Anil N Netravali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3540611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural â€~Green' Sugar-Based Treatment for Hair Styling. Fibers, 2022, 10, 13.	4.0	Ο
2	Sustainable polymers. Nature Reviews Methods Primers, 2022, 2, .	21.2	78
3	Bacterial cellulose integrated irregularly shapedÂmicrocapsules enhance self-healing efficiency and mechanical properties of green soy protein resins. Journal of Materials Science, 2021, 56, 12030-12047.	3.7	6
4	Review: Green composites for structural applications. Composites Part C: Open Access, 2021, 6, 100169.	3.2	33
5	â€~Green' composites based on liquid crystalline cellulose fibers and avocado seed starch. Journal of Materials Science, 2021, 56, 6204-6216.	3.7	4
6	Bioinspired process using anisotropic silica particles and fatty acid for superhydrophobic cotton fabrics. Cellulose, 2020, 27, 545-559.	4.9	12
7	Toughening of thermoset green zein resin: A comparison between natural rubberâ€based additives and plasticizers. Journal of Applied Polymer Science, 2020, 137, 48512.	2.6	4
8	Green composites based on avocado seed starch and nano―and microâ€scale cellulose. Polymer Composites, 2020, 41, 4631-4648.	4.6	19
9	A Novel Method for Electrospinning Nanofibrous 3-D Structures. Fibers, 2020, 8, 27.	4.0	9
10	Multifunctional sucrose acid as a â€~green' crosslinker for wrinkle-free cotton fabrics. Cellulose, 2020, 27, 5407-5420.	4.9	15
11	Advanced green composites: New directions. Materials Today: Proceedings, 2019, 8, 832-838.	1.8	8
12	Self-healing of â€ ⁻ green' thermoset zein resins with irregular shaped waxy maize starch-based/poly(D,L-lactic-co-glycolic acid) microcapsules. Composites Science and Technology, 2019, 183, 107831.	7.8	12
13	Cyclodextrin-Based "Green―Wrinkle-Free Finishing of Cotton Fabrics. Industrial & Engineering Chemistry Research, 2019, 58, 20496-20504.	3.7	24
14	A Seed Coating Delivery System for Bio-Based Biostimulants to Enhance Plant Growth. Sustainability, 2019, 11, 5304.	3.2	26
15	Direct Assembly of Silica Nanospheres on Halloysite Nanotubes for "Green―Ultrahydrophobic Cotton Fabrics. Advanced Sustainable Systems, 2019, 3, 1900009.	5.3	6
16	Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. Polymer Reviews, 2019, 59, 651-686.	10.9	80
17	Enhancing Strength of Wool Fiber Using a Soy Flour Sugar-Based "Green―Cross-linker. ACS Omega, 2019, 4, 5392-5401.	3.5	33
18	"Green―composites using bioresins from agroâ€wastes and modified sisal fibers. Polymer Composites, 2019, 40, 99-108.	4.6	24

#	Article	IF	CITATIONS
19	Advanced Green composites using liquid crystalline cellulose fibers and waxy maize starch based resin. Composites Science and Technology, 2018, 162, 110-116.	7.8	22
20	Self-healing green composites based on soy protein and microfibrillated cellulose. Composites Science and Technology, 2017, 143, 22-30.	7.8	38
21	Self-healing starch-based â€~green' thermoset resin. Polymer, 2017, 117, 150-159.	3.8	20
22	High-performance green nanocomposites using aligned bacterial cellulose and soy protein. Composites Science and Technology, 2017, 146, 183-190.	7.8	31
23	One-Step Toughening of Soy Protein Based Green Resin Using Electrospun Epoxidized Natural Rubber Fibers. ACS Sustainable Chemistry and Engineering, 2017, 5, 4957-4968.	6.7	27
24	Comparison of thermoset soy protein resin toughening by natural rubber and epoxidized natural rubber. Journal of Applied Polymer Science, 2017, 134, .	2.6	15
25	Parametric study of protein-encapsulated microcapsule formation and effect on self-healing efficiency of â€~green' soy protein resin. Journal of Materials Science, 2017, 52, 3028-3047.	3.7	18
26	In Situ Produced Bacterial Cellulose Nanofiber-Based Hybrids for Nanocomposites. Fibers, 2017, 5, 31.	4.0	24
27	Bioâ€inspired "green―nanocomposite using hydroxyapatite synthesized from eggshell waste and soy protein. Journal of Applied Polymer Science, 2016, 133, .	2.6	24
28	Aligned Bacterial Cellulose Arrays as "Green―Nanofibers for Composite Materials. ACS Macro Letters, 2016, 5, 1070-1074.	4.8	53
29	Oriented bacterial cellulose-soy protein based fully â€~green' nanocomposites. Composites Science and Technology, 2016, 136, 85-93.	7.8	20
30	â€~Green' surface treatment for water-repellent cotton fabrics. Surface Innovations, 2016, 4, 3-13.	2.3	21
31	Investigation of Soy Protein–based Biostimulant Seed Coating for Broccoli Seedling and Plant Growth Enhancement. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 1121-1126.	1.0	56
32	Micro-fibrillated cellulose reinforced eco-friendly polymeric resin from non-edible †Jatropha curcas' seed waste after biodiesel production. RSC Advances, 2016, 6, 47101-47111.	3.6	11
33	Selfâ€Healing Properties of Protein Resin with Soy Protein Isolateâ€Loaded Poly(<scp>d,l</scp> â€lactideâ€ <i>co</i> â€glycolide) Microcapsules. Advanced Functional Materials, 2016, 26, 4786-4796.	14.9	38
34	Microfibrillated celluloseâ€reinforced nonedible starchâ€based thermoset biocomposites. Journal of Applied Polymer Science, 2016, 133, .	2.6	26
35	Nonedible Starch Based "Green―Thermoset Resin Obtained via Esterification Using a Green Catalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 1756-1764.	6.7	32
36	Waterâ€resistant plant protein <i>â€</i> based nanofiber membranes. Journal of Applied Polymer Science, 2015, 132, .	2.6	23

#	Article	IF	CITATIONS
37	Can We Build with Plants? Cabin Construction Using Green Composites. Journal of Renewable Materials, 2015, 3, 244-258.	2.2	1
38	Bioâ€based polymeric resin from agricultural waste, neem (<scp><i>A</i></scp> <i>zadirachta indica</i>) seed cake, for green composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	18
39	Green Resin from Forestry Waste Residue "Karanja <i>(Pongamia pinnata)</i> Seed Cake―for Biobased Composite Structures. ACS Sustainable Chemistry and Engineering, 2014, 2, 2318-2328.	6.7	24
40	A Review of Fabrication and Applications of Bacterial Cellulose Based Nanocomposites. Polymer Reviews, 2014, 54, 598-626.	10.9	126
41	A Composting Study of Membrane-Like Polyvinyl Alcohol Based Resins and Nanocomposites. Journal of Polymers and the Environment, 2013, 21, 658-674.	5.0	31
42	Fabrication of advanced "green―composites using potassium hydroxide (KOH) treated liquid crystalline (LC) cellulose fibers. Journal of Materials Science, 2013, 48, 3950-3957.	3.7	20
43	A soy flour based thermoset resin without the use of any external crosslinker. Green Chemistry, 2013, 15, 3243.	9.0	67
44	Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polymer Composites, 2013, 34, 799-809.	4.6	61
45	Cross-Linked Waxy Maize Starch-Based "Green―Composites. ACS Sustainable Chemistry and Engineering, 2013, 1, 1537-1544.	6.7	59
46	Performance of protein-based wood bioadhesives and development of small-scale test method for characterizing properties of adhesive-bonded wood specimens. Journal of Adhesion Science and Technology, 2013, 27, 2083-2093.	2.6	17
47	Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Composites Science and Technology, 2012, 72, 1588-1594.	7.8	137
48	Nonâ€food application of camelina meal: Development of sustainable and green biodegradable paperâ€camelina composite sheets and fibers. Polymer Composites, 2012, 33, 1969-1976.	4.6	11
49	Effect of Halloysite Nanotube Incorporation in Epoxy Resin and Carbon Fiber Ethylene/Ammonia Plasma Treatment on Their Interfacial Property. Journal of Adhesion Science and Technology, 2012, 26, 1295-1312.	2.6	17
50	â€~Green' crosslinking of native starches with malonic acid and their properties. Carbohydrate Polymers, 2012, 90, 1620-1628.	10.2	98
51	Physical Properties of Biodegradable Films of Soy Protein Concentrate/Gelling Agent Blends. Macromolecular Materials and Engineering, 2012, 297, 176-183.	3.6	16
52	Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol. Journal of Materials Science, 2012, 47, 6066-6075.	3.7	64
53	Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers. Polymer Degradation and Stability, 2012, 97, 747-754.	5.8	78
54	Improving Resin and Film Forming Properties of Native Starches by Chemical and Physical Modification. Journal of Biobased Materials and Bioenergy, 2012, 6, 1-24.	0.3	24

#	Article	IF	CITATIONS
55	Development of aligned-hemp yarn-reinforced green composites with soy protein resin: Effect of pH on mechanical and interfacial properties. Composites Science and Technology, 2011, 71, 541-547.	7.8	46
56	Elastic Properties of Green Composites Reinforced with Ramie Twisted Yarn. Journal of Solid Mechanics and Materials Engineering, 2010, 4, 1605-1614.	0.5	13
57	Electrospun Hybrid Soy Protein/PVA Fibers. Macromolecular Materials and Engineering, 2010, 295, 763-773.	3.6	67
58	Adhesion Promotion in Fibers and Textiles Using Photonic Surface Modifications. Journal of Adhesion Science and Technology, 2010, 24, 45-75.	2.6	24
59	Characterization of Interface Properties of Clay Nanoplatelet-Filled Epoxy Resin and Carbon Fiber by Single Fiber Composite Technique. Journal of Adhesion Science and Technology, 2010, 24, 217-236.	2.6	9
60	Effect of Protein Content in Soy Protein Resins on Their Interfacial Shear Strength with Ramie Fibers. Journal of Adhesion Science and Technology, 2010, 24, 203-215.	2.6	24
61	Mechanical, Thermal, and Interfacial Properties of Green Composites with Ramie Fiber and Soy Resins. Journal of Agricultural and Food Chemistry, 2010, 58, 5400-5407.	5.2	80
62	Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1245-1252.	7.6	200
63	Mechanical and Thermal Properties of Sisal Fiber-Reinforced Green Composites with Soy Protein/Gelatin Resins. Journal of Biobased Materials and Bioenergy, 2010, 4, 338-345.	0.3	14
64	Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Composites Science and Technology, 2009, 69, 1009-1015.	7.8	162
65	Environmentally Friendly Green Materials from Plant-Based Resources: Modification of Soy Protein using Gellan and Micro/Nano-Fibrillated Cellulose. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 899-906.	2.2	22
66	The effect of silica (SiO2) nanoparticles and ammonia/ethylene plasma treatment on the interfacial and mechanical properties of carbon-fiber-reinforced epoxy composites. Journal of Adhesion Science and Technology, 2007, 21, 1407-1424.	2.6	23
67	Advanced 'green' composites. Advanced Composite Materials, 2007, 16, 269-282.	1.9	81
68	Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Composites Science and Technology, 2007, 67, 2005-2014.	7.8	161
69	Characterization of Nano-Clay Reinforced Phytagel-Modified Soy Protein Concentrate Resin. Biomacromolecules, 2006, 7, 2783-2789.	5.4	70
70	Green composites. I. physical properties of ramie fibers for environment-friendly green composites. Fibers and Polymers, 2006, 7, 372-379.	2.1	106
71	Green composites. II. Environment-friendly, biodegradable composites using ramie fibers and soy protein concentrate (SPC) resin. Fibers and Polymers, 2006, 7, 380-388.	2.1	61
72	Carbon fibers as a novel material for high-performance microelectromechanical systems (MEMS). Journal of Micromechanics and Microengineering, 2006, 16, 1403-1407.	2.6	11

#	Article	IF	CITATIONS
73	Effect of soy protein isolate resin modifications on their biodegradation in a compost medium. Polymer Degradation and Stability, 2005, 87, 465-477.	5.8	38
74	Thermal and mechanical properties of environment-friendly â€~green' plastics from stearic acid modified-soy protein isolate. Industrial Crops and Products, 2005, 21, 49-64.	5.2	188
75	Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced †̃green' composites. Composites Science and Technology, 2005, 65, 1211-1225.	7.8	152
76	â€~Green' composites Part 1: Characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites. Journal of Materials Science, 2005, 40, 6263-6273.	3.7	96
77	â€~Green' composites Part 2: Characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites. Journal of Materials Science, 2005, 40, 6275-6282.	3.7	57
78	Characterization of Phytagel® modified soy protein isolate resin and unidirectional flax yarn reinforced "green―composites. Polymer Composites, 2005, 26, 647-659.	4.6	73
79	Characterization of ramie fiber/soy protein concentrate (SPC) resin interface. Journal of Adhesion Science and Technology, 2004, 18, 1063-1076.	2.6	36
80	Comparison of effects of ultraviolet and60Co gamma ray irradiation on nylon 6 mono-filaments. Fibers and Polymers, 2004, 5, 225-229.	2.1	2
81	'Green' Composites Using Modified Soy Protein Concentrate Resin and Flax Fabrics and Yarns. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2004, 47, 556-560.	0.4	21
82	Composites get greener. Materials Today, 2003, 6, 22-29.	14.2	530
83	Title is missing!. Journal of Materials Science, 2002, 37, 3657-3665.	3.7	166
84	Effects of a pulsed XeCl excimer laser on ultra-high strength polyethylene fiber and its interface with epoxy resin. Journal of Adhesion Science and Technology, 1999, 13, 501-516.	2.6	23
85	Excimer laser surface modification of ultra-high-strength polyethylene fibers for enhanced adhesion with epoxy resins. Part 1. Effect of laser operating parameters. Journal of Adhesion Science and Technology, 1998, 12, 957-982.	2.6	63
86	Excimer laser surface modification of ultra-high-strength polyethylene fibers for enhanced adhesion with epoxy resins. Part 2. Effect of treatment environment. Journal of Adhesion Science and Technology, 1998, 12, 983-998.	2.6	33
87	Ethylene/ ammonia plasma polymer deposition for controlled adhesion of graphite fibers to PEEK. Journal of Adhesion Science and Technology, 1995, 9, 1475-1503.	2.6	38
88	A Numerical and Experimental Study of Delaminated Layered Composites. Journal of Composite Materials, 1994, 28, 837-870.	2.4	36