradoxically limits LTC4-driven platelet activation and lung immunopathology. Journal of Allergy and Clinical Immunology, 2021, 148, 195-208.e5.	2.9	7
4	Lineage-specific regulation of inducible and constitutive mast cells in allergic airway inflammation. Journal of Experimental Medicine, 2021, 218, .	8.5	42
5	Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Science Immunology, 2021, 6, .	11.9	79
6	Neonatal mast cells and transplacental IgE transfer: AÂmechanism of disease inheritance or of passive infant barrier defense?. Journal of Allergy and Clinical Immunology, 2021, 148, 76-77.	2.9	5
7	Eicosanoid dysregulation and type 2 inflammation in AERD. Journal of Allergy and Clinical Immunology, 2021, 148, 1157-1160.	2.9	13
8	Reply. Journal of Allergy and Clinical Immunology, 2021, 148, 904.	2.9	0
9	Tuft cell–produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Science Immunology, 2021, 6, eabj0474.	11.9	48
10	Legends of allergy and immunology: K. Frank Austen. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1001-1002.	5.7	0
11	Mast cells can be commandeered for staphylococcal pathogenicity in patients with chronic rhinosinusitis with nasal polyposis. Journal of Allergy and Clinical Immunology, 2020, 145, 103-104.	2.9	4
12	IL-5Rα marks nasal polyp IgG4- and IgE-expressing cells in aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2020, 145, 1574-1584.	2.9	55
13	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	28.9	1,956
14	COX-1 mediates IL-33–induced extracellular signal-regulated kinase activation in mast cells: Implications for aspirin sensitivity. Journal of Allergy and Clinical Immunology, 2019, 143, 1047-1057.e8.	2.9	17
15	A trial of type 12 purinergic (P2Y12) receptor inhibition with prasugrel identifies a potentially distinct endotype of patients with aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2019, 143, 316-324.e7.	2.9	34
16	Aspirin sensitivity: Lessons in the regulation (and dysregulation) of mast cell function. Journal of Allergy and Clinical Immunology, 2019, 144, 875-881.	2.9	23
17	Cysteinyl leukotriene receptor 2 drives lung immunopathology through a platelet and high mobility box 1-dependent mechanism. Mucosal Immunology, 2019, 12, 679-690.	6.0	20
18	Plasma tryptase elevation during aspirin-induced reactions in aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2019, 143, 799-803.e2.	2.9	22

#	Article	IF	CITATIONS
19	P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. Journal of Clinical Investigation, 2019, 129, 5169-5186.	8.2	16
20	Role of lipid mediators and control of lymphocyte responses in type 2 immunopathology. Journal of Allergy and Clinical Immunology, 2018, 141, 1182-1190.	2.9	36
21	Type 2 Cysteinyl Leukotriene Receptors Drive IL-33–Dependent Type 2 Immunopathology and Aspirin Sensitivity. Journal of Immunology, 2018, 200, 915-927.	0.8	51
22	A new spin on mast cells and cysteinyl leukotrienes: Leukotriene E4 activates mast cells inÂvivo. Journal of Allergy and Clinical Immunology, 2018, 142, 1056-1057.	2.9	13
23	Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature, 2018, 560, 649-654.	27.8	368
24	Addendum guidelines for the prevention of peanut allergy in the United States: Report of the National Institute of Allergy and Infectious Diseases–sponsored expert panel. Journal of Allergy and Clinical Immunology, 2017, 139, 29-44.	2.9	374
25	Addendum Guidelines for the Prevention of Peanut Allergy in the United States: Report of the National Institute of Allergy and Infectious Diseases–Sponsored Expert Panel. Journal of Pediatric Nursing, 2017, 32, 91-98.	1.5	14
26	Addendum Guidelines for the Prevention of Peanut Allergy in the United States: Report of the National Institute of Allergy and Infectious Diseases–Sponsored Expert Panel. Pediatric Dermatology, 2017, 34, e1-e21.	0.9	20
27	Addendum guidelines for the prevention of peanut allergy in the United States. Pediatric Dermatology, 2017, 34, 5-12.	0.9	17
28	KIT Inhibition by Imatinib in Patients with Severe Refractory Asthma. New England Journal of Medicine, 2017, 376, 1911-1920.	27.0	159
29	Endogenous prostaglandin E2 amplifies IL-33 production by macrophages through an E prostanoid (EP)2/EP4-cAMP-EPAC-dependent pathway. Journal of Biological Chemistry, 2017, 292, 8195-8206.	3.4	36
30	Addendum guidelines for the prevention of peanut allergy in the United States: Report of the National Institute of Allergy and Infectious Diseases–sponsored expert panel. Annals of Allergy, Asthma and Immunology, 2017, 118, 166-173.e7.	1.0	59
31	Aspirin-exacerbated respiratory disease: Mediators and mechanisms of a clinical disease. Journal of Allergy and Clinical Immunology, 2017, 139, 764-766.	2.9	42
32	Leukotriene E ₄ elicits respiratory epithelial cell mucin release through the G-protein–coupled receptor, GPR99. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6242-6247.	7.1	99
33	Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2016, 137, 1566-1576.e5.	2.9	142
34	Leukotriene D 4 and prostaglandin E 2 signals synergize and potentiate vascular inflammation in a mast cell–dependent manner through cysteinyl leukotriene receptor 1 and E-prostanoid receptor 3. Journal of Allergy and Clinical Immunology, 2016, 137, 289-298.	2.9	41
35	Prostaglandin D2: AÂdominant mediator of aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2015, 135, 245-252.	2.9	191
36	Platelets in patients with aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2015, 135, 1407-1414.	2.9	46

#	Article	IF	CITATIONS
37	Platelet-Driven Leukotriene C4–Mediated Airway Inflammation in Mice Is Aspirin-Sensitive and Depends on T Prostanoid Receptors. Journal of Immunology, 2015, 194, 5061-5068.	0.8	19
38	Aspirin-Exacerbated Respiratory Disease Involves a Cysteinyl Leukotriene–Driven IL-33–Mediated Mast Cell Activation Pathway. Journal of Immunology, 2015, 195, 3537-3545.	0.8	103
39	Cysteinyl Leukotrienes and Their Receptors; Emerging Concepts. Allergy, Asthma and Immunology Research, 2014, 6, 288.	2.9	105
40	LTC4 synthase polymorphism modifies efficacy of botanical seed oil combination in asthma. SpringerPlus, 2014, 3, 661.	1.2	3
41	Prostaglandin E2 resistance in granulocytes from patients with aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2014, 133, 1692-1701.e3.	2.9	44
42	Cutting Edge: Leukotriene C4 Activates Mouse Platelets in Plasma Exclusively through the Type 2 Cysteinyl Leukotriene Receptor. Journal of Immunology, 2013, 191, 5807-5810.	0.8	36
43	Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood, 2012, 119, 3790-3798.	1.4	213
44	Advances in mechanisms of asthma, allergy, and immunology in 2011. Journal of Allergy and Clinical Immunology, 2012, 129, 335-341.	2.9	40
45	Characterization of a novel human mast cell line that responds to stem cell factor and expresses functional FclµRI. Journal of Allergy and Clinical Immunology, 2011, 127, 815-822.e5.	2.9	59
46	Guidelines for the Diagnosis and Management of Food Allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. Journal of the American Academy of Dermatology, 2011, 64, 175-192.	1.2	67
47	Guidelines for the Diagnosis and Management of Food Allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. Nutrition Research, 2011, 31, 61-75.	2.9	138
48	Guidelines for the diagnosis and management of food allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. Nutrition, 2011, 27, 253-267.	2.4	77
49	Guidelines for the Diagnosis and Management of Food Allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. Journal of the American Dietetic Association, 2011, 111, 17-27.	1.1	44
50	Guidelines for the Diagnosis and Management of Food Allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. Journal of Allergy and Clinical Immunology, 2010, 126, 1105-1118.	2.9	1,614
51	Advances in mechanisms of asthma, allergy, and immunology in 2008. Journal of Allergy and Clinical Immunology, 2009, 123, 569-574.	2.9	34
52	The leukotriene E4 puzzle: Finding the missing pieces and revealing the pathobiologic implications. Journal of Allergy and Clinical Immunology, 2009, 124, 406-414.	2.9	93
53	Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunological Reviews, 2007, 217, 168-185.	6.0	218
54	Successful treatment of cold-induced urticaria/anaphylaxis with anti-IgE. Journal of Allergy and Clinical Immunology, 2006, 117, 1415-1418.	2.9	186

#	Article	IF	CITATIONS
55	Asthma 2005-2006: Bench to bedside. Journal of Allergy and Clinical Immunology, 2006, 118, 582-586.	2.9	2
56	Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood, 2006, 108, 1588-1594.	1.4	139
57	No audible wheezing. Journal of Experimental Medicine, 2005, 201, 1869-1873.	8.5	85
58	Eicosanoid Mediators of Mast Cells: Receptors, Regulation of Synthesis, and Pathobiologic Implications., 2005, 87, 59-79.		55
59	Lymphoplasmacytic Cells and Mast Cells Are Targets for Imatinib Mesylate (Gleevec, Glivec) in Waldenstrom's Macroglobulinemia Blood, 2004, 104, 4929-4929.	1.4	2
60	The biology of the mast cell. Allergy and Asthma Proceedings, 2004, 25, 27-30.	2.2	22
61	The role of mast cells in asthma. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 69, 195-205.	2.2	56
62	Mast cells: Beyond IgE. Journal of Allergy and Clinical Immunology, 2003, 111, 24-32.	2.9	141
63	Human mast cell progenitors use α4-integrin, VCAM-1, and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions. Blood, 2002, 99, 2890-2896.	1.4	50
64	The Transcription Factor Early Growth-response Factor 1 Modulates Tumor Necrosis Factor- $\hat{l}\pm$, Immunoglobulin E, and Airway Responsiveness in Mice. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 778-785.	5.6	46
65	Phenotypic and functional characteristics of macrophage-like cells differentiated in pro-inflammatory cytokine-containing cultures. Immunology and Cell Biology, 2000, 78, 205-213.	2.3	9
66	T Helper Cell Type 2 Cytokine–Mediated Comitogenic Responses and Ccr3 Expression during Differentiation of Human Mast Cells in Vitro. Journal of Experimental Medicine, 1999, 190, 267-280.	8.5	323
67	Mast Cells as Sentinels of Inflammation. , 0, , 65-73.		O