Ken Yokawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3544675/publications.pdf Version: 2024-02-01

KEN YOKAWA

#	Article	IF	CITATIONS
1	Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap. Scientific Reports, 2022, 12, 2851.	3.3	19
2	Mechanism of the adverse effect of hyaluronidase used for oocyte denudation on early development of bovine embryos. Zygote, 2021, 29, 337-341.	1.1	5
3	Single Wavelengths of LED Light Supplement Promote the Biosynthesis of Major Cyclic Monoterpenes in Japanese Mint. Plants, 2021, 10, 1420.	3.5	10
4	A green light-excitable FRET system for monitoring intracellular calcium levels in plant cells. Plant Signaling and Behavior, 2021, 16, 1963104.	2.4	0
5	Anaesthetics and plants: from sensory systems to cognition-based adaptive behaviour. Protoplasma, 2021, 258, 449-454.	2.1	12
6	High-quality sugar production by osgcs1 rice. Communications Biology, 2020, 3, 617.	4.4	9
7	Arabidopsis Roots and Light: Complex Interactions. Molecular Plant, 2019, 12, 1428-1430.	8.3	14
8	Anesthetics, Anesthesia, and Plants. Trends in Plant Science, 2019, 24, 12-14.	8.8	22
9	Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Annals of Botany, 2018, 122, 747-756.	2.9	38
10	Sense of space: Tactile sense for exploratory behavior of roots. Communicative and Integrative Biology, 2018, 11, 1-5.	1.4	7
11	Fish and plant sentience: Anesthetized plants and fishes cannot respond to stimuli. Animal Sentience, 2018, 3, .	0.5	1
12	Plant Roots as Excellent Pathfinders: RootÂNavigation Based on Plant Specific Sensory Systems and Sensorimotor Circuits. Emergence, Complexity and Computation, 2017, , 677-685.	0.3	0
13	Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods. International Journal of Molecular Sciences, 2017, 18, 951.	4.1	18
14	MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex. Frontiers in Plant Science, 2016, 7, 79.	3.6	19
15	Editorial: ROS Regulation during Plant Abiotic Stress Responses. Frontiers in Plant Science, 2016, 7, 1536.	3.6	58
16	Understanding of anesthesia – Why consciousness is essential for life and not based on genes. Communicative and Integrative Biology, 2016, 9, e1238118.	1.4	37
17	Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex. Journal of Experimental Botany, 2016, 67, 4581-4591.	4.8	28
18	The TOR Complex: An Emergency Switch for Root Behavior. Plant and Cell Physiology, 2016, 57, 14-18.	3.1	20

Ken Yokawa

#	Article	IF	CITATIONS
19	A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. Journal of Plant Physiology, 2016, 191, 111-119.	3.5	92
20	Dynamic Regulation of Endocytic Vesicle Recycling and PIN2 Localization in <i>Arabidopsis</i> Roots under Varying Light Qualities. Environmental Control in Biology, 2016, 54, 51-55.	0.7	1
21	How and why do root apices sense light under the soil surface?. Frontiers in Plant Science, 2015, 6, 775.	3.6	56
22	<i>C. elegans</i> and <i>Arabidopsis thaliana</i> show similar behavior: ROS induce escape tropisms both in illuminated nematodes and roots. Plant Signaling and Behavior, 2015, 10, e1073870.	2.4	4
23	Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals. Communicative and Integrative Biology, 2015, 8, e1000710.	1.4	4
24	Overexpressing <i>OsPIN2</i> enhances aluminium internalization by elevating vesicular trafficking in rice root apex. Journal of Experimental Botany, 2015, 66, 6791-6801.	4.8	33
25	Pectins, ROS homeostasis and UV-B responses in plant roots. Phytochemistry, 2015, 112, 80-83.	2.9	50
26	UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices. Frontiers in Plant Science, 2015, 6, 1162.	3.6	40
27	Nitric Oxide-Mediated Maize Root Apex Responses to Nitrate are Regulated by Auxin and Strigolactones. Frontiers in Plant Science, 2015, 6, 1269.	3.6	38
28	Plant anesthesia supports similarities between animals and plants. Plant Signaling and Behavior, 2014, 9, e27886.	2.4	37
29	Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. Journal of Experimental Botany, 2014, 65, 5305-5315.	4.8	89
30	Light-dependent control of redox balance and auxin biosynthesis in plants. Plant Signaling and Behavior, 2014, 9, e29522.	2.4	18
31	Light as stress factor to plant roots ââ,¬â€œ case of root halotropism. Frontiers in Plant Science, 2014, 5, 718.	3.6	85
32	Root photomorphogenesis in laboratory-maintained Arabidopsis seedlings. Trends in Plant Science, 2013, 18, 117-119.	8.8	76
33	An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Scientific Reports, 2013, 3, 1273.	3.3	91
34	Prevention of Oxidative DNA Degradation by Copper-Binding Peptides. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1377-1379.	1.3	11
35	Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signaling and Behavior, 2011, 6, 1460-1464.	2.4	99
36	Superoxide generation catalyzed by the ozone-inducible plant peptides analogous to prion octarepeat motif. Plant Signaling and Behavior, 2011, 6, 477-482.	2.4	6

Ken Yokawa

#	Article	IF	CITATIONS
37	Copper-Binding Peptides from Human Prion Protein and Newly Designed Peroxidative Biocatalysts. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2011, 66, 182-190.	1.4	8
38	Copper-Binding Peptides from Human Prion Protein and Newly Designed Peroxidative Biocatalysts. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2011, 66, 0182.	1.4	4
39	Free tyrosine and tyrosine-rich peptide-dependent superoxide generation catalyzed by a copper-binding, threonine-rich neurotoxic peptide derived from prion protein. International Journal of Biological Sciences, 2009, 5, 53-63.	6.4	8
40	Thermo-Stable Nature of Aromatic Monoamine-Dependent Superoxide-Generating Activity of Human Prion-Derived Cu-Binding Peptides. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1218-1220.	1.3	7
41	Prevention of Copper-Induced Calcium Influx and Cell Death by Prion-Derived Peptide in Suspension-Cultured Tobacco Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2009, 64, 411-417.	1.4	10
42	CHEMILUMINESCENT AND BIOLUMINESCENT ANALYSIS OF PLANT CELL RESPONSES TO REACTIVE OXYGEN SPECIES PRODUCED BY A NEW WATER CONDITIONING APPARATUS EQUIPPED WITH TITANIA-COATED PHOTO-CATALYTIC FIBERS. , 2008, , .		1
43	USE OF <i>CYPRIDINA</i> LUCIFERIN ANALOG FOR ASSESSING THE MONOAMINE OXIDASE-LIKE SUPEROXIDE-GENERATING ACTIVITIES OF TWO PEPTIDE SEQUENCES CORRESPONDING TO THE HELICAL COPPER-BINDING MOTIF IN HUMAN PRION PROTEIN AND ITS MODEL ANALOG. , 2008, , .		2
44	ROS Regulation during Plant Abiotic Stress Responses. Frontiers Research Topics, 0, , .	0.2	0