Jian Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541834/publications.pdf

Version: 2024-02-01

19	3,529	16 h-index	19
papers	citations		g-index
20	20	20	6644
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Nanophotonic Approach to Study Excited-State Dynamics in Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 4145-4151.	4.6	1
2	Active Mode Switching in Plasmonic Microlasers by Spatial Control of Optical Gain. Nano Letters, 2021, 21, 8952-8959.	9.1	2
3	Defect-Tolerant Plasmonic Elliptical Resonators for Long-Range Energy Transfer. ACS Nano, 2019, 13, 9048-9056.	14.6	4
4	Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets. Nano Letters, 2019, 19, 8495-8502.	9.1	34
5	Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission. Nano Letters, 2017, 17, 1319-1325.	9.1	68
6	A customizable class of colloidal-quantum-dot metallic lasers and amplifiers. Science Advances, 2017, 3, e1700688.	10.3	50
7	Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton–Phonon Coupling and the Optimization of Spectral Linewidths. Nano Letters, 2016, 16, 289-296.	9.1	133
8	Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1350-1355.	7.1	109
9	Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation. Nano Letters, 2014, 14, 6792-6798.	9.1	26
10	Magneto-fluorescent core-shell supernanoparticles. Nature Communications, 2014, 5, 5093.	12.8	223
11	Deconstructing the photon stream from single nanocrystals: from binning to correlation. Chemical Society Reviews, 2014, 43, 1287-1310.	38.1	73
12	Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidthsÂandÂsuppressed blinking. Nature Materials, 2013, 12, 445-451.	27.5	1,168
13	Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nature Chemistry, 2013, 5, 602-606.	13.6	130
14	Direct Observation of Rapid Discrete Spectral Dynamics in Single Colloidal CdSe-CdS Core-Shell Quantum Dots. Physical Review Letters, 2013, 111, 177401.	7.8	46
15	Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2426-2431.	7.1	938
16	Fluorescent Nanorods and Nanospheres for Realâ€Time In Vivo Probing of Nanoparticle Shapeâ€Dependent Tumor Penetration. Angewandte Chemie - International Edition, 2011, 50, 11417-11420.	13.8	399
17	Extracting Spectral Dynamics from Single Chromophores in Solution. Physical Review Letters, 2010, 105, 053005.	7.8	28
18	Zinc binding to the HCCH motif of HIV-1 virion infectivity factor induces a conformational change that mediates protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18475-18480.	7.1	63

#	Article	IF	CITATIONS
19	Role of Gain in Fabry–Pérot Surface Plasmon Polariton Lasers. ACS Photonics, 0, , .	6.6	7