Sofia R Gameiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3541132/publications.pdf

Version: 2024-02-01

43 papers 3,209 citations

236925 25 h-index 345221 36 g-index

44 all docs

44 docs citations

times ranked

44

4765 citing authors

#	Article	IF	CITATIONS
1	Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF- \hat{l}^2 signaling enables PD-L1 \hat{a} €"mediated tumor eradication. Journal of Clinical Investigation, 2022, 132, .	8.2	50
2	Cure of syngeneic carcinomas with targeted IL-12 through obligate reprogramming of lymphoid and myeloid immunity. JCI Insight, 2022, 7, .	5.0	5
3	Preclinical and clinical studies of bintrafusp alfa, a novel bifunctional anti-PD-L1/TGFβRII agent: Current status. Experimental Biology and Medicine, 2022, 247, 1124-1134.	2.4	7
4	Analysis of the tumor microenvironment and anti-tumor efficacy of subcutaneous vs systemic delivery of the bifunctional agent bintrafusp alfa. Oncolmmunology, 2021, 10, 1915561.	4.6	5
5	A phase I/II study of bintrafusp alfa and NHS-IL12 in combination with docetaxel in adults with metastatic castration sensitive (mCSPC) and castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2021, 39, TPS5096-TPS5096.	1.6	3
6	Tumour-targeted interleukin-12 and entinostat combination therapy improves cancer survival by reprogramming the tumour immune cell landscape. Nature Communications, 2021, 12, 5151.	12.8	41
7	Cooperative Immune-Mediated Mechanisms of the HDAC Inhibitor Entinostat, an IL15 Superagonist, and a Cancer Vaccine Effectively Synergize as a Novel Cancer Therapy. Clinical Cancer Research, 2020, 26, 704-716.	7.0	26
8	Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opinion on Biological Therapy, 2020, 20, 705-709.	3.1	46
9	Dual targeting of TGF- \hat{l}^2 and PD-L1 via a bifunctional anti-PD-L1/TGF- \hat{l}^2 RII agent: status of preclinical and clinical advances. , 2020, 8, e000433.		166
10	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death., 2020, 8, e000337.		610
11	Functional and mechanistic advantage of the use of a bifunctional anti-PD-L1/IL-15 superagonist. , 2020, 8, e000493.		27
12	Improving the Odds in Advanced Breast Cancer With Combination Immunotherapy: Stepwise Addition of Vaccine, Immune Checkpoint Inhibitor, Chemotherapy, and HDAC Inhibitor in Advanced Stage Breast Cancer. Frontiers in Oncology, 2020, 10, 581801.	2.8	11
13	Efficient Tumor Clearance and Diversified Immunity through Neoepitope Vaccines and Combinatorial Immunotherapy. Cancer Immunology Research, 2019, 7, 1359-1370.	3.4	22
14	Two may be better than one: PD-1/PD-L1 blockade combination approaches in metastatic breast cancer. Npj Breast Cancer, 2019, 5, 34.	5.2	55
15	If we build it they will come: targeting the immune response to breast cancer. Npj Breast Cancer, 2019, 5, 37.	5. 2	132
16	Mechanisms involved in IL-15 superagonist enhancement of anti-PD-L1 therapy., 2019, 7, 82.		76
17	The multi-functionality of N-809, a novel fusion protein encompassing anti-PD-L1 and the IL-15 superagonist fusion complex. Oncolmmunology, 2019, 8, e1532764.	4.6	30
18	M7824, a novel bifunctional anti-PD-L1/TGF \hat{l}^2 Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncolmmunology, 2018, 7, e1426519.	4.6	162

#	Article	IF	Citations
19	Immunotherapy utilizing the combination of natural killer– and antibody dependent cellular cytotoxicity (ADCC)–mediating agents with poly (ADP-ribose) polymerase (PARP) inhibition. , 2018, 6, 133.		56
20	Epigenetic priming of both tumor and NK cells augments antibody-dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab against multiple carcinoma cell types. Oncolmmunology, 2018, 7, e1466018.	4.6	51
21	Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies., 2018, 6, 59.		43
22	Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell–Mediated Killing. International Journal of Radiation Oncology Biology Physics, 2016, 95, 120-130.	0.8	117
23	Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas' sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget, 2016, 7, 86937-86947.	1.8	63
24	Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget, 2016, 7, 7390-7402.	1.8	89
25	Androgen deprivation therapy sensitizes triple negative breast cancer cells to immune-mediated lysis through androgen receptor independent modulation of osteoprotegerin. Oncotarget, 2016, 7, 23498-23511.	1.8	25
26	Improving clinical benefit for prostate cancer patients through the combination of androgen deprivation and immunotherapy. Oncolmmunology, 2015, 4, e1009303.	4.6	5
27	Combination Regimens of Radiation Therapy and Therapeutic Cancer Vaccines: Mechanisms and Opportunities. Seminars in Radiation Oncology, 2015, 25, 46-53.	2.2	30
28	Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget, 2014, 5, 403-416.	1.8	331
29	Radiation-induced survival responses promote immunogenic modulation to enhance immunotherapy in combinatorial regimens. Oncolmmunology, 2014, 3, e28643.	4.6	44
30	Radiation-Induced Modulation of Costimulatory and Coinhibitory T-Cell Signaling Molecules on Human Prostate Carcinoma Cells Promotes Productive Antitumor Immune Interactions. Cancer Biotherapy and Radiopharmaceuticals, 2014, 29, 153-161.	1.0	71
31	Defining Molecular Signature of Pro-Immunogenic Radiotherapy Targets in Human Prostate Cancer Cells. Radiation Research, 2014, 182, 139-148.	1.5	41
32	Vaccine-Mediated Immunotherapy Directed against a Transcription Factor Driving the Metastatic Process. Cancer Research, 2014, 74, 1945-1957.	0.9	31
33	Abstract 632: Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. , 2014, , .		1
34	Androgen deprivation therapy sensitizes prostate cancer cells to T-cell killing through androgen receptor dependent modulation of the apoptotic pathway. Oncotarget, 2014, 5, 9335-9348.	1.8	64
35	Chemotherapyâ€induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. International Journal of Cancer, 2013, 133, 624-636.	5.1	225
36	Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert Review of Vaccines, 2013, 12, 617-629.	4.4	18

#	Article	IF	CITATION
37	Attacking malignant cells that survive therapy. Oncolmmunology, 2013, 2, e26937.	4.6	29
38	Combination Therapy with Local Radiofrequency Ablation and Systemic Vaccine Enhances Antitumor Immunity and Mediates Local and Distal Tumor Regression. PLoS ONE, 2013, 8, e70417.	2.5	57
39	Abscopal Regression of Antigen Disparate Tumors by Antigen Cascade After Systemic Tumor Vaccination in Combination with Local Tumor Radiation. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 12-22.	1.0	101
40	Defining the Molecular Signature of Chemotherapy-Mediated Lung Tumor Phenotype Modulation and Increased Susceptibility to T-Cell Killing. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 23-35.	1.0	36
41	The Tipping Point for Combination Therapy: Cancer Vaccines With Radiation, Chemotherapy, or Targeted Small Molecule Inhibitors. Seminars in Oncology, 2012, 39, 323-339.	2.2	132
42	Exploitation of differential homeostatic proliferation of T-cell subsets following chemotherapy to enhance the efficacy of vaccine-mediated antitumor responses. Cancer Immunology, Immunotherapy, 2011, 60, 1227-1242.	4.2	66
43	Vaccines as Monotherapy and in Combination Therapy for Prostate Cancer. Clinical and Translational Science, 2010, 3, 116-122.	3.1	9