Stephanie Reich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3540287/publications.pdf

Version: 2024-02-01

225 papers 15,527 citations

53 h-index 120 g-index

233 all docs 233
docs citations

times ranked

233

16882 citing authors

#	Article	IF	CITATIONS
1	Global Alignment of Carbon Nanotubes via High Precision Microfluidic Deadâ€End Filtration. Advanced Functional Materials, 2022, 32, 2107411.	14.9	10
2	Microscopic Understanding of Reaction Rates Observed in Plasmon Chemistry of Nanoparticle–Ligand Systems. Journal of Physical Chemistry C, 2022, 126, 5333-5342.	3.1	7
3	Light Control over Chirality Selective Functionalization of Substrate Supported Carbon Nanotubes. Journal of Physical Chemistry C, 2022, 126, 9803-9812.	3.1	1
4	Experimental tests of surfaceâ€enhanced Raman scattering: Moving beyond the electromagnetic enhancement theory. Journal of Raman Spectroscopy, 2021, 52, 310-322.	2.5	18
5	Endohedral Filling Effects in Sorted and Polymer-Wrapped Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2021, 125, 7476-7487.	3.1	8
6	Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals. ACS Nano, 2021, 15, 5523-5533.	14.6	58
7	The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication. Beilstein Journal of Nanotechnology, 2021, 12, 304-318.	2.8	13
8	Strong light-matter coupling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>:mß.2<td>nl:mosub></td></td></mml:mn></mml:msub></mml:math>	:m ß. 2 <td>nl:mosub></td>	nl:mosub>
9	Kinetics and Mechanism of Plasmon-Driven Dehalogenation Reaction of Brominated Purine Nucleobases on Ag and Au. ACS Catalysis, 2021, 11, 8370-8381.	11.2	21
10	Doping and plasmonic Raman enhancement in hybrid single walled carbon nanotubes films with embedded gold nanoparticles. Carbon, 2021, 179, 531-540.	10.3	7
11	Plasmon polaritons in nanoparticle supercrystals: Microscopic quantum theory beyond the dipole approximation. Physical Review B, 2021, 104, .	3.2	7
12	Anti-Stokes Raman Scattering of Single Carbyne Chains. ACS Nano, 2021, 15, 12249-12255.	14.6	20
13	Moir \tilde{A} ©-Induced Vibrational Coupling in Double-Walled Carbon Nanotubes. Nano Letters, 2021, 21, 6732-6739.	9.1	9
14	Synthesis of Multifunctional Charge-Transfer Agents: Toward Single-Walled Carbon Nanotubes with Defined Covalent Functionality and Preserved i€ System. Journal of Physical Chemistry C, 2021, 125, 19925-19935.	3.1	0
15	In situ functionalization of graphene. 2D Materials, 2021, 8, 015022.	4.4	5
16	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
17	Understanding the Electron-Doping Mechanism in Potassium-Intercalated Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2020, 142, 2327-2337.	13.7	16
18	Few-Wall Carbon Nanotube Coils. Nano Letters, 2020, 20, 953-962.	9.1	14

#	Article	IF	Citations
19	Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime. ACS Nano, 2020, 14, 948-963.	14.6	75
20	Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and carbon nanotubes as reinforcing material. Polymer Testing, 2020, 82, 106317.	4.8	52
21	Raman Scattering Cross Section of Confined Carbyne. Nano Letters, 2020, 20, 6750-6755.	9.1	30
22	Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature, 2020, 583, 780-784.	27.8	144
23	Structural order in plasmonic superlattices. Nature Communications, 2020, 11, 3821.	12.8	56
24	Resonant Raman Scattering of 4â€Nitrothiophenol. Physica Status Solidi (B): Basic Research, 2020, 257, 2000295.	1.5	10
25	Selection Rules for Structured Light in Nanooligomers and Other Nanosystems. ACS Photonics, 2020, 7, 1537-1550.	6.6	22
26	Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles. Journal of Chemical Physics, 2020, 152, 064710.	3.0	9
27	Impact of substrate on tip-enhanced Raman spectroscopy: A comparison between field-distribution simulations and graphene measurements. Physical Review Research, 2020, 2, .	3.6	14
28	Selective excitation of localized surface plasmons by structured light. Optics Express, 2020, 28, 24262.	3.4	11
29	(Invited) Intertube Coupling in Double-Walled Carbon Nanotubes Beyond Mechanical Interaction. ECS Meeting Abstracts, 2020, MA2020-01, 695-695.	0.0	0
30	(Invited) Photoswitchable Near-Infrared Emitters Based on Single-Walled Carbon Nanotube Hybrids. ECS Meeting Abstracts, 2020, MA2020-01, 690-690.	0.0	0
31	Novel Covalent Approaches to Control the Doping Level within Carbon Nanotubes. ECS Meeting Abstracts, 2020, MA2020-01, 701-701.	0.0	0
32	Modeling Surface-Enhanced Spectroscopy With Perturbation Theory. Frontiers in Chemistry, 2019, 7, 470.	3.6	8
33	Optical Absorption of Dye Molecules Remains Unaffected by Submonolayer Complex Formation with Metal Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 17498-17504.	3.1	8
34	Plasmonic Properties of Close-Packed Metallic Nanoparticle Mono- and Bilayers. Journal of Physical Chemistry C, 2019, 123, 17951-17960.	3.1	17
35	Polystyrene nanofibers for nonwoven porous building insulation materials. Engineering Reports, 2019, 1, e12037.	1.7	17
36	Photoswitchable single-walled carbon nanotubes for super-resolution microscopy in the near-infrared. Science Advances, 2019, 5, eaax1166.	10.3	42

#	Article	IF	Citations
37	Direct optical excitation of dark plasmons for hot electron generation. Faraday Discussions, 2019, 214, 159-173.	3.2	15
38	Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction. ACS Nano, 2019, 13, 2567-2578.	14.6	61
39	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	3.2	34
40	Resonant, Plasmonic Raman Enhancement of \hat{l} ±-6T Molecules Encapsulated in Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 10578-10585.	3.1	6
41	Connection between strength and thermal conductivity of metal matrix composites with uniform distribution of graphite flakes. International Journal of Engineering Science, 2019, 139, 70-82.	5.0	15
42	Asymmetry of resonance Raman profiles in semiconducting single-walled carbon nanotubes at the first excitonic transition. Physical Review B, 2019, 99, .	3.2	8
43	Understanding the negative thermal expansion in planar graphite–metal composites. Journal of Materials Science, 2019, 54, 1267-1274.	3.7	11
44	Atomic-resolution visualization and doping effects of complex structures in intercalated bilayer graphene. Physical Review Materials, 2019, 3, .	2.4	10
45	Graphene as a local probe to investigate near-field properties of plasmonic nanostructures. Physical Review B, 2018, 97, .	3.2	12
46	In situ thermal polymerisation of natural oils as novel sustainable approach in nanographite particle production. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	1
47	Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Materials, 2018, 5, 015016.	4.4	95
48	Excitation-Tunable Tip-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 28273-28279.	3.1	9
49	Dark Interlayer Plasmons in Colloidal Gold Nanoparticle Bi- and Few-Layers. ACS Photonics, 2018, 5, 3962-3969.	6.6	28
50	Isotropic thermal expansion in anisotropic thermal management composites filled with carbon fibres and graphite. Journal of Materials Science, 2018, 53, 10910-10919.	3.7	9
51	Fluorescent Polymer—Singleâ€Walled Carbon Nanotube Complexes with Charged and Noncharged Dendronized Perylene Bisimides for Bioimaging Studies. Small, 2018, 14, e1800796.	10.0	35
52	Microscopic theory of optical absorption in graphene enhanced by lattices of plasmonic nanoparticles. Physical Review B, 2018, 97, .	3.2	7
53	(Invited) Functional Hybrids of Single-Walled Carbon Nanotubes Via π-Preserving Covalent Attachment. ECS Meeting Abstracts, 2018, , .	0.0	0
54	Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nature Communications, 2017, 8, 14281.	12.8	130

#	Article	IF	CITATIONS
55	Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Science and Technology of Advanced Materials, 2017, 18, 180-186.	6.1	75
56	Dynamic properties of hybrid composite structures based multiwalled carbon nanotubes. Composites Science and Technology, 2017, 148, 70-79.	7.8	35
57	Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots. Nano Letters, 2017, 17, 2667-2673.	9.1	49
58	Controlling the Decoration of the Reduced Graphene Oxide Surface with Pyrene-Functionalized Gold Nanoparticles. Physica Status Solidi (B): Basic Research, 2017, 254, 1700281.	1.5	7
59	Inner- and outer-wall sorting of double-walled carbon nanotubes. Nature Nanotechnology, 2017, 12, 1176-1182.	31.5	32
60	Thermal properties of metal matrix composites with planar distribution of carbon fibres. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700090.	2.4	7
61	Noncovalent Stable Functionalization Makes Carbon Nanotubes Hydrophilic and Biocompatible. Journal of Physical Chemistry C, 2017, 121, 18887-18891.	3.1	12
62	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	3.2	11
63	Theory of SERS enhancement: general discussion. Faraday Discussions, 2017, 205, 173-211.	3.2	27
64	Plasmonic enhancement of SERS measured on molecules in carbon nanotubes. Faraday Discussions, 2017, 205, 85-103.	3.2	13
65	Symmetry-derived selection rules for plasmon-enhanced Raman scattering. Physical Review B, 2017, 95, .	3.2	33
66	Resonant anti-Stokes Raman scattering in single-walled carbon nanotubes. Physical Review B, 2017, 96, .	3.2	15
67	Dipole-switch induced modification of the emissive response of carbon nanotubes. Journal of Physics Condensed Matter, 2017, 29, 454003.	1.8	3
68	Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne. Physical Review Materials, $2017, 1, \ldots$	2.4	61
69	Carbon nanotube chirality enrichment through chiralityâ€selective precipitation. Physica Status Solidi (B): Basic Research, 2016, 253, 2380-2384.	1.5	1
70	Doping in covalently functionalized carbon nanotubes: A Raman scattering study. Physica Status Solidi (B): Basic Research, 2016, 253, 2461-2467.	1.5	10
71	Potassium intercalated multiwalled carbon nanotubes. Carbon, 2016, 105, 90-95.	10.3	15
72	Requirement on Aromatic Precursor for Graphene Formation. Journal of Physical Chemistry C, 2016, 120, 9821-9825.	3.1	11

#	Article	IF	CITATIONS
73	Surface-enhanced Raman scattering as a higher-order Raman process. Physical Review A, 2016, 94, .	2.5	27
74	Nanodrawing of Aligned Single Carbon Nanotubes with a Nanopen. Nano Letters, 2016, 16, 1517-1522.	9.1	12
75	Transport, magnetic and vibrational properties of chemically exfoliated few-layer graphene. Physica Status Solidi (B): Basic Research, 2015, 252, 2438-2443.	1.5	5
76	A new topological insulator built from quasi one-dimensional atomic ribbons. Physica Status Solidi - Rapid Research Letters, 2015, 9, 130-135.	2.4	6
77	Isomerization of Orthogonal Molecular Switches Encapsulated within Micelles Solubilizing Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 15731-15734.	3.1	8
78	The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper–Graphite Composites. Nano Letters, 2015, 15, 4745-4751.	9.1	118
79	Decoupling of epitaxial graphene via gold intercalation probed by dispersive Raman spectroscopy. Journal of Applied Physics, 2015, 117, 183103.	2.5	3
80	Chiral selectivity of polyglycerol-based amphiphiles incorporating different aromatic cores. Physica Status Solidi (B): Basic Research, 2015, 252, 2536-2540.	1.5	6
81	Type-II band alignment of zinc-blende and wurtzite segments in GaAs nanowires: A combined photoluminescence and resonant Raman scattering study. Physical Review B, 2014, 89, .	3.2	28
82	Optical properties of carbon nanotubes coated with orthogonal dipole switches. Physica Status Solidi (B): Basic Research, 2014, 251, 2356-2359.	1.5	6
83	Plasmon-enhanced Raman scattering by suspended carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2014, 08, 785-789.	2.4	6
84	Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities. Nano Letters, 2014, 14, 1762-1768.	9.1	50
85	Graphene band structure and its <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn mathvariant="italic">2</mml:mn><mml:mi mathvariant="italic">D</mml:mi></mml:mrow></mml:math> Raman mode, Physical Review B, 2014, 90	3.2	7
86	Vapour-liquid-solid growth of ternary Bi2Se2Te nanowires. Nanoscale Research Letters, 2014, 9, 127.	5.7	17
87	Nanoplatelet Size to Control the Alignment and Thermal Conductivity in Copper–Graphite Composites. Nano Letters, 2014, 14, 3640-3644.	9.1	119
88	Engineering of Bi ₂ Se ₃ nanowires by laser cutting. EPJ Applied Physics, 2014, 66, 10401.	0.7	4
89	Electrochemical Raman spectroscopy of carbon nanotube energy transfer complexes. Physica Status Solidi (B): Basic Research, 2014, 251, 2491-2494.	1.5	1
	Probing LO phonons of graphene under tension via the <mml:math< td=""><td></td><td></td></mml:math<>		

Probing LO phonons of graphene under tension via the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn mathvariant="italic"></mml:msup></mml:mi>D</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:mi>mode. Physical Review B, 2013, 87, .

#	Article	lF	Citations
91	Carbon-nanotube–polymer nanofibers with high thermal conductivity. Carbon, 2013, 52, 605-608.	10.3	76
92	Quenching of the E2 phonon line in the Raman spectra of wurtzite GaAs nanowires caused by the dielectric polarization contrast. Applied Physics Letters, 2013, 103, 043121.	3.3	8
93	Functional Surfactants for Carbon Nanotubes: Effects of Design. Journal of Physical Chemistry C, 2013, 117, 1157-1162.	3.1	34
94	Cu2ZnSn(S,Se)4 from CuxSnSy nanoparticle precursors on ZnO nanorod arrays. Thin Solid Films, 2013, 535, 380-383.	1.8	11
95	Polarized Plasmonic Enhancement by Au Nanostructures Probed through Raman Scattering of Suspended Graphene. Nano Letters, 2013, 13, 301-308.	9.1	134
96	Excitation characteristics of different energy transfer in nanotube-perylene complexes. Applied Physics Letters, 2013, 102, .	3.3	9
97	Filler geometry and interface resistance of carbon nanofibres: Key parameters in thermally conductive polymer composites. Applied Physics Letters, 2013, 102, .	3.3	22
98	Selective interaction between nanotubes and peryleneâ€based surfactant. Physica Status Solidi - Rapid Research Letters, 2013, 7, 546-549.	2.4	2
99	Raman spectra of metallic carbon nanotubes in solution and on substrates. Physica Status Solidi (B): Basic Research, 2013, 250, 2639-2642.	1.5	3
100	Fermi energy shift in deposited metallic nanotubes: A Raman scattering study. Physical Review B, 2013, 87, .	3.2	12
101	Publisher's Note: Fermi energy shift in deposited metallic nanotubes: A Raman scattering study [Phys. Rev. B87, 165442 (2013)]. Physical Review B, 2013, 87, .	3.2	0
102	Strained graphene as a local probe for plasmonâ€enhanced Raman scattering by gold nanostructures. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1067-1070.	2.4	11
103	Band gap of wurtzite GaAs: A resonant Raman study. Physical Review B, 2012, 86, .	3.2	68
104	Chirally enhanced solubilization through peryleneâ€based surfactant. Physica Status Solidi (B): Basic Research, 2012, 249, 2465-2468.	1.5	8
105	Carbon nanotubes as substrates for molecular spiropyran-based switches. Journal of Physics Condensed Matter, 2012, 24, 394006.	1.8	19
106	Tuning the interaction between carbon nanotubes and dipole switches: the influence of the change of the nanotube–spiropyran distance. Journal of Physics Condensed Matter, 2012, 24, 394005.	1.8	17
107	Analysing the photoluminescence intensities of singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2473-2478.	1.5	3
108	Designing a spiropyranâ€based molecular switch for carbon nanotube functionalization: Influence of anchor groups and tube–switch separation. Physica Status Solidi (B): Basic Research, 2012, 249, 2479-2482.	1.5	8

#	Article	IF	Citations
109	Dominant phonon wave vectors and strain-induced splitting of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mi>D</mml:mi></mml:mrow></mml:math> Raman mode of graphene. Physical Review B, 2012, 85, .	3.2	34
110	Controlled reversible debundling of single-walled carbon nanotubes by photo-switchable dendritic surfactants. Nanoscale, 2012, 4, 3029.	5.6	27
111	Nonâ€Covalent Functionalization of Individual Nanotubes with Spiropyranâ€Based Molecular Switches. Advanced Functional Materials, 2012, 22, 2425-2431.	14.9	62
112	Energy Transfer in Nanotubeâ€Perylene Complexes. Advanced Functional Materials, 2012, 22, 3921-3926.	14.9	52
113	Polyglycerolâ€Derived Amphiphiles for the Solubilization of Singleâ€Walled Carbon Nanotubes in Water: A Structure–Property Study. ChemPhysChem, 2012, 13, 203-211.	2.1	27
114	Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic applications. Chemical Science, 2011, 2, 2243.	7.4	47
115	Effect of carbon nanotube surface modification on thermal properties of copper–CNT composites. Journal of Materials Chemistry, 2011, 21, 17541.	6.7	72
116	Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches. Physical Review Letters, 2011, 106, 097401.	7.8	81
117	Selective Bundling of Zigzag Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 2847-2854.	14.6	32
118	Thermal transport of oil and polymer composites filled with carbon nanotubes. Applied Physics A: Materials Science and Processing, 2011, 105, 781-788.	2.3	15
119	Tailoring the contact thermal resistance at metal-carbon nanotube interface. Physica Status Solidi (B): Basic Research, 2011, 248, 2520-2523.	1.5	3
120	Bundle and chirality influences on properties of carbon nanotubes studied with van der Waals density functional theory. Physica Status Solidi (B): Basic Research, 2011, 248, 2589-2592.	1.5	20
121	Dominant phonon wavevectors of the 2 <i>D</i> Raman mode of graphene. Physica Status Solidi (B): Basic Research, 2011, 248, 2635-2638.	1.5	9
122	Amphiphile replacement on carbon nanotube surfaces: Effect of aromatic groups on the interaction strength. Physica Status Solidi (B): Basic Research, 2011, 248, 2532-2535.	1.5	9
123	Study on laser welding–brazing of zinc coated steel to aluminum alloy with a zinc based filler. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1497-1503.	5.6	192
124	Nanotube bundles and tube-tube orientation: A van der Waals density functional study. Physical Review B, 2011, 84, .	3.2	11
125	Carbon nanotubes based engineering materials for thermal management applications. , $2011, , .$		0
126	Excitonic Rayleigh scattering spectra of metallic single-walled carbon nanotubes. Physical Review B, 2010, 82, .	3.2	32

#	Article	IF	Citations
127	Nanofibres of CA/PAN with high amount of carbon nanotubes by core–shell electrospinning. Composites Science and Technology, 2010, 70, 1584-1588.	7.8	30
128	Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension. Chemical Physics Letters, 2010, 493, 147-150.	2.6	32
129	Rims of carbon nanotubes – influence of chirality. Physica Status Solidi (B): Basic Research, 2010, 247, 2722-2725.	1.5	2
130	Broadened second excitonic transition of singleâ€walled carbon nanotubes in photoluminescence excitation spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2887-2890.	1.5	0
131	Dispersion of carbon nanotubes using an azobenzene derivative. Physica Status Solidi (B): Basic Research, 2010, 247, 2891-2894.	1.5	21
132	Interaction between singleâ€walled carbon nanotubes and alkylâ€polyglycerol derivatives. Physica Status Solidi (B): Basic Research, 2010, 247, 2758-2761.	1.5	10
133	Absolute Raman matrix elements of graphene and graphite. Physical Review B, 2010, 82, .	3.2	15
134	Chirality-dependent growth rate of carbon nanotubes: A theoretical study. Physical Review B, 2010, 82,	3.2	31
135	Excitonic absorption spectra of metallic single-walled carbon nanotubes. Physical Review B, 2010, 82, .	3.2	46
136	Quantitative composition of a singleâ€walled carbon nanotube sample: Raman scattering versus photoluminescence. Physica Status Solidi (B): Basic Research, 2009, 246, 2740-2743.	1.5	13
137	Environmental influence on linear optical spectra and relaxation dynamics in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2592-2597.	1.5	8
138	Excitonic absorption spectra and ultrafast dephasing dynamics in arbitrary carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2009, 3, 196-198.	2.4	15
139	Exciton-phonon coupling in individual GaAs nanowires studied using resonant Raman spectroscopy. Physical Review B, 2009, 80, .	3.2	29
140	Theory of ultrafast intraband relaxation in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2164-2168.	1.5	9
141	Coulomb effects in singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2155-2158.	1.5	22
142	Carbon nanotube Bloch equations: A many-body approach to nonlinear and ultrafast optical properties. Physical Review B, 2008, 77, .	3.2	43
143	Double resonant Raman spectra in graphene and graphite: A two-dimensional explanation of the Raman amplitude. Physical Review B, 2008, 78, .	3.2	62
144	Theory of Rayleigh scattering from metallic carbon nanotubes. Physical Review B, 2008, 77, .	3.2	23

#	Article	lF	CITATIONS
145	Chirality Dependence of Absorption in Carbon Nanotubes. , 2007, , .		O
146	Ab Initio Simulations of the Nucleation of Single-Walled Carbon Nanotubes. Solid State Phenomena, 2007, 121-123, 1037-1040.	0.3	1
147	Chirality dependence of absorption in carbon nanotubes. , 2007, , .		O
148	Weak anharmonic effects in MgB2: A comparative inelastic x-ray scattering and Raman study. Physical Review B, 2007, 75, .	3.2	41
149	Phonon Softening in Individual Metallic Carbon Nanotubes due to the Kohn Anomaly. Physical Review Letters, 2007, 99, 145506.	7.8	168
150	Theoretical approach to Rayleigh and absorption spectra of semiconducting carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4240-4243.	1.5	13
151	First and second optical transitions in singleâ€walled carbon nanotubes: a resonant Raman study. Physica Status Solidi (B): Basic Research, 2007, 244, 4006-4010.	1.5	6
152	Phonon dispersion of graphite by inelastic x-ray scattering. Physical Review B, 2007, 76, .	3.2	381
153	Raman Scattering in Carbon Nanotubes. , 2006, , 115-234.		68
154	Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency. Applied Physics Letters, 2006, 88, 233114.	3.3	44
155	Raman Spectroscopy of Single-Wall Boron Nitride Nanotubes. Nano Letters, 2006, 6, 1812-1816.	9.1	296
156	Two-photon photoluminescence and exciton binding energies in single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 2428-2435.	1.5	6
157	Excitons in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3204-3208.	1.5	13
158	Electron–phonon coupling in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3166-3170.	1.5	7
159	Raman intensities of the first optical transitions in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3181-3185.	1.5	5
160	Epitaxial growth of carbon caps on Ni for chiral selectivity. Physica Status Solidi (B): Basic Research, 2006, 243, 3494-3499.	1.5	27
161	Control the chirality of carbon nanotubes by epitaxial growth. Chemical Physics Letters, 2006, 421, 469-472.	2.6	173
162	Modelling the Nucleation and Chirality Selection of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2006, 6, 1290-1297.	0.9	10

#	Article	IF	CITATIONS
163	Publisher's Note: Exciton binding energies in carbon nanotubes from two-photon photoluminescence [Phys. Rev. B72, 241402(R) (2005)]. Physical Review B, 2006, 73, .	3.2	1
164	Theoretical study of the molecular and electronic structure of one-dimensional crystals of potassium iodide and composites formed upon intercalation in single-walled carbon nanotubes. Physical Review B, 2006, 73, .	3.2	39
165	Analytical approach to optical absorption in carbon nanotubes. Physical Review B, 2006, 74, .	3.2	95
166	Resonant-Raman intensities and transition energies of the E11 transition in carbon nanotubes. Physical Review B, 2006, 74, .	3.2	36
167	Strong electron-phonon coupling of the high-energy modes of carbon nanotubes. Physical Review B, 2006, 74, .	3.2	15
168	Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Physical Review B, 2005, 72, .	3.2	323
169	Chirality assignments in carbon nanotubes based on resonant Raman scattering. Physica Status Solidi (B): Basic Research, 2005, 242, 1802-1806.	1.5	15
170	Electronic band structure of high-index silicon nanowires. Physica Status Solidi (B): Basic Research, 2005, 242, 2474-2479.	1.5	65
171	Chirality dependence of the high-energy Raman modes in carbon nanotubes. AIP Conference Proceedings, 2005, , .	0.4	1
172	Chiral-index assignment of carbon nanotubes by resonant Raman scattering. AIP Conference Proceedings, 2005, , .	0.4	0
173	Phonons and symmetry properties of (4,4) picotube crystals. AIP Conference Proceedings, 2005, , .	0.4	0
174	Structure and formation energy of carbon nanotube caps. Physical Review B, 2005, 72, .	3.2	110
175	Strength of radial breathing mode in single-walled carbon nanotubes. Physical Review B, 2005, 71, .	3.2	109
176	Exciton Resonances Quench the Photoluminescence of Zigzag Carbon Nanotubes. Physical Review Letters, 2005, 95, 077402.	7.8	84
177	Excited-state carrier lifetime in single-walled carbon nanotubes. Physical Review B, 2005, 71, .	3.2	80
178	Defect energies of graphite: Density-functional calculations. Physical Review B, 2005, 72, .	3.2	322
179	Structural, electronic, and vibrational properties of (4,4) picotube crystals. Physical Review B, 2005, 72, .	3.2	12
180	Resonant Raman scattering in cubic and hexagonal boron nitride. Physical Review B, 2005, 71, .	3.2	334

#	Article	IF	CITATIONS
181	Phonon dispersion of graphite. AIP Conference Proceedings, 2004, , .	0.4	1
182	Phonon Dispersion in Graphite. Physical Review Letters, 2004, 92, 075501.	7.8	460
183	Raman spectroscopy with UV excitation on untwinned single crystals of YBa2Cu3O7–δ. Physica Status Solidi (B): Basic Research, 2004, 241, R63-R66.	1.5	4
184	Raman spectroscopy of graphite. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2271-2288.	3.4	1,040
185	Resonant Raman spectroscopy of nanotubes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2337-2359.	3.4	68
186	Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Physical Review B, 2004, 70, .	3.2	255
187	Chirality Distribution and Transition Energies of Carbon Nanotubes. Physical Review Letters, 2004, 93, 177401.	7.8	339
188	The strength of the radial-breathing mode in single-walled carbon nanotubes. AIP Conference Proceedings, 2004, , .	0.4	2
189	Elastic properties and pressure-induced phase transitions of single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2003, 235, 354-359.	1.5	44
190	Hexagonal diamond from single-walled carbon nanotubes. AIP Conference Proceedings, 2003, , .	0.4	1
191	High-Energy Phonon Branches of an Individual Metallic Carbon Nanotube. Physical Review Letters, 2003, 91, 087402.	7.8	61
192	Double-Resonant Raman Scattering in an Individual Carbon Nanotube. AIP Conference Proceedings, 2003, , .	0.4	1
193	Vibrational properties of double-walled carbon nanotubes. AIP Conference Proceedings, 2003, , .	0.4	5
194	Ab initio studies of electron-phonon coupling in single-walled nanotubes. AIP Conference Proceedings, 2003, , .	0.4	0
195	Raman scattering in carbon nanotubes. , 2003, 5219, 45.		1
196	Raman scattering in carbon nanotubes revisited. Physical Review B, 2002, 65, .	3.2	100
197	Electronic band structure of isolated and bundled carbon nanotubes. Physical Review B, 2002, 65, .	3.2	327
198	Tight-binding description of graphene. Physical Review B, 2002, 66, .	3.2	904

#	Article	IF	Citations
199	Ab initiocalculations of the optical properties of 4-Ãdiameter single-walled nanotubes. Physical Review B, 2002, 66, .	3.2	256
200	Raman characterization of boron-doped multiwalled carbon nanotubes. Applied Physics Letters, 2002, 81, 2647-2649.	3.3	185
201	Ab initiodetermination of the phonon deformation potentials of graphene. Physical Review B, 2002, 65,	3.2	72
202	Elastic properties of carbon nanotubes under hydrostatic pressure. Physical Review B, 2002, 65, .	3.2	139
203	Pressure and polarization-angle dependent Raman spectra of aligned single-wall carbon nanotubes in AlPO4-5 crystal channels. AlP Conference Proceedings, 2002, , .	0.4	2
204	Origin of the high-energy Raman modes in single-wall carbon nanotubes. AIP Conference Proceedings, 2002, , .	0.4	1
205	Band structure and optical properties of isolated and bundled nanotubes. AIP Conference Proceedings, 2002, , .	0.4	1
206	Phonon dispersion of carbon nanotubes. Solid State Communications, 2002, 121, 471-474.	1.9	68
207	Phonon eigenvectors of chiral nanotubes. Physical Review B, 2001, 64, .	3.2	53
208	Structural and vibrational properties of single walled nanotubes under hydrostatic pressure. AIP Conference Proceedings, 2001, , .	0.4	1
209	The dependence on excitation energy of the D-mode in graphite and carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.4	0
210	The Pressure Dependence of the High-Energy Raman Modes in Empty and Filled Multiwalled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2001, 225, R18-R19.	1.5	11
211	Intensities of the Raman-active modes in single and multiwall nanotubes. Physical Review B, 2001, 63, .	3.2	38
212	Chirality-selective Raman scattering of theDmode in carbon nanotubes. Physical Review B, 2001, 64, .	3.2	120
213	Resonant Raman scattering in an InAs/GaAs monolayer structure. Springer Proceedings in Physics, 2001, , 697-698.	0.2	0
214	Resonant Raman Scattering in Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2000, 220, 561-568.	1.5	8
215	Different temperature renormalizations for heavy and light-hole states of monolayer-thick heterostructures. Solid State Communications, 2000, 116, 121-124.	1.9	10
216	Resonant Raman scattering in GaAs induced by an embedded InAs monolayer. Physical Review B, 2000, 63, .	3.2	6

#	Article	IF	CITATIONS
217	Shear strain in carbon nanotubes under hydrostatic pressure. Physical Review B, 2000, 61, R13389-R13392.	3.2	109
218	Comment on "Polarized Raman Study of Aligned Multiwalled Carbon Nanotubes― Physical Review Letters, 2000, 85, 3544-3544.	7.8	12
219	Double Resonant Raman Scattering in Graphite. Physical Review Letters, 2000, 85, 5214-5217.	7.8	1,593
220	Chirality dependence of the density-of-states singularities in carbon nanotubes. Physical Review B, 2000, 62, 4273-4276.	3.2	106
221	Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations. Applied Physics Letters, 2000, 76, 2122-2124.	3.3	94
222	Raman spectroscopy on single- and multi-walled nanotubes under high pressure. Applied Physics A: Materials Science and Processing, 1999, 69, 309-312.	2.3	91
223	Symmetry of the High-Energy Modes in Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 1999, 214, r15-r16.	1.5	13
224	Raman Scattering by Optical Phonons in a Highly Strained InAs/GaAs Monolayer. Physica Status Solidi (B): Basic Research, 1999, 215, 419-424.	1.5	19
225	Intermolecular Interaction in Carbon Nanotube Ropes. Physica Status Solidi (B): Basic Research, 1999, 215, 435-441.	1.5	54