
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3536552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seismic noise background in the Baksan Neutrino Observatory. European Physical Journal Plus, 2022, 137, 1.	2.6	1
2	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
3	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
4	Argon and Other Defects in Amorphous SiO2 Coatings for Gravitational-Wave Detectors. Coatings, 2022, 12, 1001.	2.6	5
5	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	31
6	Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	66
7	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
8	Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector. Classical and Quantum Gravity, 2021, 38, 065011.	4.0	7
9	Automated source of squeezed vacuum states driven by finite state machine based software. Review of Scientific Instruments, 2021, 92, 054504.	1.3	3
10	Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency. European Physical Journal Plus, 2021, 136, 1.	2.6	5
11	Towards ponderomotive squeezing with SIPS experiment. Physica Scripta, 2021, 96, 114007.	2.5	3
12	Cryogenic vacuum considerations for future gravitational wave detectors. Physical Review D, 2021, 104, .	4.7	4
13	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
14	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
15	Application of independent component analysis to the iKAGRA data. Progress of Theoretical and Experimental Physics, 2020, 2020, .	6.6	7
16	Measurement of geophysical effects on the large-scale gravitational-wave interferometer. International Journal of Modern Physics D, 2020, 29, 2050050.	2.1	0
17	The status of KAGRA underground cryogenic gravitational wave telescope. Journal of Physics: Conference Series, 2020, 1342, 012014.	0.4	12
18	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9

#	Article	IF	CITATIONS
19	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Classical and Quantum Gravity, 2019, 36, 165008.	4.0	45
20	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
21	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
22	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
23	Magnetic coupling to the advanced Virgo payloads and its impact on the low frequency sensitivity. Review of Scientific Instruments, 2018, 89, 114501.	1.3	13
24	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
25	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
26	Construction of KAGRA: an underground gravitational-wave observatory. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	73
27	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
28	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
29	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
30	Casimir energy for two and three superconducting coupled cavities: Numerical calculations. European Physical Journal Plus, 2017, 132, 1.	2.6	4
31	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
32	Terrestrial detector for low-frequency gravitational waves based on full tensor measurement. Journal of Physics: Conference Series, 2016, 716, 012001.	0.4	0
33	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
34	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
35	The Archimedes experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 646-647.	1.6	7
36	Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA. Review of Scientific Instruments, 2016, 87, 034501.	1.3	10

#	Article	IF	CITATIONS
37	The Advanced Virgo monolithic fused silica suspension. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 644-645.	1.6	14
38	Low-frequency terrestrial tensor gravitational-wave detector. Classical and Quantum Gravity, 2016, 33, 075003.	4.0	32
39	Indium joints for cryogenic gravitational wave detectors. Classical and Quantum Gravity, 2015, 32, 245013.	4.0	5
40	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.4	27
41	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
42	SEISMIC ATTENUATION SYSTEM (SAS) IN THE KAMIOKA MINE. , 2015, , .		1
43	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	4.0	10
44	Vibration measurement in the KAGRA cryostat. Classical and Quantum Gravity, 2014, 31, 224001.	4.0	6
45	A vertical accelerometer for cryogenics implementation in third-generation gravitational-wave detectors. Measurement Science and Technology, 2014, 25, 015103.	2.6	3
46	Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA. Classical and Quantum Gravity, 2014, 31, 105004.	4.0	28
47	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
48	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
49	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	4.0	11
50	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	4.0	5
51	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
52	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.4	2
53	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.4	12
54	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257

#	Article	IF	CITATIONS
55	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
56	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	2.1	4
57	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	2.9	28
58	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	4.3	6
59	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	4.3	13
60	A cryogenic payload for the 3rd generation of gravitational wave interferometers. Astroparticle Physics, 2011, 35, 67-75.	4.3	3
61	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	4.0	644
62	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	4.0	85
63	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	1.3	8
64	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	4.0	171
65	Preliminary results on the cryogenic payload for the 3rd generation g.w. interferometers. Journal of Physics: Conference Series, 2010, 228, 012030.	0.4	0
66	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.4	0
67	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.4	8
68	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.4	29
69	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	4.3	62
70	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	4.3	11
71	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	4.0	287
72	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	4.0	1,211

#	Article	IF	CITATIONS
73	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	4.0	59
74	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
75	Laser with an in-loop relative frequency stability of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mn>1.0</mml:mn> <mml:mo>×</mml:mo><mml:msup><mml:mrow><r a 100-ms time scale for gravitational-wave detection. Physical Review A, 2009, 79, .</r </mml:mrow></mml:msup></mml:mrow>	nml:ກຳ້າ>10	</td
76	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	4.0	10
77	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	4.0	16
78	Geophysical noise in the virgo gravitational antenna. Measurement Techniques, 2009, 52, 111-116.	0.6	2
79	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	4.3	16
80	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	2.0	7
81	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	4.0	13
82	The Virgo 3 km interferometer for gravitational wave detection. Journal of Optics, 2008, 10, 064009.	1.5	31
83	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	4.0	0
84	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	4.0	28
85	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	4.0	148
86	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	4.0	116
87	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	4.0	8
88	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	2.0	5
89	VIRGO: a large interferometer for gravitational wave detection started its first scientific run. Journal of Physics: Conference Series, 2008, 120, 032007.	0.4	15
90	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1

#	Article	IF	CITATIONS
91	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	4.0	10
92	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	4.0	19
93	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	4.0	13
94	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	4.0	9
95	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	4.0	4
96	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	4.0	56
97	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	4.0	9
98	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
99	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. , 2007, , .		0
100	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
101	Experimental upper limit on the estimated thermal noise at low frequencies in a gravitational wave detector. Physical Review D, 2007, 76, .	4.7	2
102	The Virgo interferometric gravitational antenna. Optics and Lasers in Engineering, 2007, 45, 478-487.	3.8	7
103	Vibration-free cryostat for low-noise applications of a pulse tube cryocooler. Review of Scientific Instruments, 2006, 77, 095102.	1.3	32
104	Status of Virgo. Journal of Physics: Conference Series, 2006, 39, 32-35.	0.4	3
105	Virgo upgrade investigations. Journal of Physics: Conference Series, 2006, 32, 223-229.	0.4	21
106	A parallel in-time analysis system for Virgo Journal of Physics: Conference Series, 2006, 32, 35-43.	0.4	0
107	Environmental noise studies in Virgo. Journal of Physics: Conference Series, 2006, 32, 80-88.	0.4	4
108	Vibration Free Cryostat for cooling suspended mirrors. Journal of Physics: Conference Series, 2006, 32, 374-379.	0.4	3

#	Article	IF	CITATIONS
109	Length Sensing and Control in the Virgo Gravitational Wave Interferometer. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 1985-1995.	4.7	5
110	The status of coalescing binaries search code in Virgo, and the analysis of C5 data. Classical and Quantum Gravity, 2006, 23, S187-S196.	4.0	7
111	Normal/independent noise in VIRGO data. Classical and Quantum Gravity, 2006, 23, S829-S836.	4.0	0
112	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89.	4.0	22
113	The Virgo automatic alignment system. Classical and Quantum Gravity, 2006, 23, S91-S101.	4.0	16
114	The status of VIRGO. Classical and Quantum Gravity, 2006, 23, S63-S69.	4.0	83
115	Testing Virgo burst detection tools on commissioning run data. Classical and Quantum Gravity, 2006, 23, S197-S205.	4.0	3
116	The Virgo status. Classical and Quantum Gravity, 2006, 23, S635-S642.	4.0	179
117	Experimental evidence for an optical spring. Physical Review A, 2006, 74, .	2.5	19
118	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 2005, 23, 557-565.	4.3	79
119	Virgo and the worldwide search for gravitational waves. AIP Conference Proceedings, 2005, , .	0.4	2
120	The Virgo Detector. AIP Conference Proceedings, 2005, , .	0.4	10
121	A simple line detection algorithm applied to Virgo data. Classical and Quantum Gravity, 2005, 22, S1189-S1196.	4.0	6
122	A first study of environmental noise coupling to the Virgo interferometer. Classical and Quantum Gravity, 2005, 22, S1069-S1077.	4.0	4
123	Virgo status and commissioning results. Classical and Quantum Gravity, 2005, 22, S185-S191.	4.0	2
124	Status of Virgo. Classical and Quantum Gravity, 2005, 22, S869-S880.	4.0	54
125	NAP: a tool for noise data analysis. Application to Virgo engineering runs. Classical and Quantum Gravity, 2005, 22, S1041-S1049.	4.0	7
126	Testing the detection pipelines for inspirals with Virgo commissioning run C4 data. Classical and Quantum Gravity, 2005, 22, S1139-S1148.	4.0	5

#	Article	IF	CITATIONS
127	Search for inspiralling binary events in the Virgo Engineering Run data. Classical and Quantum Gravity, 2004, 21, S709-S716.	4.0	13
128	The VIRGO large mirrors: a challenge for low loss coatings. Classical and Quantum Gravity, 2004, 21, S935-S945.	4.0	30
129	Status of VIRGO. Classical and Quantum Gravity, 2004, 21, S385-S394.	4.0	89
130	Results of the Virgo central interferometer commissioning. Classical and Quantum Gravity, 2004, 21, S395-S402.	4.0	5
131	The last-stage suspension of the mirrors for the gravitational wave antenna Virgo. Classical and Quantum Gravity, 2004, 21, S425-S432.	4.0	5
132	Properties of seismic noise at the Virgo site. Classical and Quantum Gravity, 2004, 21, S433-S440.	4.0	25
133	A first test of a sine-Hough method for the detection of pulsars in binary systems using the E4 Virgo engineering run data. Classical and Quantum Gravity, 2004, 21, S717-S727.	4.0	1
134	First locking of the Virgo central area interferometer with suspension hierarchical control. Astroparticle Physics, 2004, 20, 629-640.	4.3	19
135	The commissioning of the central interferometer of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 21, 1-22.	4.3	22
136	A local control system for the test masses of the Virgo gravitational wave detector. Astroparticle Physics, 2004, 20, 617-628.	4.3	22
137	Status of VIRGO. , 2004, 5500, 58.		2
138	Low-loss coatings for the VIRGO large mirrors. , 2004, , .		14
139	Status report of the low frequency facility experiment, Virgo R&D. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 318, 199-204.	2.1	6
140	Influence of a mirror holder on thermal noise in gravitational wave interferometers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 315, 409-417.	2.1	1
141	Status of VIRGO. Classical and Quantum Gravity, 2003, 20, S609-S616.	4.0	9
142	Data analysis methods for non-Gaussian, nonstationary and nonlinear features and their application to VIRGO. Classical and Quantum Gravity, 2003, 20, S915-S924.	4.0	7
143	Last stage control and mechanical transfer function measurement of the VIRGO suspensions. Review of Scientific Instruments, 2002, 73, 2143-2149.	1.3	14
144	Vacuum-compatible vibration isolation stack for an interferometric gravitational wave detector TAMA300. Review of Scientific Instruments, 2002, 73, 2428-2433.	1.3	22

#	Article	IF	CITATIONS
145	Status of the low frequency facility experiment. Classical and Quantum Gravity, 2002, 19, 1675-1682.	4.0	3
146	The present status of the VIRGO Central Interferometer*. Classical and Quantum Gravity, 2002, 19, 1421-1428.	4.0	85
147	Single device telemetric algorithm for absolute position measurement using a CCD camera. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 295, 92-100.	2.1	1
148	Monitoring the acoustic emission of the blades of the mirror suspension for a gravitational wave interferometer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 389-397.	2.1	14
149	Measurement of the VIRGO superattenuator performance for seismic noise suppression. Review of Scientific Instruments, 2001, 72, 3643-3652.	1.3	89
150	The maraging-steel blades of the Virgo super attenuator. Measurement Science and Technology, 2000, 11, 467-476.	2.6	31
151	Suspension last stages for the mirrors of the Virgo interferometric gravitational wave antenna. Review of Scientific Instruments, 1999, 70, 3463-3472.	1.3	51
152	Test of a back-action evading scheme on a cryogenic gravitational wave antenna. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 215, 141-148.	2.1	7
153	Signal-to-noise ratio analysis for a back-action-evading measurement on a double harmonic oscillator. Physical Review D, 1994, 50, 3596-3607.	4.7	6
154	Performances of a super conductive parabridge transducer for liquidhelium temperature applications. Cryogenics, 1994, 34, 443-447.	1.7	1
155	Anelastic properties of resonant transducers for cryogenic gravitational wave antennas. Journal of Alloys and Compounds, 1994, 211-212, 644-648.	5.5	1
156	Anelastic and elastic properties of a synthetic monocrystal of bismuth germanate Bi4Ge3O12 at low temperatures. Journal of Alloys and Compounds, 1994, 211-212, 640-643.	5.5	2
157	Observation of the Brownian motion of a mechanical oscillator by means of a back action evading system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 180, 43-49.	2.1	10
158	Decay times of anN-normal-mode system. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1993, 108, 1065-1071.	0.2	0
159	Upper limit for nuclearite flux from the Rome gravitational wave resonant detectors. Physical Review D, 1993, 47, 4770-4773.	4.7	23
160	Weber-type gravitational wave antenna with two resonant transducers: A new tool for gravitational wave signal identification. Physical Review D, 1993, 47, 5233-5237.	4.7	4
161	Back-action-evading transducing scheme for cryogenic gravitational wave antennas. Physical Review D, 1993, 48, 448-465.	4.7	27
162	Long-term operation of the Rome "Explorer" cryogenic gravitational wave detector. Physical Review D, 1993, 47, 362-375.	4.7	130

#	Article	IF	CITATIONS
163	Test facility for resonance transducers of cryogenic gravitational wave antennas. Measurement Science and Technology, 1992, 3, 501-507.	2.6	6
164	Noise behaviour of the Explorer gravitational wave antenna during λ transition to the superfluid phase. Cryogenics, 1992, 32, 668-670.	1.7	8
165	Evaluation and preliminary measurement of the interaction of a dynamical gravitational near field with a cryogenic gravitational wave antenna. Zeitschrift Für Physik C-Particles and Fields, 1991, 50, 21-29.	1.5	26
166	Correlation between the Maryland and Rome gravitational-wave detectors and the Mont Blanc, Kamioka and IMB particle detectors during SN 1987 A. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1991, 106, 1257-1269.	0.2	8
167	First Cooling Below 0.1 K of the New Gravitational-Wave Antenna "Nautilus―of the Rome Group. Europhysics Letters, 1991, 16, 231-235.	2.0	64