Juliet C Coates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3535473/publications.pdf

Version: 2024-02-01

257450 377865 3,246 34 24 34 citations g-index h-index papers 39 39 39 4965 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of DELLA function and signaling in land plants. Evolution & Development, 2021, 23, 137-154.	2.0	26
2	PEATmoss (<i>Physcomitrella</i> Expression Atlas Tool): a unified gene expression atlas for the model plant <i>Physcomitrella patens</i> Plant Journal, 2020, 102, 165-177.	5.7	74
3	Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens. Scientific Reports, 2020, 10, 2614.	3.3	10
4	Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Scientific Reports, 2019, 9, 1983.	3.3	49
5	The <i>Physcomitrella patens</i> gene atlas project: largeâ€scale <scp>RNA</scp> â€seq based expression data. Plant Journal, 2018, 95, 168-182.	5.7	115
6	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	3.9	134
7	Surface sensing and stress-signalling in <i>Ulva</i> and fouling diatoms â€" potential targets for antifouling: a review. Biofouling, 2017, 33, 410-432.	2.2	11
8	Bacteria-induced morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): a contribution to the lottery theory. FEMS Microbiology Ecology, 2017, 93, .	2.7	66
9	Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytologist, 2017, 216, 967-975.	7.3	64
10	The decision to germinate is regulated by divergent molecular networks in spores and seeds. New Phytologist, 2016, 211, 952-966.	7.3	56
11	An ancient and conserved function for Armadilloâ€related proteins in the control of spore and seed germination by abscisic acid. New Phytologist, 2016, 211, 940-951.	7.3	21
12	Life's a beach – the colonization of the terrestrial environment. New Phytologist, 2016, 212, 831-835.	7.3	8
13	Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): comparison with Ulva mutabilis and potential for laboratory culture. Frontiers in Plant Science, 2015, 6, 15.	3.6	57
14	The green seaweed Ulva: a model system to study morphogenesis. Frontiers in Plant Science, 2015, 6, 72.	3.6	173
15	<i>AtMYB93</i> is an endodermis-specific transcriptional regulator of lateral root development in arabidopsis. Plant Signaling and Behavior, 2014, 9, e970406.	2.4	30
16	<i>At</i> <scp>MYB</scp> 93 is a novel negative regulator of lateral root development in Arabidopsis. New Phytologist, 2014, 203, 1194-1207.	7.3	79
17	Understanding \tilde{A} ¢â,¬Å"green \tilde{A} ¢â,¬Â•multicellularity: do seaweeds hold the key?. Frontiers in Plant Science, 2014, 5, 737.	3.6	19
18	AtMYB93 is an endodermis-specific transcriptional regulator of lateral root development in Arabidopsis. Plant Signaling and Behavior, 2014, 9, e29808.	2.4	2

#	Article	IF	CITATIONS
19	ARABIDILLO gene homologues in basal land plants: species-specific gene duplication and likely functional redundancy. Planta, 2012, 236, 1927-1941.	3.2	17
20	Function and evolution of â€~green' GSK3/Shaggy-like kinases. Trends in Plant Science, 2012, 17, 39-46.	8.8	88
21	ARABIDILLO proteins have a novel and conserved domain structure important for the regulation of their stability. Plant Molecular Biology, 2011, 75, 77-92.	3.9	17
22	Armadillo-repeat protein functions: questions for little creatures. Trends in Cell Biology, 2010, 20, 470-481.	7.9	222
23	The Armadillo Repeat Protein PF16 Is Essential for Flagellar Structure and Function in Plasmodium Male Gametes. PLoS ONE, 2010, 5, e12901.	2.5	57
24	Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type–Specific Alteration of Na+ Transport in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 2163-2178.	6.6	480
25	Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nature Cell Biology, 2008, 10, 625-628.	10.3	273
26	Branching out in new directions: the control of root architecture by lateral root formation. New Phytologist, 2008, 179, 595-614.	7.3	280
27	Armadillo Repeat Proteins: Versatile Regulators of Plant Development and Signalling. , 2007, , 299-314.		3
28	Armadillo-related proteins promote lateral root development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1621-1626.	7.1	90
29	A prehistory of cell adhesion. Current Opinion in Cell Biology, 2004, 16, 470-476.	5.4	59
30	Armadillo repeat proteins: beyond the animal kingdom. Trends in Cell Biology, 2003, 13, 463-471.	7.9	245
31	Loss of the \hat{l}^2 -catenin homologue aardvark causes ectopic stalk formation in Dictyostelium. Mechanisms of Development, 2002, 116, 117-127.	1.7	32
32	Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature, 2002, 419, 925-929.	27.8	174
33	Cell-cell adhesion and signal transduction during <i>Dictyostelium</i> development. Journal of Cell Science, 2001, 114, 4349-4358.	2.0	71
34	Adherens junctions and \hat{l}^2 -catenin-mediated cell signalling in a non-metazoan organism. Nature, 2000, 408, 727-731.	27.8	136