Tong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541581/publications.pdf Version: 2024-02-01

TONCLU

#	Article	IF	CITATIONS
1	Localization of Cardiac Sodium Channels in Caveolin-Rich Membrane Domains. Circulation Research, 2002, 90, 443-449.	4.5	201
2	KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. Journal of Pharmacology and Experimental Therapeutics, 1998, 287, 996-1006.	2.5	148
3	EET homologs potently dilate coronary microvessels and activate BK _{Ca} channels. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2430-H2440.	3.2	132
4	Angiogenic Function of Prostacyclin Biosynthesis in Human Endothelial Progenitor Cells. Circulation Research, 2008, 103, 80-88.	4.5	97
5	Effects of epoxyeicosatrienoic acids on the cardiac sodium channels in isolated rat ventricular myocytes. Journal of Physiology, 1999, 519, 153-168.	2.9	92
6	Modulation of rat cardiac sodium channel by the stimulatory G protein $\hat{I}\pm$ subunit. Journal of Physiology, 1999, 518, 371-384.	2.9	92
7	Activation of vascular BK channels by docosahexaenoic acid is dependent on cytochrome P450 epoxygenase activity. Cardiovascular Research, 2011, 90, 344-352.	3.8	84
8	Dihydroxyeicosatrienoic acids are potent activators of Ca 2+ â€activated K + channels in isolated rat coronary arterial myocytes. Journal of Physiology, 2001, 534, 651-667.	2.9	76
9	Left Atrial Remodeling and Atrioventricular Coupling in a Canine Model of Early Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2016, 9, .	3.9	72
10	Molecular Mechanisms Mediating Inhibition of Human Large Conductance Ca 2+ -Activated K + Channels by High Glucose. Circulation Research, 2006, 99, 607-616.	4.5	69
11	Activation of ATP-sensitive K+ channels by epoxyeicosatrienoic acids in rat cardiac ventricular myocytes. Journal of Physiology, 2001, 537, 811-827.	2.9	69
12	Regulation of Coronary Arterial BK Channels by Caveolae-Mediated Angiotensin II Signaling in Diabetes Mellitus. Circulation Research, 2010, 106, 1164-1173.	4.5	67
13	Cardiac and vascular KATPchannels in rats are activated by endogenous epoxyeicosatrienoic acids through different mechanisms. Journal of Physiology, 2006, 575, 627-644.	2.9	65
14	Reactive Oxygen Species Signaling Facilitates FOXO-3a/FBXO-Dependent Vascular BK Channel β1 Subunit Degradation in Diabetic Mice. Diabetes, 2012, 61, 1860-1868.	0.6	64
15	Stereospecific Activation of Cardiac ATP-Sensitive K+Channels by Epoxyeicosatrienoic Acids: A Structural Determinant Study. Molecular Pharmacology, 2002, 62, 1076-1083.	2.3	60
16	12-Lipoxygenase in porcine coronary microcirculation: implications for coronary vasoregulation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H693-H704.	3.2	53
17	Impaired Arachidonic Acid-Mediated Activation of Large-Conductance Ca2+-Activated K+ Channels in Coronary Arterial Smooth Muscle Cells in Zucker Diabetic Fatty Rats. Diabetes, 2005, 54, 2155-2163.	0.6	51
18	Muscle-Specific F-Box Only Proteins Facilitate BK Channel β ₁ Subunit Downregulation in Vascular Smooth Muscle Cells of Diabetes Mellitus. Circulation Research, 2010, 107, 1454-1459.	4.5	49

Tong Lu

#	Article	IF	CITATIONS
19	Impaired Ca2+-Dependent Activation of Large-Conductance Ca2+-Activated K+ Channels in the Coronary Artery Smooth Muscle Cells of Zucker Diabetic Fatty Rats. Biophysical Journal, 2008, 95, 5165-5177.	0.5	48
20	Down-regulation of the Small Conductance Calcium-activated Potassium Channels in Diabetic Mouse Atria. Journal of Biological Chemistry, 2015, 290, 7016-7026.	3.4	44
21	Hydrogen sulfide impairs shear stress-induced vasodilation in mouse coronary arteries. Pflugers Archiv European Journal of Physiology, 2015, 467, 329-340.	2.8	39
22	Regulation of cardiac CACNB2 by microRNA-499: Potential role in atrial fibrillation. BBA Clinical, 2017, 7, 78-84.	4.1	36
23	Regulation of Large Conductance Ca2+-activated K+ (BK) Channel β1 Subunit Expression by Muscle RING Finger Protein 1 in Diabetic Vessels. Journal of Biological Chemistry, 2014, 289, 10853-10864.	3.4	34
24	Role of Nrf2 Signaling in the Regulation of Vascular BK Channel β1 Subunit Expression and BK Channel Function in High-Fat Diet–Induced Diabetic Mice. Diabetes, 2017, 66, 2681-2690.	0.6	34
25	Activation of Peroxisome Proliferator-Activated Receptor–δ Enhances Regenerative Capacity of Human Endothelial Progenitor Cells by Stimulating Biosynthesis of Tetrahydrobiopterin. Hypertension, 2011, 58, 287-294.	2.7	32
26	Knockout of SORBS2 Protein Disrupts the Structural Integrity of Intercalated Disc and Manifests Features of Arrhythmogenic Cardiomyopathy. Journal of the American Heart Association, 2020, 9, e017055.	3.7	32
27	Activation of ATP-sensitive K+ channels by epoxyeicosatrienoic acids in rat cardiac ventricular myocytes. Journal of Physiology, 2001, 537, 811-827.	2.9	32
28	Role of the endothelial caveolae microdomain in shear stress–mediated coronary vasorelaxation. Journal of Biological Chemistry, 2017, 292, 19013-19023.	3.4	30
29	Mechanism of rat mesenteric arterial KATP channel activation by 14,15-epoxyeicosatrienoic acid. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1326-H1336.	3.2	25
30	Molecular Determinants of Intracellular pH Modulation of Human Kv1.4 N-Type Inactivation. Molecular Pharmacology, 2002, 62, 127-134.	2.3	24
31	Molecular Determinants of Cardiac KATP Channel Activation by Epoxyeicosatrienoic Acids. Journal of Biological Chemistry, 2005, 280, 19097-19104.	3.4	18
32	Regulation of vascular large-conductance calcium-activated potassium channels by Nrf2 signalling. Diabetes and Vascular Disease Research, 2017, 14, 353-362.	2.0	18
33	Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 106-122.	4.3	16
34	Regulation of Coronary Arterial Large Conductance Ca ²⁺ -Activated K ⁺ Channel Protein Expression and Function by n-3 Polyunsaturated Fatty Acids in Diabetic Rats. Journal of Vascular Research, 2017, 54, 329-343.	1.4	16
35	Molecular mechanisms of diabetic coronary dysfunction due to large conductance Ca2âº-activated Kâº channel impairment. Chinese Medical Journal, 2012, 125, 2548-55.	2.3	16
36	Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovascular Research, 2019, 115, 145-153.	3.8	15

Tong Lu

#	Article	IF	CITATIONS
37	Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice. Applied Physiology, Nutrition and Metabolism, 2016, 41, 992-1001.	1.9	13
38	F-box protein-32 down-regulates small-conductance calcium-activated potassium channel 2 in diabetic mouse atria. Journal of Biological Chemistry, 2019, 294, 4160-4168.	3.4	10
39	Inhibition of ATP binding to the carboxyl terminus of Kir6.2 by epoxyeicosatrienoic acids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1041-1049.	2.4	7
40	Regulation of KCNMA1 transcription by Nrf2 in coronary arterial smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2020, 140, 68-76.	1.9	7
41	Mechanisms of BK Channel Activation by Docosahexaenoic Acid in Rat Coronary Arterial Smooth Muscle Cells. Frontiers in Pharmacology, 2018, 9, 223.	3.5	6
42	Inhibition of PGI2 signaling by miconazole in vascular smooth muscle cells. Prostaglandins and Other Lipid Mediators, 2006, 80, 28-34.	1.9	4
43	Impairment of amyloid precursor protein alpha-processing in cerebral microvessels of type 1 diabetic mice. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1085-1098.	4.3	4
44	Changes in ion channel expression and function associated with cardiac arrhythmogenic remodeling by Sorbs2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166247.	3.8	4
45	Impaired Vascular BK Channel Function in Type 2 Diabetes Mellitus. , 0, , .		3
46	Membrane trafficking of large conductance Ca2+- and voltage-activated K+ (BK) channels is regulated by Rab4 GTPase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118646.	4.1	2
47	Coronary Large Conductance Ca2+-Activated K+ Channel Dysfunction in Diabetes Mellitus. Frontiers in Physiology, 2021, 12, 750618.	2.8	2
48	F233A Mutation in AT1R Interrupted Caveolae Targeting and Abolished Regulation of hSlo Channel by Angiotensin II. Biophysical Journal, 2010, 98, 124a.	0.5	0
49	Regulation of vascular BK channels in diabetes by Nrf2 signaling. Diabetes Research and Clinical Practice, 2016, 120, S90.	2.8	0
50	Endothelial Caveolae-TRPV4-SK Channel Interactions in Shear Stress-Mediated Coronary Arteriole Dilation. Biophysical Journal, 2017, 112, 253a.	0.5	0
51	Nonâ€competitive Inhibition of ATP Binding to the Carboxyl Terminus of Kir6.2 by Epoxyeicosatrienoic Acids. FASEB Journal, 2006, 20, A487.	0.5	0
52	Endothelial progenitor cells: functions and clinical application in cardiac and vascular diseases. Academic Journal of Second Military Medical University, 2010, 30, 545-548.	0.0	0
53	Paradoxical vasoconstrictive effects of H2S on shear stressâ€mediated vasodilation. FASEB Journal, 2013, 27, 1185.2.	0.5	0