
Anish Tuteja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536588/publications.pdf Version: 2024-02-01

ΔΝΙΩΗ ΤΠΤΕΙΛ

#	Article	IF	CITATIONS
1	Facilitating Large cale Snow Shedding from Inâ€Field Solar Arrays using Icephobic Surfaces with Lowâ€Interfacial Toughness. Advanced Materials Technologies, 2022, 7, 2101032.	5.8	14
2	Surface design strategies for mitigating ice and snow accretion. Matter, 2022, 5, 1423-1454.	10.0	31
3	Durable Liquid- and Solid-Repellent Elastomeric Coatings Infused with Partially Crosslinked Lubricants. ACS Applied Materials & Interfaces, 2022, 14, 22466-22475.	8.0	7
4	Non-Fluorinated, Superhydrophobic Binder-Filler Coatings on Smooth Surfaces: Controlled Phase Separation of Particles to Enhance Mechanical Durability. Langmuir, 2021, 37, 3104-3112.	3.5	16
5	Novel Omniphobic Platform for Multicellular Spheroid Generation, Drug Screening, and On-Plate Analysis. Analytical Chemistry, 2021, 93, 8054-8061.	6.5	4
6	Design and applications of surfaces that control the accretion of matter. Science, 2021, 373, .	12.6	114
7	Rapid and Robust Surface Treatment for Simultaneous Solid and Liquid Repellency. ACS Applied Materials & Interfaces, 2021, 13, 53171-53180.	8.0	15
8	Continuous Liquid–Liquid Extraction and in-Situ Membrane Separation of Miscible Liquid Mixtures. Langmuir, 2021, 37, 13595-13601.	3.5	2
9	Rational Design of Transparent Nanowire Architectures with Tunable Geometries for Preventing Marine Fouling. Advanced Materials Interfaces, 2020, 7, 2000672.	3.7	19
10	Lysis and direct detection of coliforms on printed paper-based microfluidic devices. Lab on A Chip, 2020, 20, 4413-4419.	6.0	17
11	Wettability Engendered Templated Self-Assembly (WETS) for the Fabrication of Biocompatible, Polymer–Polyelectrolyte Janus Particles. ACS Macro Letters, 2019, 8, 1491-1497.	4.8	9
12	Inkjet-printed micro-calibration standards for ultraquantitative Raman spectral cytometry. Analyst, The, 2019, 144, 3790-3799.	3.5	5
13	Low–interfacial toughness materials for effective large-scale deicing. Science, 2019, 364, 371-375.	12.6	326
14	Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. Physics of Fluids, 2019, 31, .	4.0	59
15	Design of surfaces for controlling hard and soft fouling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180266.	3.4	34
16	Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. Journal of Fluid Mechanics, 2018, 845, 560-580.	3.4	118
17	Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces with Enhanced Mechanical Durability. ACS Applied Materials & Interfaces, 2018, 10, 11406-11413.	8.0	85
18	Open-channel, water-in-oil emulsification in paper-based microfluidic devices. Lab on A Chip, 2017, 17, 1436-1441.	6.0	36

ANISH TUTEJA

#	Article	IF	CITATIONS
19	Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability. ACS Applied Materials & Interfaces, 2017, 9, 11212-11223.	8.0	198
20	Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition. ACS Nano, 2017, 11, 478-489.	14.6	54
21	A predictive framework for the design and fabrication of icephobic polymers. Science Advances, 2017, 3, e1701617.	10.3	123
22	Paperâ€Based Surfaces with Extreme Wettabilities for Novel, Openâ€Channel Microfluidic Devices. Advanced Functional Materials, 2016, 26, 6121-6131.	14.9	82
23	Bioinspired surfaces for turbulent drag reduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160189.	3.4	69
24	High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. Journal of Fluid Mechanics, 2016, 801, 670-703.	3.4	83
25	Designing durable icephobic surfaces. Science Advances, 2016, 2, e1501496.	10.3	488
26	Membranes with selective wettability for the separation of oil-water mixtures. MRS Communications, 2015, 5, 475-494.	1.8	75
27	Wettability Engendered Templated Self-assembly (WETS) for Fabricating Multiphasic Particles. ACS Applied Materials & Interfaces, 2015, 7, 4075-4080.	8.0	21
28	The design and applications of superomniphobic surfaces. NPG Asia Materials, 2014, 6, e109-e109.	7.9	314
29	Superomniphobic Surfaces for Effective Chemical Shielding. Journal of the American Chemical Society, 2013, 135, 578-581.	13.7	433
30	Transparent, Flexible, Superomniphobic Surfaces with Ultra‣ow Contact Angle Hysteresis. Angewandte Chemie - International Edition, 2013, 52, 13007-13011.	13.8	112
31	Superomniphobic surfaces: Design and durability. MRS Bulletin, 2013, 38, 383-390.	3.5	152
32	Innenrücktitelbild: Transparent, Flexible, Superomniphobic Surfaces with Ultra-Low Contact Angle Hysteresis (Angew. Chem. 49/2013). Angewandte Chemie, 2013, 125, 13343-13343.	2.0	0
33	Superoleophobic Surfaces: Hierarchically Structured Superoleophobic Surfaces with Ultralow Contact Angle Hysteresis (Adv. Mater. 43/2012). Advanced Materials, 2012, 24, 5837-5837.	21.0	11
34	Hierarchically Structured Superoleophobic Surfaces with Ultralow Contact Angle Hysteresis. Advanced Materials, 2012, 24, 5838-5843.	21.0	288
35	Patterned Superomniphobic–Superomniphilic Surfaces: Templates for Site‣elective Selfâ€Assembly. Angewandte Chemie - International Edition, 2012, 51, 10109-10113.	13.8	80
36	Superoleophobic Surfaces. ACS Symposium Series, 2012, , 171-185.	0.5	14

ANISH TUTEJA

#	Article	IF	CITATIONS
37	Hygro-responsive membranes for effective oil–water separation. Nature Communications, 2012, 3, 1025.	12.8	1,033
38	Superoleophobic Surfaces through Control of Sprayed-on Stochastic Topography. Langmuir, 2012, 28, 9834-9841.	3.5	75
39	Scale Dependence of Omniphobic Mesh Surfaces. Langmuir, 2010, 26, 4027-4035.	3.5	129
40	Design Parameters for Superhydrophobicity and Superoleophobicity. MRS Bulletin, 2008, 33, 752-758.	3.5	308
41	Robust omniphobic surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18200-18205.	7.1	1,015
42	Designing Superoleophobic Surfaces. Science, 2007, 318, 1618-1622.	12.6	2,610