
David S Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3540744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disease Tolerance as a Defense Strategy. Science, 2012, 335, 936-941.	12.6	1,335
2	Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Reviews Immunology, 2008, 8, 889-895.	22.7	649
3	A Specific Primed Immune Response in Drosophila Is Dependent on Phagocytes. PLoS Pathogens, 2007, 3, e26.	4.7	451
4	Tolerance of Infections. Annual Review of Immunology, 2012, 30, 271-294.	21.8	405
5	Interactions between the cellular and humoral immune responses in Drosophila. Current Biology, 2000, 10, 781-784.	3.9	315
6	Akt and foxo Dysregulation Contribute to Infection-Induced Wasting in Drosophila. Current Biology, 2006, 16, 1977-1985.	3.9	286
7	The Role of Anorexia in Resistance and Tolerance to Infections in Drosophila. PLoS Biology, 2009, 7, e1000150.	5.6	277
8	The Imd Pathway Is Involved in Antiviral Immune Responses in Drosophila. PLoS ONE, 2009, 4, e7436.	2.5	203
9	A Signaling Protease Required for Melanization in Drosophila Affects Resistance and Tolerance of Infections. PLoS Biology, 2008, 6, e305.	5.6	195
10	Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cellular Microbiology, 2003, 5, 901-911.	2.1	169
11	<i>Drosophila melanogaster</i> Is a Genetically Tractable Model Host for <i>Mycobacterium marinum</i> . Infection and Immunity, 2003, 71, 3540-3550.	2.2	166
12	WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity. Nature, 2005, 437, 746-749.	27.8	144
13	Secreted Bacterial Effectors and Host-Produced Eiger/TNF Drive Death in a Salmonella-Infected Fruit Fly. PLoS Biology, 2004, 2, e418.	5.6	124
14	Listeria monocytogenes Infection Causes Metabolic Shifts in Drosophila melanogaster. PLoS ONE, 2012, 7, e50679.	2.5	111
15	Identification of Drosophila Mutants Altering Defense of and Endurance to <i>Listeria monocytogenes</i> Infection. Genetics, 2008, 178, 1807-1815.	2.9	109
16	A Macrophage Colony-Stimulating-Factor-Producing Î ³ δT Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity, 2018, 48, 350-363.e7.	14.3	105
17	Models of infectious diseases in the fruit fly <i>Drosophila melanogaster</i> . DMM Disease Models and Mechanisms, 2008, 1, 43-49.	2.4	103
18	Drosophila eiger Mutants Are Sensitive to Extracellular Pathogens. PLoS Pathogens, 2007, 3, e41.	4.7	91

DAVID S SCHNEIDER

#	Article	IF	CITATIONS
19	Psidin Is Required in Drosophila Blood Cells for Both Phagocytic Degradation and Immune Activation of the Fat Body. Current Biology, 2007, 17, 67-72.	3.9	90
20	Tracking Resilience to Infections by Mapping Disease Space. PLoS Biology, 2016, 14, e1002436.	5.6	88
21	Interactions between circadian rhythm and immunity in Drosophila melanogaster. Current Biology, 2007, 17, R353-R355.	3.9	86
22	Reciprocal Analysis of Francisella novicida Infections of a Drosophila melanogaster Model Reveal Host-Pathogen Conflicts Mediated by Reactive Oxygen and imd-Regulated Innate Immune Response. PLoS Pathogens, 2010, 6, e1001065.	4.7	82
23	Going to Bat(s) for Studies of Disease Tolerance. Frontiers in Immunology, 2018, 9, 2112.	4.8	81
24	How Many Parameters Does It Take to Describe Disease Tolerance?. PLoS Biology, 2016, 14, e1002435.	5.6	74
25	Pioneering immunology: insect style. Current Opinion in Immunology, 2012, 24, 10-14.	5.5	69
26	Host Energy Source Is Important for Disease Tolerance to Malaria. Current Biology, 2018, 28, 1635-1642.e3.	3.9	65
27	Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3688-3694.	7.1	62
28	Tracing Personalized Health Curves during Infections. PLoS Biology, 2011, 9, e1001158.	5.6	56
29	Plant Immunity and Film Noir. Cell, 2002, 109, 537-540.	28.9	55
30	Timing of host feeding drives rhythms in parasite replication. PLoS Pathogens, 2018, 14, e1006900.	4.7	48
31	Confronting physiology: how do infected flies die?. Cellular Microbiology, 2007, 9, 2775-2783.	2.1	38
32	Infection-Related Declines in Chill Coma Recovery and Negative Geotaxis in Drosophila melanogaster. PLoS ONE, 2012, 7, e41907.	2.5	38
33	Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends in Immunology, 2018, 39, 862-873.	6.8	33
34	Use of a Drosophila Model to Identify Genes Regulating Plasmodium Growth in the Mosquito. Genetics, 2008, 180, 1671-1678.	2.9	32
35	The <i>Drosophila</i> TNF Ortholog Eiger Is Required in the Fat Body for a Robust Immune Response. Journal of Innate Immunity, 2010, 2, 371-378.	3.8	32
36	Pathogenesis of Listeria-Infected Drosophila wntD Mutants Is Associated with Elevated Levels of the Novel Immunity Gene edin. PLoS Pathogens, 2008, 4, e1000111.	4.7	30

DAVID S SCHNEIDER

#	Article	IF	CITATIONS
37	How and Why Does a Fly Turn Its Immune System Off?. PLoS Biology, 2007, 5, e247.	5.6	28
38	How the Fly Balances Its Ability to Combat Different Pathogens. PLoS Pathogens, 2012, 8, e1002970.	4.7	28
39	Bacterial infection of fly ovaries reduces egg production and induces local hemocyte activation. Developmental and Comparative Immunology, 2007, 31, 1121-1130.	2.3	24
40	EVIDENCE FOR SPECIFICITY AND MEMORY IN THE INSECT INNATE IMMUNE RESPONSE. , 2008, , 97-127.		21
41	<i>Drosophila melanogaster</i> Natural Variation Affects Growth Dynamics of Infecting <i>Listeria monocytogenes</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2593-2600.	1.8	18
42	Rogue Insect Immunity. Science, 2008, 322, 1199-1200.	12.6	16
43	Defining Resistance and Tolerance to Cancer. Cell Reports, 2015, 13, 884-887.	6.4	14
44	The physiological basis of disease tolerance in insects. Current Opinion in Insect Science, 2018, 29, 133-136.	4.4	14
45	Genomic dissection of microbial pathogenesis in cultured Drosophila cells. Trends in Microbiology, 2006, 14, 101-104.	7.7	11
46	Bridging the gaps in vector biology. EMBO Reports, 2006, 7, 259-262.	4.5	11
47	Balancing resistance and infection tolerance through metabolic means. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13886-13887.	7.1	9
48	Immunology's intolerance of disease tolerance. Nature Reviews Immunology, 2021, 21, 624-625.	22.7	9
49	Resilience integrates concepts in aging research. IScience, 2022, 25, 104199.	4.1	9
50	The <i>Drosophila</i> Deubiquitinating Enzyme dUSP36 Acts in the Hemocytes for Tolerance to <i>Listeria monocytogenes</i> Infections. Journal of Innate Immunity, 2014, 6, 632-638.	3.8	8
51	Uncovering drivers of dose-dependence and individual variation in malaria infection outcomes. PLoS Computational Biology, 2020, 16, e1008211.	3.2	7
52	Metabolomic Analysis of Diverse Mice Reveals Hepatic Arginase-1 as Source of Plasma Arginase in Plasmodium chabaudi Infection. MBio, 2021, 12, e0242421.	4.1	7
53	Linking functional and molecular mechanisms of host resilience to malaria infection. ELife, 2021, 10, .	6.0	6
54	Screening the fruitfly immune system. Genome Biology, 2002, 3, reviews1010.1.	9.6	5

DAVID S SCHNEIDER

#	Article	IF	CITATIONS
55	The Genetics of Immunity. Genetics, 2014, 197, 467-470.	2.9	5
56	Metabolic profiling during malaria reveals the role of the aryl hydrocarbon receptor in regulating kidney injury. ELife, 2020, 9, .	6.0	5
57	The Genetics of Immunity. G3: Genes, Genomes, Genetics, 2014, 4, 943-945.	1.8	4
58	Innate Immune Memory: Activation of Macrophage Killing Ability by Developmental Duties. Current Biology, 2016, 26, R503-R505.	3.9	4
59	What Can Vampires Teach Us about Immunology?. Trends in Immunology, 2016, 37, 253-256.	6.8	4
60	FAR: End-to-End Vibrotactile Distributed System Designed to Facilitate Affect Regulation in Children Diagnosed with Autism Spectrum Disorder Through Slow Breathing. , 2022, , .		4
61	Predicting position along a looping immune response trajectory. PLoS ONE, 2018, 13, e0200147.	2.5	2
62	Relating immune and stress responses to infection resistance and tolerance. Brain, Behavior, and Immunity, 2010, 24, 193.	4.1	0