
## Bradley E Alger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3537842/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Scientific Hypothesis-Testing Strengthens Neuroscience Research. ENeuro, 2020, 7, ENEURO.0357-19.2020.                                                                                                                                                                                 | 1.9  | 3         |
| 2  | Homer Protein–Metabotropic Glutamate Receptor Binding Regulates Endocannabinoid Signaling and<br>Affects Hyperexcitability in a Mouse Model of Fragile X Syndrome. Journal of Neuroscience, 2015, 35,<br>3938-3945.                                                                    | 3.6  | 34        |
| 3  | Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nature Reviews<br>Neuroscience, 2015, 16, 264-277.                                                                                                                                                   | 10.2 | 124       |
| 4  | Seizing an Opportunity for the Endocannabinoid System. Epilepsy Currents, 2014, 14, 272-276.                                                                                                                                                                                           | 0.8  | 22        |
| 5  | Developmental increase in hippocampal endocannabinoid mobilization: role of metabotropic<br>glutamate receptor subtype 5 and phospholipase C. Journal of Neurophysiology, 2014, 112, 2605-2615.                                                                                        | 1.8  | 7         |
| 6  | Interlamellar CA1 network in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12919-12924.                                                                                                                                 | 7.1  | 63        |
| 7  | Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1. Journal of Physiology, 2014, 592, 103-123.                                                                                           | 2.9  | 37        |
| 8  | Evidence of calcium-permeable AMPA receptors in dendritic spines of CA1 pyramidal neurons. Journal of Neurophysiology, 2014, 112, 263-275.                                                                                                                                             | 1.8  | 17        |
| 9  | Muscarinic cholinergic receptors modulate inhibitory synaptic rhythms in hippocampus and neocortex. Frontiers in Synaptic Neuroscience, 2014, 6, 18.                                                                                                                                   | 2.5  | 36        |
| 10 | Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation. Journal of Psychopharmacology, 2012, 26, 56-70.                                                                                                                           | 4.0  | 120       |
| 11 | Do cannabinoids reduce brain power?. Nature Neuroscience, 2012, 15, 499-501.                                                                                                                                                                                                           | 14.8 | 7         |
| 12 | Endocannabinoids at the synapse a decade after the <i>dies mirabilis</i> (29 March 2001): what we still do not know. Journal of Physiology, 2012, 590, 2203-2212.                                                                                                                      | 2.9  | 71        |
| 13 | An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling. PLoS ONE, 2012, 7, e37364.                                                                                                                                                                                 | 2.5  | 33        |
| 14 | Dendritic Hold and Read: A Gated Mechanism for Short Term Information Storage and Retrieval. PLoS<br>ONE, 2012, 7, e37542.                                                                                                                                                             | 2.5  | 14        |
| 15 | Supply and demand for endocannabinoids. Trends in Neurosciences, 2011, 34, 304-315.                                                                                                                                                                                                    | 8.6  | 231       |
| 16 | Endocannabinoids Generated by Ca2+ or by Metabotropic Glutamate Receptors Appear to Arise from<br>Different Pools of Diacylglycerol Lipase. PLoS ONE, 2011, 6, e16305.                                                                                                                 | 2.5  | 35        |
| 17 | Nerve Terminal Nicotinic Acetylcholine Receptors Initiate Quantal GABA Release from Perisomatic<br>Interneurons by Activating Axonal T-Type (Ca <sub>v</sub> 3) Ca <sup>2+</sup> Channels and<br>Ca <sup>2+</sup> Release from Stores. Journal of Neuroscience, 2011, 31, 13546-13561. | 3.6  | 84        |
| 18 | The Depolarizing Action of GABA in Cultured Hippocampal Neurons Is Not Due to the Absence of Ketone Bodies. PLoS ONE, 2011, 6, e23020.                                                                                                                                                 | 2.5  | 6         |

BRADLEY E ALGER

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Optogenetic Release of ACh Induces Rhythmic Bursts of Perisomatic IPSCs in Hippocampus. PLoS ONE, 2011, 6, e27691.                                                                                     | 2.5  | 48        |
| 20 | Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses.<br>Nature Neuroscience, 2010, 13, 592-600.                                                              | 14.8 | 132       |
| 21 | Enhanced Endocannabinoid Signaling Elevates Neuronal Excitability in Fragile X Syndrome. Journal of<br>Neuroscience, 2010, 30, 5724-5729.                                                              | 3.6  | 96        |
| 22 | Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the<br>Group I Metabotropic Glutamate Receptor Agonist, DHPG. PLoS ONE, 2009, 4, e6122.                       | 2.5  | 2         |
| 23 | Endocannabinoid Signaling in Neural Plasticity. Current Topics in Behavioral Neurosciences, 2009, 1, 141-172.                                                                                          | 1.7  | 21        |
| 24 | Synaptic Cross Talk between Perisomatic-Targeting Interneuron Classes Expressing Cholecystokinin<br>and Parvalbumin in Hippocampus. Journal of Neuroscience, 2009, 29, 4140-4154.                      | 3.6  | 116       |
| 25 | Distinctions among GABAA and GABAB responses revealed by calcium channel antagonists,<br>cannabinoids, opioids, and synaptic plasticity in rat hippocampus. Psychopharmacology, 2008, 198,<br>539-549. | 3.1  | 14        |
| 26 | Cholecystokinin inhibits endocannabinoid-sensitive hippocampal IPSPs and stimulates others.<br>Neuropharmacology, 2008, 54, 117-128.                                                                   | 4.1  | 51        |
| 27 | Metaplastic control of the endocannabinoid system at inhibitory synapses in hippocampus.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8142-8147.     | 7.1  | 54        |
| 28 | Not Too Excited? Thank Your Endocannabinoids. Neuron, 2006, 51, 393-395.                                                                                                                               | 8.1  | 13        |
| 29 | Multiple Mechanisms of Endocannabinoid Response Initiation in Hippocampus. Journal of<br>Neurophysiology, 2006, 95, 67-75.                                                                             | 1.8  | 109       |
| 30 | Ryanodine Receptor Regulates Endogenous Cannabinoid Mobilization in the Hippocampus. Journal of Neurophysiology, 2006, 95, 3001-3011.                                                                  | 1.8  | 54        |
| 31 | Regulation of IPSP Theta Rhythm by Muscarinic Receptors and Endocannabinoids in Hippocampus.<br>Journal of Neurophysiology, 2005, 94, 4290-4299.                                                       | 1.8  | 36        |
| 32 | Retrograde endocannabinoid regulation of GABAergic inhibition in the rat dentate gyrus granule cell.<br>Journal of Physiology, 2005, 567, 1001-1010.                                                   | 2.9  | 58        |
| 33 | Endocannabinoid Signaling Dynamics Probed with Optical Tools. Journal of Neuroscience, 2005, 25, 9449-9459.                                                                                            | 3.6  | 60        |
| 34 | Endocannabinoid Identification in the Brain: Studies of Breakdown Lead to Breakthrough, and There<br>May Be NO Hope. Science Signaling, 2005, 2005, pe51-pe51.                                         | 3.6  | 21        |
| 35 | Novel Form of LTD Induced by Transient, Partial Inhibition of the Na,K-Pump in Rat Hippocampal CA1<br>Cells. Journal of Neurophysiology, 2004, 91, 239-247.                                            | 1.8  | 27        |
| 36 | Endocannabinoids: Getting the message across. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8512-8513.                                                   | 7.1  | 32        |

BRADLEY E ALGER

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Endocannabinoids and Their Implications for Epilepsy. Epilepsy Currents, 2004, 4, 169-173.                                                                                                     | 0.8  | 51        |
| 38 | Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus.<br>Nature Neuroscience, 2004, 7, 697-698.                                                        | 14.8 | 231       |
| 39 | The Brain's Own Marijuana. Scientific American, 2004, 291, 68-75.                                                                                                                              | 1.0  | 42        |
| 40 | Regulation of Exocytosis from Single Visualized GABAergic Boutons in Hippocampal Slices. Journal of Neuroscience, 2003, 23, 10475-10486.                                                       | 3.6  | 41        |
| 41 | Mechanisms of Neuronal Hyperexcitability Caused by Partial Inhibition of Na+-K+-ATPases in the Rat CA1<br>Hippocampal Region. Journal of Neurophysiology, 2002, 88, 2963-2978.                 | 1.8  | 117       |
| 42 | Presynaptic factors in the regulation of DSI expression in hippocampus. Neuropharmacology, 2002, 43, 550-562.                                                                                  | 4.1  | 39        |
| 43 | Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids.<br>Progress in Neurobiology, 2002, 68, 247-286.                                                    | 5.7  | 531       |
| 44 | Activation of Muscarinic Acetylcholine Receptors Enhances the Release of Endogenous Cannabinoids in the Hippocampus. Journal of Neuroscience, 2002, 22, 10182-10191.                           | 3.6  | 279       |
| 45 | Endocannabinoids facilitate the induction of LTP in the hippocampus. Nature Neuroscience, 2002, 5, 723-724.                                                                                    | 14.8 | 296       |
| 46 | Direct Depolarization and Antidromic Action Potentials Transiently Suppress Dendritic IPSPs in<br>Hippocampal CA1 Pyramidal Cells. Journal of Neurophysiology, 2001, 85, 480-484.              | 1.8  | 25        |
| 47 | Metabotropic Glutamate Receptors Drive the Endocannabinoid System in Hippocampus. Journal of Neuroscience, 2001, 21, RC188-RC188.                                                              | 3.6  | 347       |
| 48 | Random Response Fluctuations Lead to Spurious Paired-Pulse Facilitation. Journal of Neuroscience, 2001, 21, 9608-9618.                                                                         | 3.6  | 138       |
| 49 | Spectrins in developing rat hippocampal cells. Developmental Brain Research, 2001, 129, 81-93.                                                                                                 | 1.7  | 20        |
| 50 | Evidence for Endogenous Excitatory Amino Acids as Mediators in DSI of GABAAergic Transmission in<br>Hippocampal CA1. Journal of Neurophysiology, 1999, 82, 2556-2564.                          | 1.8  | 34        |
| 51 | Evidence for Metabotropic Glutamate Receptor Activation in the Induction of Depolarization-Induced Suppression of Inhibition in Hippocampal CA1. Journal of Neuroscience, 1998, 18, 4870-4882. | 3.6  | 111       |
| 52 | High Intracellular Cl <sup>â^'</sup> Concentrations Depress G-Protein-Modulated Ionic Conductances.<br>Journal of Neuroscience, 1997, 17, 6133-6141.                                           | 3.6  | 48        |
| 53 | N-Ethylmaleimide Blocks Depolarization-Induced Suppression of Inhibition and Enhances GABA Release<br>in the Rat Hippocampal SliceIn Vitro. Journal of Neuroscience, 1997, 17, 941-950.        | 3.6  | 44        |
|    |                                                                                                                                                                                                |      |           |

54 Homosynaptic LTD and depotentiation: Do they differ in name only?., 1996, 6, 24-29.

59

BRADLEY E ALGER

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Whole-cell voltage-clamp investigation of the role of PKC in muscarinic inhibition of IAHP in rat CA1 hippocampal neurons. , 1996, 6, 183-191.             |     | 13        |
| 56 | Evidence for hippocampal calcium channel regulation by PKC based on comparison of diacylglycerols<br>and phorbol esters. Brain Research, 1992, 597, 30-40. | 2.2 | 25        |
| 57 | Calcium-dependent pirenzepine-sensitive muscarinic response in the rat hippocampal slice.<br>Neuroscience Letters, 1988, 91, 177-182.                      | 2.1 | 9         |
| 58 | Neuronal muscarinic responses: role of protein kinase C. FASEB Journal, 1988, 2, 2575-2583.                                                                | 0.5 | 51        |
| 59 | Papain effects on rat hippocampal neurons in the slice preparation. Neuroscience Letters, 1987, 78, 307-310.                                               | 2.1 | 10        |
| 60 | Transient heterosynaptic depression in the hippocampal slice. Brain Research Bulletin, 1978, 3, 181-184.                                                   | 3.0 | 37        |
| 61 | Potassium and short-term response plasticity in the hippocampal slice. Brain Research, 1978, 159, 239-242.                                                 | 2.2 | 26        |
| 62 | A monosynaptic fiber track studied in vitro: Evidence of a hippocampal CA1 associational system?. Brain<br>Research Bulletin, 1977, 2, 355-365.            | 3.0 | 23        |
| 63 | A comparison of long-term potentiation in the in vitro and in vivo hippocampal preparations.<br>Behavioral Biology, 1977, 19, 24-34.                       | 2.2 | 19        |