
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541308/publications.pdf Version: 2024-02-01

DEDER | SMITH

#	Article	IF	CITATIONS
1	Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans. Science, 2009, 325, 197-201.	12.6	2,127
2	Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science, 2004, 305, 371-376.	12.6	1,527
3	Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science, 2012, 336, 1534-1541.	12.6	1,416
4	Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls. Journal of Virology, 2005, 79, 2814-2822.	3.4	1,274
5	The Global Circulation of Seasonal Influenza A (H3N2) Viruses. Science, 2008, 320, 340-346.	12.6	628
6	Substitutions Near the Receptor Binding Site Determine Major Antigenic Change During Influenza Virus Evolution. Science, 2013, 342, 976-979.	12.6	500
7	Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature, 2015, 523, 217-220.	27.8	445
8	Antibody landscapes after influenza virus infection or vaccination. Science, 2014, 346, 996-1000.	12.6	379
9	Variable efficacy of repeated annual influenza vaccination. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14001-14006.	7.1	347
10	Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2. PLoS Pathogens, 2014, 10, e1003932.	4.7	330
11	Integrating influenza antigenic dynamics with molecular evolution. ELife, 2014, 3, e01914.	6.0	299
12	The Potential for Respiratory Droplet–Transmissible A/H5N1 Influenza Virus to Evolve in a Mammalian Host. Science, 2012, 336, 1541-1547.	12.6	286
13	Flavivirus-induced antibody cross-reactivity. Journal of General Virology, 2011, 92, 2821-2829.	2.9	214
14	Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine, 2008, 26, D31-D34.	3.8	208
15	Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 2010, 84, 11802-11813.	3.4	197
16	Dengue viruses cluster antigenically but not as discrete serotypes. Science, 2015, 349, 1338-1343.	12.6	195
17	Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20748-20753.	7.1	188
18	Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature, 2013, 501, 560-563.	27.8	182

#	Article	IF	CITATIONS
19	Antigenic and Genetic Evolution of Swine Influenza A (H3N2) Viruses in Europe. Journal of Virology, 2007, 81, 4315-4322.	3.4	169
20	Reemergence of Enterovirus 71 in 2008 in Taiwan: Dynamics of Genetic and Antigenic Evolution from 1998 to 2008. Journal of Clinical Microbiology, 2009, 47, 3653-3662.	3.9	168
21	Prevalence of Antibodies against Seasonal Influenza A and B Viruses in Children in Netherlands. Vaccine Journal, 2011, 18, 469-476.	3.1	155
22	Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature, 2018, 557, 418-423.	27.8	155
23	Epidemiological, antigenic and genetic characteristics of seasonal influenza A(H1N1), A(H3N2) and B influenza viruses: Basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009–2010 Northern Hemisphere season. Vaccine, 2010, 28, 1156-1167.	3.8	145
24	Annual Revaccination Against Influenza and Mortality Risk in Community-Dwelling Elderly Persons. JAMA - Journal of the American Medical Association, 2004, 292, 2089.	7.4	140
25	Genomewide Analysis of Reassortment and Evolution of Human Influenza A(H3N2) Viruses Circulating between 1968 and 2011. Journal of Virology, 2014, 88, 2844-2857.	3.4	137
26	A Recommended Numbering Scheme for Influenza A HA Subtypes. PLoS ONE, 2014, 9, e112302.	2.5	137
27	Cochrane re-arranged: Support for policies to vaccinate elderly people against influenza. Vaccine, 2013, 31, 6030-6033.	3.8	135
28	Serial Vaccination and the Antigenic Distance Hypothesis: Effects on Influenza Vaccine Effectiveness During A(H3N2) Epidemics in Canada, 2010–2011 to 2014–2015. Journal of Infectious Diseases, 2017, 215, 1059-1099.	4.0	126
29	Genetic and antigenic characterization of H1 influenza viruses from United States swine from 2008. Journal of General Virology, 2011, 92, 919-930.	2.9	123
30	Recognition of Homo- and Heterosubtypic Variants of Influenza A Viruses by Human CD8+ T Lymphocytes. Journal of Immunology, 2004, 172, 2453-2460.	0.8	121
31	Enhancing disease surveillance with novel data streams: challenges and opportunities. EPJ Data Science, 2015, 4, .	2.8	119
32	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
33	The confounded effects of age and exposure history in response to influenza vaccination. Vaccine, 2016, 34, 540-546.	3.8	109
34	Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science, 2020, 369, .	12.6	108
35	WHO recommendations for the viruses used in the 2013–2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013. Vaccine, 2014, 32, 4713-4725.	3.8	102
36	Quantifying the Impact of Immune Escape on Transmission Dynamics of Influenza. Science, 2009, 326, 726-728.	12.6	96

#	Article	IF	CITATIONS
37	Viridot: An automated virus plaque (immunofocus) counter for the measurement of serological neutralizing responses with application to dengue virus. PLoS Neglected Tropical Diseases, 2018, 12, e0006862.	3.0	93
38	Antigenic and Genetic Evolution of Equine Influenza A (H3N8) Virus from 1968 to 2007. Journal of Virology, 2011, 85, 12742-12749.	3.4	89
39	Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Science Immunology, 2022, 7, .	11.9	89
40	Quantifying Antigenic Relationships among the Lyssaviruses. Journal of Virology, 2010, 84, 11841-11848.	3.4	83
41	Antibody Titer Has Positive Predictive Value for Vaccine Protection against Challenge with Natural Antigenic-Drift Variants of H5N1 High-Pathogenicity Avian Influenza Viruses from Indonesia. Journal of Virology, 2015, 89, 3746-3762.	3.4	80
42	Studies Needed to Address Public Health Challenges of the 2009 H1N1 Influenza Pandemic: Insights from Modeling. PLoS Medicine, 2010, 7, e1000275.	8.4	75
43	Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses. Journal of Virology, 2015, 89, 3763-3775.	3.4	73
44	Circulating Avian Influenza Viruses Closely Related to the 1918 Virus Have Pandemic Potential. Cell Host and Microbe, 2014, 15, 692-705.	11.0	71
45	Predictability and Preparedness in Influenza Control. Science, 2006, 312, 392-394.	12.6	67
46	Deriving Shape Space Parameters from Immunological Data. Journal of Theoretical Biology, 1997, 189, 141-150.	1.7	66
47	Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proceedings of the United States of America, 2018, 115, 7557-7562.	7.1	64
48	Selection of antigenically advanced variants of seasonal influenza viruses. Nature Microbiology, 2016, 1, 16058.	13.3	61
49	WHO recommendations for the viruses to be used in the 2012 Southern Hemisphere Influenza Vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from February to September 2011. Vaccine, 2012, 30, 6461-6471.	3.8	60
50	Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. Journal of General Virology, 2012, 93, 1996-2007.	2.9	57
51	Antigenic Variation of Clade 2.1 H5N1 Virus Is Determined by a Few Amino Acid Substitutions Immediately Adjacent to the Receptor Binding Site. MBio, 2014, 5, e01070-14.	4.1	57
52	Antigenic Drift of the Influenza A(H1N1)pdm09 Virus Neuraminidase Results in Reduced Effectiveness of A/California/7/2009 (H1N1pdm09)-Specific Antibodies. MBio, 2019, 10, .	4.1	57
53	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2022, 14, .	12.4	55
54	Use of Antigenic Cartography in Vaccine Seed Strain Selection. Avian Diseases, 2010, 54, 220-223.	1.0	54

#	Article	IF	CITATIONS
55	H7 avian influenza virus vaccines protect chickens against challenge with antigenically diverse isolates. Vaccine, 2011, 29, 7424-7429.	3.8	53
56	Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. Journal of General Virology, 2005, 86, 1801-1805.	2.9	52
57	A review of influenza haemagglutinin receptor binding as it relates to pandemic properties. Vaccine, 2012, 30, 4369-4376.	3.8	51
58	Evolution of re-emergent virus and its impact on enterovirus 71 epidemics. Experimental Biology and Medicine, 2011, 236, 899-908.	2.4	48
59	Antigenic variation of foot-and-mouth disease virus serotype A. Journal of General Virology, 2014, 95, 384-392.	2.9	42
60	Avian Influenza Virus Surveillance in Wild Birds in Georgia: 2009–2011. PLoS ONE, 2013, 8, e58534.	2.5	42
61	Circulation of Reassortant Influenza A(H7N9) Viruses in Poultry and Humans, Guangdong Province, China, 2013. Emerging Infectious Diseases, 2014, 20, 2034-2040.	4.3	41
62	Excessive production and extreme editing of human metapneumovirus defective interfering RNA is associated with type I IFN induction. Journal of General Virology, 2014, 95, 1625-1633.	2.9	40
63	Vaccination against highly pathogenic avian influenza H5N1 virus in zoos using an adjuvanted inactivated H5N2 vaccine. Vaccine, 2007, 25, 3800-3808.	3.8	36
64	Antigenic evolution of dengue viruses over 20 years. Science, 2021, 374, 999-1004.	12.6	34
65	Influenza virus infection history shapes antibody responses to influenza vaccination. Nature Medicine, 2022, 28, 363-372.	30.7	30
66	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	4.7	29
67	Immunological Memory is Associative*. , 1999, , 105-114.		29
68	Mapping Enterovirus A71 Antigenic Determinants from Viral Evolution. Journal of Virology, 2015, 89, 11500-11506.	3.4	28
69	Applications of bioinformatics and computational biology to influenza surveillance and vaccine strain selection. Vaccine, 2003, 21, 1758-1761.	3.8	26
70	Influenza Gain-of-Function Experiments: Their Role in Vaccine Virus Recommendation and Pandemic Preparedness. MBio, 2014, 5, .	4.1	26
71	Gain-of-Function Experiments on H7N9. Science, 2013, 341, 612-613.	12.6	24
72	The Molecular Basis for Antigenic Drift of Human A/H2N2 Influenza Viruses. Journal of Virology, 2019, 93, .	3.4	22

#	Article	IF	CITATIONS
73	Factors determining human-to-human transmissibility of zoonotic pathogens via contact. Current Opinion in Virology, 2017, 22, 7-12.	5.4	21
74	Using Lazy Evaluation to Simulate Realistic-size Repertoires in Models of the Immune System. Bulletin of Mathematical Biology, 1998, 60, 647-658.	1.9	18
75	Antigenic Relationships among Human Pathogenic Orientia tsutsugamushi Isolates from Thailand. PLoS Neglected Tropical Diseases, 2016, 10, e0004723.	3.0	18
76	Serological Evidence for Non-Lethal Exposures of Mongolian Wild Birds to Highly Pathogenic Avian Influenza H5N1 Virus. PLoS ONE, 2014, 9, e113569.	2.5	18
77	Genetic and antigenic characterisation of influenza A(H3N2) viruses isolated in Yokohama during the 2016/17 and 2017/18 influenza seasons. Eurosurveillance, 2019, 24, .	7.0	18
78	Evaluation of serological trials submitted for annual re-licensure of influenza vaccines to regulatory authorities between 1992 and 2002. Vaccine, 2009, 28, 392-397.	3.8	16
79	Gain-of-Function Experiments on H7N9. Science, 2013, 341, 612-613.	12.6	16
80	An amino acid substitution in the influenza A virus hemagglutinin associated with escape from recognition by human virus-specific CD4+ T-cells. Virus Research, 2007, 126, 282-287.	2.2	15
81	Vaccination with SARS-CoV-2 variants of concern protects mice from challenge with wild-type virus. PLoS Biology, 2021, 19, e3001384.	5.6	15
82	Influenza B vaccine lineage selection—An optimized trivalent vaccine. Vaccine, 2016, 34, 1617-1622.	3.8	14
83	Epistatic interactions can moderate the antigenic effect of substitutions in haemagglutinin of influenza H3N2 virus. Journal of General Virology, 2019, 100, 773-777.	2.9	13
84	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2021, , eabm3302.	12.4	13
85	Characterization of influenza A(H1N1)pdm09 viruses isolated from Nepalese and Indian outbreak patients in early 2015. Influenza and Other Respiratory Viruses, 2017, 11, 399-403.	3.4	11
86	Plasticity of the Influenza Virus H5 HA Protein. MBio, 2021, 12, .	4.1	8
87	80 questions for UK biological security. PLoS ONE, 2021, 16, e0241190.	2.5	8
88	Correction for Koel et al., Antigenic Variation of Clade 2.1 H5N1 Virus Is Determined by a Few Amino Acid Substitutions Immediately Adjacent to the Receptor Binding Site. MBio, 2014, 5, .	4.1	6
89	Complete assembly of a dengue virus type 3 genome from a recent genotype III clade by metagenomic sequencing of serum. Wellcome Open Research, 2018, 3, 44.	1.8	6
90	Modeling the effects of prior infection on vaccine efficacy. , 0, , .		5

Modeling the effects of prior infection on vaccine efficacy. , 0, , . 90

#	Article	IF	CITATIONS
91	Modeling the effects of updating the influenza vaccine on the efficacy of repeated vaccination. International Congress Series, 2001, 1219, 655-660.	0.2	5
92	Beneath the surface: Amino acid variation underlying two decades of dengue virus antigenic dynamics in Bangkok, Thailand. PLoS Pathogens, 2022, 18, e1010500.	4.7	5
93	Complete assembly of a dengue virus type 3 genome from a recent genotype III clade by metagenomic sequencing of serum. Wellcome Open Research, 2018, 3, 44.	1.8	4
94	Modeling the Effects of Prior Infection on Vaccine Efficacy. , 1999, , 144-153.		4
95	Reply: Letter to the Editor, Cochrane Rearranged. Vaccine, 2015, 33, 13-14.	3.8	3
96	Mutations, drift, and the influenza archipelago. Discovery Medicine, 2004, 4, 371-7.	0.5	3
97	Recognition of influenza virus epitope variants by human CTL. International Congress Series, 2004, 1263, 145-148.	0.2	1
98	Antigenic Cartography of Human and Swine Influenza A (H3N2) Viruses. Novartis Foundation Symposium, 0, , 32-44.	1.1	1
99	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
100	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
101	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
102	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
103	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
104	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0

7