
Richard E Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3543149/publications.pdf Version: 2024-02-01

RICHARD FLEE

#	Article	IF	CITATIONS
1	Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nature Reviews Microbiology, 2011, 9, 62-75.	28.6	667
2	Mycolactone: A Polyketide Toxin from Mycobacterium ulcerans Required for Virulence. Science, 1999, 283, 854-857.	12.6	602
3	Mycolic acids: structure, biosynthesis and physiological functions. Progress in Lipid Research, 1998, 37, 143-179.	11.6	504
4	Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nature Chemical Biology, 2012, 8, 334-341.	8.0	384
5	Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. Journal of Chemical Information and Modeling, 2009, 49, 444-460.	5.4	367
6	Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1345-1349.	7.1	345
7	Genome-Wide Expression Profiling of the Response to Azole, Polyene, Echinocandin, and Pyrimidine Antifungal Agents in Candida albicans. Antimicrobial Agents and Chemotherapy, 2005, 49, 2226-2236.	3.2	316
8	New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Advanced Drug Delivery Reviews, 2016, 102, 55-72.	13.7	269
9	Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase. Science, 2012, 335, 1110-1114.	12.6	210
10	Combinatorial Lead Optimization of [1,2]-Diamines Based on Ethambutol as Potential Antituberculosis Preclinical Candidates. ACS Combinatorial Science, 2003, 5, 172-187.	3.3	205
11	Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6630-6634.	7.1	190
12	First Cultivation and Characterization of Mycobacterium ulcerans from the Environment. PLoS Neglected Tropical Diseases, 2008, 2, e178.	3.0	175
13	Novel Insights into the Mechanism of Inhibition of MmpL3, a Target of Multiple Pharmacophores in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6413-6423.	3.2	174
14	Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nature Medicine, 2014, 20, 152-158.	30.7	160
15	Heterogeneity of Mycolactones Produced by Clinical Isolates of Mycobacterium ulcerans : Implications for Virulence. Infection and Immunity, 2003, 71, 774-783.	2.2	156
16	Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrobial Agents and Chemotherapy, 1996, 40, 2813-2819.	3.2	151
17	Novel inhibitors of an emerging target in Mycobacterium tuberculosis; substituted thiazolidinones as inhibitors of dTDP-rhamnose synthesis. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3227-3230.	2.2	151
18	Acyl-Phosphates Initiate Membrane Phospholipid Synthesis in Gram-Positive Pathogens. Molecular Cell, 2006, 23, 765-772.	9.7	147

#	Article	IF	CITATIONS
19	Synthesis of the Arabinose Donor .betaD-Arabinofuranosyl-1-monophosphoryldecaprenol, Development of a Basic Arabinosyl-Transferase Assay, and Identification of Ethambutol as an Arabinosyl Transferase Inhibitor. Journal of the American Chemical Society, 1995, 117, 11829-11832.	13.7	135
20	lsoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Molecular Microbiology, 2000, 38, 514-525.	2.5	134
21	Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochemical Pharmacology, 2000, 59, 221-231.	4.4	124
22	Globally Distributed Mycobacterial Fish Pathogens Produce a Novel Plasmid-Encoded Toxic Macrolide, Mycolactone F. Infection and Immunity, 2006, 74, 6037-6045.	2.2	120
23	Inhibition of UDP-Gal Mutase and Mycobacterial Galactan Biosynthesis by Pyrrolidine Analogues of Galactofuranose. Tetrahedron Letters, 1997, 38, 6733-6736.	1.4	112
24	A Newly Discovered Mycobacterial Pathogen Isolated from Laboratory Colonies of Xenopus Species with Lethal Infections Produces a Novel Form of Mycolactone, the Mycobacterium ulcerans Macrolide Toxin. Infection and Immunity, 2005, 73, 3307-3312.	2.2	110
25	Chemical Knockout of Pantothenate Kinase Reveals the Metabolic and Genetic Program Responsible for Hepatic Coenzyme A Homeostasis. Chemistry and Biology, 2007, 14, 291-302.	6.0	105
26	The structure–activity relationship of urea derivatives as anti-tuberculosis agents. Bioorganic and Medicinal Chemistry, 2011, 19, 5585-5595.	3.0	100
27	Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3. Antimicrobial Agents and Chemotherapy, 2016, 60, 5198-5207.	3.2	99
28	Crystal Structure of 7,8-Dihydropteroate Synthase from Bacillus anthracis. Structure, 2004, 12, 1705-1717.	3.3	97
29	A microbiological assessment of novel nitrofuranylamides as anti-tuberculosis agents. Journal of Antimicrobial Chemotherapy, 2008, 62, 1037-1045.	3.0	94
30	Identification of the apparent carrier in mycolic acid synthesis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12735-12739.	7.1	91
31	Discovery of Novel Selective Inhibitors of Human Intestinal Carboxylesterase for the Amelioration of Irinotecan-Induced Diarrhea: Synthesis, Quantitative Structure-Activity Relationship Analysis, and Biological Activity. Molecular Pharmacology, 2004, 65, 1336-1343.	2.3	91
32	Synthesis and Evaluation of Cyclic Secondary Amine Substituted Phenyl and Benzyl Nitrofuranyl Amides as Novel Antituberculosis Agents. Journal of Medicinal Chemistry, 2005, 48, 8261-8269.	6.4	91
33	Mycobacterial arabinan biosynthesis: the use of synthetic arabinoside acceptors in the development of an arabinosyl transfer assay. Clycobiology, 1997, 7, 1121-1128.	2.5	86
34	Synthesis, Structure–Activity Relationship Studies, and Antibacterial Evaluation of 4-Chromanones and Chalcones, as Well as Olympicin A and Derivatives. Journal of Medicinal Chemistry, 2014, 57, 8398-8420.	6.4	86
35	A Pantothenate Kinase from Staphylococcus aureus Refractory to Feedback Regulation by Coenzyme A. Journal of Biological Chemistry, 2005, 280, 3314-3322.	3.4	85
36	New Approaches to Target the Mycolic Acid Biosynthesis Pathway for the Development of Tuberculosis Therapeutics. Current Pharmaceutical Design, 2013, 20, 4357-4378.	1.9	84

#	Article	IF	CITATIONS
37	Discovery of novel isoxazolines as anti-tuberculosis agents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6638-6642.	2.2	83
38	Synthesis and Evaluation of Nitrofuranylamides as Novel Antituberculosis Agents. Journal of Medicinal Chemistry, 2004, 47, 5276-5283.	6.4	81
39	A statistical framework to evaluate virtual screening. BMC Bioinformatics, 2009, 10, 225.	2.6	81
40	Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase. Journal of Medicinal Chemistry, 2010, 53, 166-177.	6.4	81
41	Pantothenamides Are Potent, On-Target Inhibitors of Plasmodium falciparum Growth When Serum Pantetheinase Is Inactivated. PLoS ONE, 2013, 8, e54974.	2.5	80
42	Identification of triazinoindol-benzimidazolones as nanomolar inhibitors of the Mycobacterium tuberculosis enzyme TDP-6-deoxy-d-xylo-4-hexopyranosid-4-ulose 3,5-epimerase (RmlC). Bioorganic and Medicinal Chemistry, 2010, 18, 896-908.	3.0	79
43	Mechanisms involved in the intrinsic isoniazid resistance ofMycobacterium avium. Molecular Microbiology, 1998, 27, 1223-1233.	2.5	76
44	Acyl Carrier Protein Is a Cellular Target for the Antibacterial Action of the Pantothenamide Class of Pantothenate Antimetabolites. Journal of Biological Chemistry, 2004, 279, 50969-50975.	3.4	76
45	Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability. Bioorganic and Medicinal Chemistry, 2012, 20, 3255-3262.	3.0	75
46	Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorganic and Medicinal Chemistry, 2013, 21, 2587-2599.	3.0	72
47	Pterin–sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3950-3954.	2.2	72
48	RelA Mutant <i>Enterococcus faecium</i> with Multiantibiotic Tolerance Arising in an Immunocompromised Host. MBio, 2017, 8, .	4.1	72
49	A therapeutic approach to pantothenate kinase associated neurodegeneration. Nature Communications, 2018, 9, 4399.	12.8	65
50	Antibacterial and antitubercular activity of fosmidomycin, FR900098, and their lipophilic analogs. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6973-6976.	2.2	64
51	Structure–activity relationships and enzyme inhibition of pantothenamide-type pantothenate kinase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 1007-1020.	3.0	61
52	Synthesis, optimization and structure–activity relationships of 3,5-disubstituted isoxazolines as new anti-tuberculosis agents. European Journal of Medicinal Chemistry, 2009, 44, 460-472.	5.5	60
53	Covalent Modification of the <i>Mycobacterium tuberculosis</i> FAS-II Dehydratase by Isoxyl and Thiacetazone. ACS Infectious Diseases, 2015, 1, 91-97.	3.8	58
54	The Structural and Functional Basis for Recurring Sulfa Drug Resistance Mutations in Staphylococcus aureus Dihydropteroate Synthase. Frontiers in Microbiology, 2018, 9, 1369.	3.5	58

#	Article	IF	CITATIONS
55	Rapid structural characterization of the arabinogalactan and lipoarabinomannan in live mycobacterial cells using 2D and 3D HR-MAS NMR: structural changes in the arabinan due to ethambutol treatment and gene mutation are observed. Glycobiology, 2004, 15, 139-151.	2.5	55
56	Design, synthesis, and evaluation of novel ethambutol analogues. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1607-1611.	2.2	55
57	Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans. Journal of Antimicrobial Chemotherapy, 2005, 55, 655-662.	3.0	54
58	<i>In vitro</i> pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB. Future Medicinal Chemistry, 2010, 2, 1355-1369.	2.3	54
59	Advancing Translational Science for Pulmonary Nontuberculous Mycobacterial Infections. A Road Map for Research. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 947-951.	5.6	53
60	Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes. Bioorganic and Medicinal Chemistry, 2005, 13, 6252-6263.	3.0	51
61	An approach to combinatorial library generation of galactofuranose mimics as potential inhibitors of mycobacterial cell wall biosynthesis: Synthesis of a peptidomimetic of uridine 5′-diphosphogalactofuranose (UDP-Galf). Tetrahedron Letters, 1999, 40, 8689-8692.	1.4	50
62	Structural Characterization of the <i>Mycobacterium tuberculosis</i> Biotin Biosynthesis Enzymes 7,8-Diaminopelargonic Acid Synthase and Dethiobiotin Synthetase,. Biochemistry, 2010, 49, 6746-6760.	2.5	50
63	Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients. Journal of Clinical Microbiology, 2017, 55, 1122-1130.	3.9	48
64	The Structure of the Pantothenate Kinase·ADP·Pantothenate Ternary Complex Reveals the Relationship between the Binding Sites for Substrate, Allosteric Regulator, and Antimetabolites. Journal of Biological Chemistry, 2004, 279, 35622-35629.	3.4	47
65	Quantitative structure–activity relationship studies on nitrofuranyl anti-tubercular agents. Bioorganic and Medicinal Chemistry, 2008, 16, 8042-8053.	3.0	46
66	Phenylâ€Glutarimides: Alternative Cereblon Binders for the Design of PROTACs. Angewandte Chemie - International Edition, 2021, 60, 26663-26670.	13.8	45
67	Synthesis of new and potent analogues of anti-tuberculosis agent 5-nitro-furan-2-carboxylic acid 4-(4-benzyl-piperazin-1-yl)-benzylamide with improved bioavailability. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2584-2589.	2.2	44
68	Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7148-7153.	7.1	44
69	Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference. ACS Chemical Biology, 2015, 10, 2616-2623.	3.4	43
70	N-Substituted 3-Acetyltetramic Acid Derivatives as Antibacterial Agents. Journal of Medicinal Chemistry, 2008, 51, 1487-1491.	6.4	42
71	Detection of Mycolactone A/B in Mycobacterium ulcerans–Infected Human Tissue. PLoS Neglected Tropical Diseases, 2010, 4, e577.	3.0	42
72	Replacing sulfa drugs with novel DHPS inhibitors. Future Medicinal Chemistry, 2013, 5, 1331-1340.	2.3	42

#	Article	IF	CITATIONS
73	In vitro and in vivo Evaluation of Synergism between Anti-Tubercular Spectinamides and Non-Classical Tuberculosis Antibiotics. Scientific Reports, 2015, 5, 13985.	3.3	41
74	Novel Acyl Phosphate Mimics that Target PlsY, an Essential Acyltransferase in Gramâ€Positive Bacteria. ChemMedChem, 2008, 3, 1936-1945.	3.2	40
75	Nitrofurans as Novel Anti-tuberculosis Agents: Identification, Development and Evaluation. Current Topics in Medicinal Chemistry, 2007, 7, 509-526.	2.1	39
76	Antitubercular nitrofuran isoxazolines with improved pharmacokinetic properties. Bioorganic and Medicinal Chemistry, 2012, 20, 6063-6072.	3.0	39
77	Structure–Activity Relationships of Spectinamide Antituberculosis Agents: A Dissection of Ribosomal Inhibition and Native Efflux Avoidance Contributions. ACS Infectious Diseases, 2017, 3, 72-88.	3.8	36
78	Metabolic Activation of CaMKII by Coenzyme A. Molecular Cell, 2013, 52, 325-339.	9.7	35
79	Synthesis of β-D-arabinofuranosyl-1-monophosphoryl polyprenols: Examination of their function as mycobacterial arabinosyl transferase donors. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 951-954.	2.2	34
80	Topology and Active Site of PlsY. Journal of Biological Chemistry, 2007, 282, 11339-11346.	3.4	34
81	Pharmacokinetically-Guided Lead Optimization of Nitrofuranylamide Anti-Tuberculosis Agents. AAPS Journal, 2008, 10, 157-165.	4.4	34
82	A rapid approach to lipid profiling of mycobacteria using 2D HSQC NMR maps. Journal of Lipid Research, 2008, 49, 455-463.	4.2	34
83	Biopharmaceutics, Pharmacokinetics and Pharmacodynamics of Antituberculosis Drugs. Current Medicinal Chemistry, 2008, 15, 809-825.	2.4	34
84	Identification and Characterization of an Allosteric Inhibitory Site on Dihydropteroate Synthase. ACS Chemical Biology, 2014, 9, 1294-1302.	3.4	34
85	A simple in vitro PK/PD model system to determine time–kill curves of drugs against Mycobacteria. Tuberculosis, 2009, 89, 378-385.	1.9	33
86	Evaluation of Flavonoid and Resveratrol Chemical Libraries Reveals Abyssinone II as a Promising Antibacterial Lead. ChemMedChem, 2012, 7, 1541-1545.	3.2	33
87	Characterization of the in vitro synthesized arabinan of mycobacterial cell walls. Biochimica Et Biophysica Acta - General Subjects, 1997, 1335, 231-234.	2.4	32
88	Methods for Acquisition and Assignment of Multidimensional High-Resolution Magic Angle Spinning NMR of Whole Cell Bacteria. Analytical Chemistry, 2005, 77, 5785-5792.	6.5	32
89	Potentiation of Azole Antifungals by 2-Adamantanamine. Antimicrobial Agents and Chemotherapy, 2013, 57, 3585-3592.	3.2	32
90	Disseminated sporotrichosis following iatrogenic immunosuppression for suspected pyoderma gangrenosum. Lancet Infectious Diseases, The, 2019, 19, e385-e391.	9.1	32

#	Article	IF	CITATIONS
91	Structureâ€Based Design of Novel Pyrimido[4,5â€ <i>c</i>]pyridazine Derivatives as Dihydropteroate Synthase Inhibitors with Increased Affinity. ChemMedChem, 2012, 7, 861-870.	3.2	31
92	The membrane as a target for controlling hypervirulent Clostridium difficile infections. Journal of Antimicrobial Chemotherapy, 2013, 68, 806-815.	3.0	31
93	De Novo Design of Boron-Based Peptidomimetics as Potent Inhibitors of Human ClpP in the Presence of Human ClpX. Journal of Medicinal Chemistry, 2019, 62, 6377-6390.	6.4	30
94	Solid-phase synthesis and biological evaluation of a uridinyl branched peptide urea library. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6899-6904.	2.2	29
95	Synthesis and Structure of Mycolactone E Isolated from Frog Mycobacterium. Organic Letters, 2008, 10, 5385-5388.	4.6	29
96	Production of White Colonies on CHROMagar Candida Medium by Members of the Candida glabrata Clade and Other Species with Overlapping Phenotypic Traits. Journal of Clinical Microbiology, 2008, 46, 3498-3500.	3.9	29
97	Reutericyclin and related analogues kill stationary phase Clostridium difficile at achievable colonic concentrations. Journal of Antimicrobial Chemotherapy, 2011, 66, 1773-1776.	3.0	29
98	Allosteric Regulation of Mammalian Pantothenate Kinase. Journal of Biological Chemistry, 2016, 291, 22302-22314.	3.4	29
99	Bromodomain-Selective BET Inhibitors Are Potent Antitumor Agents against MYC-Driven Pediatric Cancer. Cancer Research, 2020, 80, 3507-3518.	0.9	28
100	A Screen for and Validation of Prodrug Antimicrobials. Antimicrobial Agents and Chemotherapy, 2014, 58, 1410-1419.	3.2	27
101	Chemical Modulation of the Biological Activity of Reutericyclin: a Membrane-Active Antibiotic from Lactobacillusreuteri. Scientific Reports, 2014, 4, 4721.	3.3	27
102	Gastrointestinal localization of metronidazole by a lactobacilli-inspired tetramic acid motif improves treatment outcomes in the hamster model of <i>Clostridium difficile</i> infection. Journal of Antimicrobial Chemotherapy, 2015, 70, 3061-3069.	3.0	27
103	Spectinamides are effective partner agents for the treatment of tuberculosis in multiple mouse infection models. Journal of Antimicrobial Chemotherapy, 2016, 72, dkw467.	3.0	27
104	Ureadepsipeptides as ClpP Activators. ACS Infectious Diseases, 2019, 5, 1915-1925.	3.8	27
105	Crystal Structure of the Anthrax Drug Target, <i>Bacillus anthracis</i> Dihydrofolate Reductase. Journal of Medicinal Chemistry, 2007, 50, 4374-4381.	6.4	26
106	Crystal Structure of the 6-Hydroxymethyl-7,8-Dihydropterin Pyrophosphokinase•Dihydropteroate Synthase Bifunctional Enzyme from Francisella tularensis. PLoS ONE, 2010, 5, e14165.	2.5	26
107	Synthesis and evaluation of pretomanid (PA-824) oxazolidinone hybrids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 388-391.	2.2	26
108	Structural and <i>In Vivo</i> Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design. MBio, 2017, 8, .	4.1	26

#	Article	IF	CITATIONS
109	Discovery, synthesis, and biological evaluation of piperidinol analogs with anti-tuberculosis activity. Bioorganic and Medicinal Chemistry, 2009, 17, 3588-3594.	3.0	24
110	Pentacyclic Nitrofurans with In Vivo Efficacy and Activity against Nonreplicating Mycobacterium tuberculosis. PLoS ONE, 2014, 9, e87909.	2.5	24
111	The Isoniazid Metabolites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis. Toxicological Sciences, 2019, 168, 209-224.	3.1	24
112	Evaluation of Analogs of Reutericyclin as Prospective Candidates for Treatment of Staphylococcal Skin Infections. Antimicrobial Agents and Chemotherapy, 2009, 53, 4028-4031.	3.2	23
113	Development of BODIPY FL Vindoline as a Novel and High-Affinity Pregnane X Receptor Fluorescent Probe. Bioconjugate Chemistry, 2014, 25, 1664-1677.	3.6	23
114	Exploiting a water network to achieve enthalpy-driven, bromodomain-selective BET inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 25-36.	3.0	23
115	Mycolic acid biosynthesis: definition and targeting of the Claisen condensation step. Lipids and Lipid Metabolism, 1997, 1346, 275-284.	2.6	22
116	Translational PK/PD of anti-infective therapeutics. Drug Discovery Today: Technologies, 2016, 21-22, 41-49.	4.0	22
117	Aminomethyl Spectinomycins as Therapeutics for Drug-Resistant Gonorrhea and Chlamydia Coinfections. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	22
118	In Vivo and In Vitro Effects of a ClpP-Activating Antibiotic against Vancomycin-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	22
119	Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass Fabl Inhibition in Neisseria. Journal of Biological Chemistry, 2016, 291, 171-181.	3.4	21
120	SB-224289 Antagonizes the Antifungal Mechanism of the Marine Depsipeptide Papuamide A. PLoS ONE, 2016, 11, e0154932.	2.5	21
121	Pharmacophore Modeling, Synthesis, and Antibacterial Evaluation of Chalcones and Derivatives. ACS Omega, 2018, 3, 18343-18360.	3.5	20
122	Monocyte and Macrophage Activation by Lipoteichoic Acid Is Independent of Alanine and Is Potentiated by Hemoglobin. Journal of Immunology, 2006, 176, 5567-5576.	0.8	19
123	Applications of pharmacometrics in the clinical development and pharmacotherapy of anti-infectives. Expert Review of Clinical Pharmacology, 2013, 6, 159-170.	3.1	19
124	Design, synthesis and microbiological evaluation of ampicillin–tetramic acid hybrid antibiotics. Journal of Antibiotics, 2017, 70, 65-72.	2.0	19
125	CINPA1 binds directly to constitutive androstane receptor and inhibits its activity. Biochemical Pharmacology, 2018, 152, 211-223.	4.4	19
126	Development and Characterization of a Dry Powder Formulation for Anti-Tuberculosis Drug Spectinamide 1599. Pharmaceutical Research, 2019, 36, 136.	3.5	19

#	Article	IF	CITATIONS
127	A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes. Journal of Medicinal Chemistry, 2022, 65, 2342-2360.	6.4	19
128	Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in <i>Corynebacterium matruchotii</i> and <i>Mycobacterium smegmatis</i> Cultured in the Presence of Tween 80. Journal of Lipids, 2011, 2011, 1-12.	4.8	18
129	Analysis of Mycobacterium Species for the Presence of a Macrolide Toxin, Mycolactone. Infection and Immunity, 2004, 72, 123-132.	2.2	17
130	Solid-Phase Synthesis of a Thymidinyl Dipeptide Urea Library. ACS Combinatorial Science, 2007, 9, 370-385.	3.3	17
131	Synthesis of bi-substrate state mimics of dihydropteroate synthase as potential inhibitors and molecular probes. Bioorganic and Medicinal Chemistry, 2011, 19, 1298-1305.	3.0	17
132	Acyl-sulfamates target the essential glycerol-phosphate acyltransferase (PlsY) in Gram-positive bacteria. Bioorganic and Medicinal Chemistry, 2012, 20, 4985-4994.	3.0	17
133	Structural basis for substrate recognition and chemical inhibition of oncogenic MAGE ubiquitin ligases. Nature Communications, 2020, 11, 4931.	12.8	17
134	Novel Cassette Assay To Quantify the Outer Membrane Permeability of Five β-Lactams Simultaneously in Carbapenem-Resistant <i>Klebsiella pneumoniae</i> and <i>Enterobacter cloacae</i> . MBio, 2020, 11, .	4.1	17
135	Aminomethyl spectinomycins as therapeutics for drug-resistant respiratory tract and sexually transmitted bacterial infections. Science Translational Medicine, 2015, 7, 288ra75.	12.4	16
136	Syntheses and evaluation of macrocyclic engelhardione analogs as antitubercular and antibacterial agents. Journal of Antibiotics, 2013, 66, 319-325.	2.0	15
137	Solid-Phase Synthesis and Antibacterial Activity of Cyclohexapeptide Wollamide B Analogs. ACS Combinatorial Science, 2018, 20, 172-185.	3.8	15
138	Discovery and Characterization of the Antimetabolite Action of Thioacetamide-Linked 1,2,3-Triazoles as Disruptors of Cysteine Biosynthesis in Gram-Negative Bacteria. ACS Infectious Diseases, 2020, 6, 467-478.	3.8	15
139	Characterization of inhibitors of specific carboxylesterases: development of carboxylesterase inhibitors for translational application. Molecular Cancer Therapeutics, 2004, 3, 903-9.	4.1	15
140	The identification, analysis and structure-based development of novel inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Bioorganic and Medicinal Chemistry, 2014, 22, 2157-2165.	3.0	14
141	New β-lactam – Tetramic acid hybrids show promising antibacterial activities. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3105-3112.	2.2	13
142	A Fluorescent Probe for Detecting Mycobacterium tuberculosis and Identifying Genes Critical for Cell Entry. Frontiers in Microbiology, 2016, 7, 2021.	3.5	12
143	Mechanisms of Resistance Associated with the Inhibition of the Dehydration Step of Type II Fatty Acid Synthase in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2020, 6, 195-204.	3.8	12
144	Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia. Science Translational Medicine, 2021, 13, eabf5965.	12.4	12

#	Article	IF	CITATIONS
145	A genome-wide atlas of antibiotic susceptibility targets and pathways to tolerance. Nature Communications, 2022, 13, .	12.8	12
146	Solid-phase synthesis development of a thymidinyl and 2′-deoxyuridinyl Ugi library for anti-bacterial agent screening. Tetrahedron Letters, 2005, 46, 8497-8501.	1.4	11
147	Phase II metabolic pathways of spectinamide antitubercular agents: a comparative study of the reactivity of 4-substituted pyridines to glutathione conjugation. MedChemComm, 2016, 7, 114-117.	3.4	11
148	Advances in Drug Discovery and Development for Pediatric Tuberculosis. Mini-Reviews in Medicinal Chemistry, 2016, 16, 481-497.	2.4	11
149	Activation of a camptothecin prodrug by specific carboxylesterases as predicted by quantitative structure-activity relationship and molecular docking studies. Molecular Cancer Therapeutics, 2003, 2, 1171-81.	4.1	11
150	Synthesis and evaluation of esters and carbamates to identify critical functional groups for esterase-specific metabolism. Bioorganic and Medicinal Chemistry, 2003, 11, 3237-3244.	3.0	10
151	Synthesis and Evaluation of Thiazolidine Amide and <i>N</i> â€Thiazolyl Amide Fluoroquinolone Derivatives. Archiv Der Pharmazie, 2017, 350, e201700029.	4.1	10
152	Identification of Small Molecules Exhibiting Oxacillin Synergy through a Novel Assay for Inhibition of <i>vraTSR</i> Expression in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	10
153	Combating Multidrugâ€Resistant Bacteria by Integrating a Novel Target Site Penetration and Receptor Binding Assay Platform Into Translational Modeling. Clinical Pharmacology and Therapeutics, 2021, 109, 1000-1020.	4.7	10
154	Development of a Pterin-Based Fluorescent Probe for Screening Dihydropteroate Synthase. Bioconjugate Chemistry, 2011, 22, 2110-2117.	3.6	9
155	<i>In Vitro</i> and <i>In Vivo</i> Activities of HPi1, a Selective Antimicrobial against Helicobacter pylori. Antimicrobial Agents and Chemotherapy, 2014, 58, 3255-3260.	3.2	9
156	Discovery of novel bacterial elongation condensing enzyme inhibitors by virtual screening. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2585-2588.	2.2	9
157	Aminomethyl spectinomycins: a novel antibacterial chemotype for biothreat pathogens. Journal of Antibiotics, 2019, 72, 693-701.	2.0	9
158	Dynamic time-kill curve characterization of spectinamide antibiotics 1445 and 1599 for the treatment of tuberculosis. European Journal of Pharmaceutical Sciences, 2019, 127, 233-239.	4.0	9
159	Azaindole Based Potentiator of Antibiotics against Gram-Negative Bacteria. ACS Infectious Diseases, 2021, 7, 3009-3024.	3.8	9
160	Synthesis and evaluation of colletoic acid core derivatives. European Journal of Medicinal Chemistry, 2016, 110, 126-132.	5.5	8
161	Comparative pharmacokinetics of spectinamide 1599 after subcutaneous and intrapulmonary aerosol administration in mice. Tuberculosis, 2019, 114, 119-122.	1.9	8
162	Development of BODIPY FL Thalidomide As a High-Affinity Fluorescent Probe for Cereblon in a Time-Resolved Fluorescence Resonance Energy Transfer Assay. Bioconjugate Chemistry, 2020, 31, 2564-2575.	3.6	8

#	Article	IF	CITATIONS
163	Preclinical Evaluation of Inhalational Spectinamide-1599 Therapy against Tuberculosis. ACS Infectious Diseases, 2021, 7, 2850-2863.	3.8	8
164	Development of an etoposide prodrug for dual prodrug-enzyme antitumor therapy. Molecular Cancer Therapeutics, 2006, 5, 1577-1584.	4.1	7
165	Synthesis, antibacterial action, and ribosome inhibition of deoxyspectinomycins. Journal of Antibiotics, 2021, 74, 381-396.	2.0	7
166	Model-Based Exposure-Response Assessment for Spectinamide 1810 in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0174420.	3.2	7
167	17-DMAG dually inhibits Hsp90 and histone lysine demethylases in alveolar rhabdomyosarcoma. IScience, 2021, 24, 101996.	4.1	7
168	Identification of Inhibitors of Fungal Fatty Acid Biosynthesis. ACS Infectious Diseases, 2021, 7, 3210-3223.	3.8	7
169	Lipid Profiling Using Two-Dimensional Heteronuclear Single Quantum Coherence NMR. Methods in Molecular Biology, 2009, 579, 89-102.	0.9	6
170	Fluid-Attenuated Inversion Recovery (FLAIR) Signal Intensity Can Identify Stroke Within 6 and 8 Hours. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 1582-1587.	1.6	6
171	The Discovery and Development of Thienopyrimidines as Inhibitors of <i>Helicobacter pylori</i> That Act through Inhibition of the Respiratory Complex I. ACS Infectious Diseases, 2021, 7, 1044-1058.	3.8	6
172	Evaluating and evolving a screening library in academia: the St Jude approach. Drug Discovery Today, 2021, 26, 1060-1069.	6.4	6
173	Synthesis and antibacterial evaluation of macrocyclic diarylheptanoid derivatives. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4070-4076.	2.2	5
174	Tissue Penetration of a Novel Spectinamide Antibiotic for the Treatment of Tuberculosis. AAPS Journal, 2016, 18, 788-791.	4.4	5
175	Pentacyclic nitrofurans that rapidly kill nifurtimox-resistant trypanosomes. Journal of Antimicrobial Chemotherapy, 2016, 71, 956-963.	3.0	5
176	Exposure of Methicillin-Resistant Staphylococcus aureus to Low Levels of the Antibacterial THAM-3ΦG Generates a Small Colony Drug-Resistant Phenotype. Scientific Reports, 2018, 8, 9850.	3.3	5
177	Structureâ€Based Design, Synthesis, and Evaluation of 2′â€(2â€Hydroxyethyl)â€2′â€deoxyadenosine and t 5′â€Diphosphate Derivative as Ribonucleotide Reductase Inhibitors. ChemMedChem, 2009, 4, 1649-1656.	he _{3.2}	4
178	Efficacy of Aminomethyl Spectinomycins against Complex Upper Respiratory Tract Bacterial Infections. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	4
179	Biophysical analysis of the Mycobacteria tuberculosis peptide binding protein DppA reveals a stringent peptide binding pocket. Tuberculosis, 2022, 132, 102157.	1.9	4
180	Replacement of S14 Protein in Ribosomes of Zinc-Starved Mycobacteria Reduces Spectinamide Sensitivity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	3

#	Article	IF	CITATIONS
181	LipE guided discovery of isopropylphenyl pyridazines as pantothenate kinase modulators. Bioorganic and Medicinal Chemistry, 2021, 52, 116504.	3.0	3
182	Synthesis and Structure–Activity Relationship of Thioacetamide-Triazoles against Escherichia coli. Molecules, 2022, 27, 1518.	3.8	3
183	Mechanistic Insight on the Mode of Action of Colletoic Acid. Journal of Medicinal Chemistry, 2019, 62, 6925-6940.	6.4	2
184	Metabolic Activation of CaMKII by Coenzyme A. Molecular Cell, 2013, 52, 468.	9.7	1
185	False-Positive Reaction of <scp>l</scp> -Canavanine Glycine Bromothymol Blue Medium with Candida famata. Journal of Clinical Microbiology, 2014, 52, 1308-1309.	3.9	1
186	A Tribute to Amy Anderson (1969â^'2016): Leader, Role Model, and Advocate for Structure-Based Design of New Antimicrobial Agents. ACS Infectious Diseases, 2016, 2, 664-665.	3.8	1
187	Novel Inhibitors of an Emerging Target in Mycobacterium tuberculosis; Substituted Thiazolidinones as Inhibitors of dTDP-Rhamnose Synthesis ChemInform, 2003, 34, no.	0.0	0
188	Fragment-Based Approach Identifies a Novel Inhibitory Site on DHPS. Biophysical Journal, 2013, 104, 403a.	0.5	0
189	Winners of the 2018 JA ÅŒmura Awards for excellence. Journal of Antibiotics, 2019, 72, 783-784.	2.0	0
190	Winners of the 2019 JA ÅŒmura Awards for excellence. Journal of Antibiotics, 2020, 73, 737-738.	2.0	0
191	Lack of Specificity of Phenotypic Screens for Inhibitors of the Mycobacterium tuberculosis FAS-II System. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	Ο