
Clément Mazet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3537495/publications.pdf Version: 2024-02-01

<u>CIÃOMENT Μαζέτ</u>

#	Article	IF	CITATIONS
1	Stereoselective Access to Conjugated and Cross-Conjugated Dienoates by Rh- and Ru-Catalyzed Isomerizations of Vinylcyclopropanes. Organic Letters, 2022, 24, 752-756.	4.6	5
2	Transition metal-catalyzed (remote) deconjugative isomerization of α,β-unsaturated carbonyls. Tetrahedron Letters, 2022, 96, 153756.	1.4	6
3	Kinetically Controlled Stereoselective Access to Branched 1,3-Dienes by Ru-Catalyzed Remote Conjugative Isomerization. ACS Catalysis, 2021, 11, 7970-7977.	11.2	25
4	Bioinspired Ether Cyclizations within a Ï€â€Basic Capsule Compared to Autocatalysis on Ï€â€Acidic Surfaces and Pnictogenâ€Bonding Catalysts. Chemistry - A European Journal, 2021, 27, 12215-12223.	3.3	22
5	Teflon Magnetic Stirring Capsules (TMSC) as a Practical and Reusable Delivery System for Sensitive Reagents and Catalysts. Helvetica Chimica Acta, 2021, 104, e2100110.	1.6	2
6	Access to Highly Stereodefined 1,4- <i>cis</i> -Polydienes by a [Ni/Mg] Orthogonal Tandem Catalytic Polymerization. Journal of the American Chemical Society, 2021, 143, 13401-13407.	13.7	4
7	Transition metal-catalyzed alkene isomerization as an enabling technology in tandem, sequential and domino processes. Chemical Society Reviews, 2021, 50, 1391-1406.	38.1	121
8	Nickel-Catalyzed Kumada Vinylation of Enol Phosphates: A Comparative Mechanistic Study. ACS Catalysis, 2021, 11, 15041-15050.	11.2	4
9	Direct Access to Chiral Secondary Amides by Copper-Catalyzed Borylative Carboxamidation of Vinylarenes with Isocyanates. Journal of the American Chemical Society, 2020, 142, 623-632.	13.7	63
10	Access to Optically Active 7-Membered Rings by a 2-Step Synthetic Sequence: Cu-Catalyzed Stereoselective Cyclopropanation of Branched 1,3-Dienes/Rh-Catalyzed Stereoconvergent [5 + 2] Cycloaddition. ACS Catalysis, 2020, 10, 9604-9611.	11.2	13
11	Ni-Catalyzed Regiodivergent and Stereoselective Hydroalkylation of Acyclic Branched Dienes with Unstabilized C(sp ³) Nucleophiles. Journal of the American Chemical Society, 2020, 142, 16486-16492.	13.7	62
12	[<i>n</i>]Dendralenes as a Platform for Selective Catalysis: Ligand-Controlled Cu-Catalyzed Chemo-, Regio-, and Enantioselective Borylations. Organic Letters, 2020, 22, 8181-8187.	4.6	8
13	A Catalytic Dual Isomerization/Allylboration Sequence for the Stereoselective Construction of Congested Secondary Homoallylic Alcohols. Journal of Organic Chemistry, 2020, 85, 5638-5650.	3.2	13
14	Ni-Catalyzed Enantioselective Intermolecular Hydroamination of Branched 1,3-Dienes Using Primary Aliphatic Amines. Journal of the American Chemical Society, 2019, 141, 14814-14822.	13.7	71
15	Ni-Catalyzed Regioselective Hydroalkoxylation of Branched 1,3-Dienes. Organic Letters, 2019, 21, 9124-9127.	4.6	24
16	Remote Functionalization of α,β-Unsaturated Carbonyls by Multimetallic Sequential Catalysis. Journal of the American Chemical Society, 2019, 141, 16983-16990.	13.7	56
17	A General Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-Substituted 1,3-Dienes. ACS Catalysis, 2018, 8, 1392-1398.	11.2	57
18	Multicatalytic Stereoselective Synthesis of Highly Substituted Alkenes by Sequential Isomerization/Cross-Coupling Reactions. Journal of the American Chemical Society, 2018, 140, 4743-4750.	13.7	84

CLéMENT MAZET

#	Article	IF	CITATIONS
19	Ir-Catalyzed Selective Hydroboration of 2-Substituted 1,3-Dienes: A General Method to Access Homoallylic Boronates. ACS Catalysis, 2018, 8, 9382-9387.	11.2	50
20	Copper-catalyzed enantioselective 1,2-borylation of 1,3-dienes. Chemical Science, 2018, 9, 5284-5288.	7.4	59
21	Exploring Site Selectivity of Iridium Hydride Insertion into Allylic Alcohols: Serendipitous Discovery and Comparative Study of Organic and Organometallic Catalysts for the Vinylogous Peterson Elimination. ACS Catalysis, 2017, 7, 1554-1562.	11.2	14
22	Influence of the dissolution solvent on the cytotoxicity of octahedral cationic Ir(III) hydride complexes. Journal of Organometallic Chemistry, 2017, 839, 15-18.	1.8	16
23	Mechanistic Investigation of the Pd-Catalyzed Intermolecular Carboetherification and Carboamination of 2,3-Dihydrofuran: Similarities, Differences, and Evidence for Unusual Reaction Intermediates. Organometallics, 2017, 36, 3553-3563.	2.3	22
24	Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols. Accounts of Chemical Research, 2016, 49, 1232-1241.	15.6	94
25	The diastereoselective synthesis of octahedral cationic iridium hydride complexes with a stereogenic metal centre. Chemical Communications, 2016, 52, 10629-10631.	4.1	4
26	Direct Access to Furoindolines by Palladium-Catalyzed Intermolecular Carboamination. ACS Catalysis, 2016, 6, 7183-7187.	11.2	37
27	Palladium-Catalyzed Long-Range Deconjugative Isomerization of Highly Substituted α,β-Unsaturated Carbonyl Compounds. Journal of the American Chemical Society, 2016, 138, 10344-10350.	13.7	169
28	Palladium-Catalyzed Enantioselective Intermolecular Carboetherification of Dihydrofurans. Journal of the American Chemical Society, 2016, 138, 4014-4017.	13.7	79
29	Catalyst-Directed Diastereoselective Isomerization of Allylic Alcohols for the Stereoselective Construction of C(20) in Steroid Side Chains: Scope and Topological Diversification. Journal of the American Chemical Society, 2015, 137, 10720-10727.	13.7	62
30	Access to enantioenriched 2,3- and 2,5-dihydrofurans with a fully substituted C2 stereocenter by Pd-catalyzed asymmetric intermolecular Heck reaction. Chemical Science, 2015, 6, 4807-4811.	7.4	32
31	A general Pd-catalyzed α- and γ-benzylation of aldehydes for the formation of quaternary centers. Organic and Biomolecular Chemistry, 2015, 13, 6338-6343.	2.8	13
32	Chiral monodentate phosphine ligands for the enantioselective α- and γ-arylation of aldehydes. Tetrahedron, 2014, 70, 4181-4190.	1.9	8
33	Recent trends in Pd-catalyzed remote functionalization of carbonyl compounds. Organic and Biomolecular Chemistry, 2014, 12, 233-241.	2.8	96
34	Scope and Mechanism in Palladium-Catalyzed Isomerizations of Highly Substituted Allylic, Homoallylic, and Alkenyl Alcohols. Journal of the American Chemical Society, 2014, 136, 16882-16894.	13.7	182
35	An air-stable cationic iridium hydride as a highly active and general catalyst for the isomerization of terminal epoxides. Chemical Communications, 2014, 50, 10592-10595.	4.1	29
36	Well-defined transition metal hydrides in catalytic isomerizations. Chemical Communications, 2014, 50, 9816.	4.1	272

Clément Mazet

#	Article	IF	CITATIONS
37	Highly Modular <i>C</i> ₁ ‣ymmetric Chiral (P,N) Ligands with a Stereolabile Pâ€Center: Experimental and Theoretical Studies. Chemistry - A European Journal, 2014, 20, 745-751.	3.3	14
38	αâ€Arylation, αâ€Arylative Esterification, or Acylation: A Stoichiometryâ€Dependent Trichotomy in the Pdâ€Catalyzed Crossâ€Coupling between Aldehydes and Aryl Bromides. Chemistry - an Asian Journal, 2013, 8, 2579-2583.	3.3	12
39	Isomerization of Terminal Epoxides by a [Pd–H] Catalyst: A Combined Experimental and Theoretical Mechanistic Study. Journal of the American Chemical Society, 2013, 135, 6177-6183.	13.7	79
40	Access to congested quaternary centers by Pd-catalyzed intermolecular γ-arylation of unactivated α,β-unsaturated aldehydes. Chemical Science, 2013, 4, 2619.	7.4	29
41	Steric Parameters in the Ir-Catalyzed Regio- and Diastereoselective Isomerization of Primary Allylic Alcohols. Organic Letters, 2013, 15, 6170-6173.	4.6	48
42	Complementary Catalytic Strategies to Access α-Chiral Aldehydes. Chimia, 2013, 67, 658-662.	0.6	5
43	Challenges and Achievements in the Transition-Metal-Catalyzed Asymmetric α-Arylation of Aldehydes. Synlett, 2012, 23, 1999-2004.	1.8	35
44	Atropoisomeric (P,N)â€Ligands for the Highly Enantioselective Pdâ€Catalyzed Intramolecular Asymmetric αâ€Arylation of αâ€Branched Aldehydes. Angewandte Chemie - International Edition, 2012, 51, 3826-3831.	13.8	74
45	Structure-Activity Relationship in the Iridium-Catalyzed Isomerization of Primary Allylic Alcohols. European Journal of Inorganic Chemistry, 2012, 2012, 3320-3330.	2.0	26
46	Highly regio- and enantioselective catalytic asymmetric hydroboration of α-substituted styrenyl derivatives. Chemical Communications, 2011, 47, 298-300.	4.1	84
47	New Catalytic Asymmetric Strategies to Access Chiral Aldehydes. Chimia, 2011, 65, 802.	0.6	7
48	Platinum Metals in the Catalytic Asymmetric Isomerization of Allylic Alcohols. Chemistry Letters, 2011, 40, 341-344.	1.3	98
49	Access to High Levels of Molecular Complexity by Oneâ€Pot Iridium/Enamine Asymmetric Catalysis. Angewandte Chemie - International Edition, 2011, 50, 2354-2358.	13.8	116
50	Copperâ€Catalyzed Asymmetric βâ€Boration of α,βâ€Unsaturated Carbonyl Derivatives. ChemCatChem, 2010, 501-504.	2, _{3.7}	67
51	Improved Catalysts for the Iridium atalyzed Asymmetric Isomerization of Primary Allylic Alcohols Based on Charton Analysis. Chemistry - A European Journal, 2010, 16, 12736-12745.	3.3	74
52	Highly enantioselective isomerization of primary allylic alcohols catalyzed by (P,N)-iridium complexes. Pure and Applied Chemistry, 2010, 82, 1461-1469.	1.9	18
53	Expanded scope for the iridium-catalyzed asymmetric isomerization of primary allylic alcohols using readily accessible second-generation catalysts. Chemical Communications, 2010, 46, 445-447.	4.1	70
54	Iridium-Catalyzed Isomerization of Primary Allylic Alcohols. Chimia, 2009, 63, 35.	0.6	13

CLéMENT MAZET

#	Article	IF	CITATIONS
55	lridium atalyzed Asymmetric Isomerization of Primary Allylic Alcohols. Angewandte Chemie - International Edition, 2009, 48, 5143-5147.	13.8	139
56	Iridium-catalyzed isomerization of primary allylic alcohols under mild reaction conditions. Tetrahedron Letters, 2009, 50, 4141-4144.	1.4	79
57	Kinetic Resolution of Diols and Pyridyl Alcohols by Cu(II)(borabox)-Catalyzed Acylation. Organic Letters, 2006, 8, 1879-1882.	4.6	76
58	Chiral Boron-Bridged Bisoxazolines: Readily Available Anionic Ligands for Asymmetric Catalysis. Angewandte Chemie - International Edition, 2005, 44, 4888-4891.	13.8	89
59	A Combined Experimental and Computational Study of Dihydrido(phosphinooxazoline)iridium Complexes. Journal of the American Chemical Society, 2004, 126, 14176-14181.	13.7	85