Roberto Paolesse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3535059/publications.pdf

Version: 2024-02-01

483 papers 14,739 citations

61 h-index

19657

95 g-index

519 all docs

519 docs citations

519 times ranked

10588 citing authors

#	Article	IF	CITATIONS
1	Porphyrinoids for Chemical Sensor Applications. Chemical Reviews, 2017, 117, 2517-2583.	47.7	590
2	Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosensors and Bioelectronics, 2003, 18, 1209-1218.	10.1	573
3	Solid-state gas sensors for breath analysis: A review. Analytica Chimica Acta, 2014, 824, 1-17.	5.4	307
4	5,10,15-Triphenylcorrole: a product from a modified Rothemund reaction. Chemical Communications, 1999, , 1307-1308.	4.1	282
5	An investigation on electronic nose diagnosis of lung cancer. Lung Cancer, 2010, 68, 170-176.	2.0	271
6	Synthesis and Functionalization ofmeso-Aryl-Substituted Corroles. Journal of Organic Chemistry, 2001, 66, 550-556.	3.2	234
7	Diagnostic Performance of an Electronic Nose, Fractional Exhaled Nitric Oxide, and Lung Function Testing in Asthma. Chest, 2010, 137, 790-796.	0.8	191
8	Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy, 2016, 22, 349-360.	16.0	166
9	Electronic nose and electronic tongue integration for improved classification of clinical and food samples. Sensors and Actuators B: Chemical, 2000, 64, 15-21.	7.8	148
10	Novel Aspects of Corrole Chemistry. Mini-Reviews in Organic Chemistry, 2005, 2, 355-374.	1.3	145
11	An electronic nose for food analysis. Sensors and Actuators B: Chemical, 1997, 44, 521-526.	7.8	144
12	Chemical Sensing with Familiar Devices. Angewandte Chemie - International Edition, 2006, 45, 3800-3803.	13.8	142
13	The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Analytica Chimica Acta, 1996, 325, 53-64.	5.4	140
14	Olfactory systems for medical applications. Sensors and Actuators B: Chemical, 2008, 130, 458-465.	7.8	138
15	Metalloporphyrins based artificial olfactory receptors. Sensors and Actuators B: Chemical, 2007, 121, 238-246.	7.8	134
16	The evaluation of quality of post-harvest oranges and apples by means of an electronic nose. Sensors and Actuators B: Chemical, 2001, 78, 26-31.	7.8	129
17	Novel routes to substituted 5,10,15-triarylcorroles. Journal of Porphyrins and Phthalocyanines, 2003, 07, 25-36.	0.8	127
18	Metal complexes of corrole. Coordination Chemistry Reviews, 2019, 388, 360-405.	18.8	124

#	Article	IF	CITATIONS
19	Corrole: The Little Big Porphyrinoid. Synlett, 2008, 2008, 2215-2230.	1.8	122
20	Chemical sensitivity of porphyrin assemblies. Materials Today, 2010, 13, 46-52.	14.2	114
21	Porphyrins-based opto-electronic nose for volatile compounds detection. Sensors and Actuators B: Chemical, 2000, 65, 220-226.	7.8	110
22	Comparison and integration of different electronic noses for freshness evaluation of cod-fish fillets. Sensors and Actuators B: Chemical, 2001, 77, 572-578.	7.8	109
23	Volatile signature for the early diagnosis of lung cancer. Journal of Breath Research, 2016, 10, 016007.	3.0	108
24	Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine. Analytica Chimica Acta, 2004, 513, 49-56.	5.4	104
25	Stepwise Syntheses of Bisporphyrins, Bischlorins, and Biscorroles, and of Porphyrinâ'Chlorin and Porphyrinâ'Corrole Heterodimers. Journal of the American Chemical Society, 1996, 118, 3869-3882.	13.7	102
26	Fish freshness detection by a computer screen photoassisted based gas sensor array. Analytica Chimica Acta, 2007, 582, 320-328.	5.4	93
27	First Direct Synthesis of a Corrole Ring From a Monopyrrolic Precursor. Crystal and Molecular Structure of (Triphenylphosphine)(5,10,15-triphenyl-2,3,7,8,12,13,17,18-octamethylcorrolato)cobalt(III)-Dichloromethane. Inorganic Chemistry, 1994, 33, 1171-1176.	4.0	90
28	Metalloporphyrins as basic material for volatile sensitive sensors. Sensors and Actuators B: Chemical, 2000, 65, 209-215.	7.8	90
29	Gas-Sensitive Photoconductivity of Porphyrin-Functionalized ZnO Nanorods. Journal of Physical Chemistry C, 2012, 116, 9151-9157.	3.1	90
30	Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine. Sensors and Actuators B: Chemical, 2000, 69, 342-347.	7.8	89
31	Functionalization of Corroles:  The Nitration Reaction. Inorganic Chemistry, 2007, 46, 10791-10799.	4.0	87
32	Identification of melanoma with a gas sensor array. Skin Research and Technology, 2008, 14, 226-236.	1.6	87
33	Temperatureâ€Dependent Fluorescence of Cu ₅ Metal Clusters: A Molecular Thermometer. Angewandte Chemie - International Edition, 2012, 51, 9662-9665.	13.8	87
34	Detection of fungal contamination of cereal grain samples by an electronic nose. Sensors and Actuators B: Chemical, 2006, 119, 425-430.	7.8	86
35	Iron corrolates: Unambiguous chloroiron(III) (corrolate)2â^' Ï€-cation radicals. Journal of Inorganic Biochemistry, 2006, 100, 810-837.	3.5	86
36	Photophysical Behaviour of Corrole and its Symmetrical and Unsymmetrical Dyads., 1999, 03, 364-370.		82

#	Article	IF	CITATIONS
37	The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs. Scientific Reports, 2015, 5, 16491.	3.3	82
38	Hierarchical Porphyrin Self-Assembly in Aqueous Solution. Journal of the American Chemical Society, 2004, 126, 5934-5935.	13.7	78
39	A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose. Sensors and Actuators B: Chemical, 2008, 131, 1-4.	7.8	77
40	Electronic nose based investigation of the sensorial properties of peaches and nectarines. Sensors and Actuators B: Chemical, 2001, 77, 561-566.	7.8	76
41	Preparation and Self-assembly of Chiral Porphyrin Diads on the Gold Electrodes of Quartz Crystal Microbalances: A Novel Potential Approach to the Development of Enantioselective Chemical Sensors. Chemistry - A European Journal, 2002, 8, 2476.	3.3	75
42	Synthesis and characterization of β-fused porphyrin-BODIPY® dyads. Tetrahedron, 2004, 60, 1099-1106.	1.9	75
43	Synthesis and Functionalization of Germanium Triphenylcorrolate: The First Example of a Partially Brominated Corrole. European Journal of Inorganic Chemistry, 2007, 2007, 2345-2352.	2.0	75
44	Recognition of fish storage time by a metalloporphyrins-coated QMB sensor array. Measurement Science and Technology, 1996, 7, 1103-1114.	2.6	74
45	Outer product analysis of electronic nose and visible spectra: application to the measurement of peach fruit characteristics. Analytica Chimica Acta, 2002, 459, 107-117.	5.4	73
46	Vilsmeier Formylation of 5,10,15-Triphenylcorrole: Expected and Unusual Products. Chemistry - A European Journal, 2003, 9, 1192-1197.	3.3	72
47	Low-voltage low-power integrated analog lock-in amplifier for gas sensor applications. Sensors and Actuators B: Chemical, 2010, 144, 400-406.	7.8	72
48	Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. Journal of Infection, 2017, 74, 367-376.	3.3	72
49	Porphyrin-Based Nanostructures for Sensing Applications. Journal of Sensors, 2009, 2009, 1-10.	1.1	70
50	Synthesis, Characterization, and Electrochemical Behavior of (5,10,15-Tri-X-phenyl-2,3,7,8,12,13,17,18-octamethylcorrolato)cobalt(III) Triphenylphosphine Complexes, Where X = p-OCH3, p-CH3, p-Cl, m-Cl, o-Cl, m-F, or o-F. Inorganic Chemistry, 1995, 34, 532-540.	4.0	69
51	Human skin odor analysis by means of an electronic nose. Sensors and Actuators B: Chemical, 2000, 65, 216-219.	7.8	68
52	Preparation and characterization of cobalt porphyrin modified tin dioxide films for sensor applications. Sensors and Actuators B: Chemical, 2004, 103, 339-343.	7.8	67
53	Metalloporphyrins-modified carbon nanotubes networked films-based chemical sensors for enhanced gas sensitivity. Sensors and Actuators B: Chemical, 2010, 144, 387-394.	7.8	67
54	Corroles at work: a small macrocycle for great applications. Chemical Society Reviews, 2022, 51, 1277-1335.	38.1	67

#	Article	IF	Citations
55	Advances in SAW-based gas sensors. Smart Materials and Structures, 1997, 6, 689-699.	3.5	66
56	Porphyrin thin films coated quartz crystal microbalances prepared by electropolymerization technique. Thin Solid Films, 1999, 354, 245-250.	1.8	66
57	Optimization of a NOx gas sensor based on single walled carbon nanotubes. Sensors and Actuators B: Chemical, 2006, 118, 226-231.	7.8	66
58	Multimodal Use of New Coumarinâ€Based Fluorescent Chemosensors: Towards Highly Selective Optical Sensors for Hg ²⁺ Probing. Chemistry - A European Journal, 2013, 19, 14639-14653.	3.3	66
59	Characterization and design of porphyrins-based broad selectivity chemical sensors for electronic nose applications. Sensors and Actuators B: Chemical, 1998, 52, 162-168.	7.8	65
60	More than apples and oranges - Detecting cancer with a fruit fly's antenna. Scientific Reports, 2014, 4, 3576.	3.3	64
61	Proton NMR Investigation of Substrate-Bound Heme Oxygenase: Evidence for Electronic and Steric Contributions to Stereoselective Heme Cleavage. Biochemistry, 1994, 33, 6631-6641.	2.5	63
62	Tetracoordinated Manganese(III) Alkylcorrolates. Spectroscopic Studies and the Crystal and Molecular Structure of (7,13-Dimethyl-2,3,8,12,17,18-hexaethylcorrolato)manganese(III). Inorganic Chemistry, 1997, 36, 1564-1570.	4.0	63
63	Use of electronic nose and trained sensory panel in the evaluation of tomato quality. Journal of the Science of Food and Agriculture, 2000, 80, 63-71.	3.5	63
64	Metal complexes of corroles and other corrinoids. , 1995, , 71-133.		62
65	The exploitation of metalloporphyrins as chemically interactive material in chemical sensors. Materials Science and Engineering C, 1998, 5, 209-215.	7.3	62
66	\hat{l}^2 -Fused Oligoporphyrins: \hat{A} A Novel Approach to a New Type of Extended Aromatic System. Journal of the American Chemical Society, 2000, 122, 11295-11302.	13.7	61
67	Investigation of VOCs associated with different characteristics of breast cancer cells. Scientific Reports, 2015, 5, 13246.	3.3	60
68	Technologies and tools for mimicking olfaction: status of the Rome "Tor Vergata―electronic nose. Biosensors and Bioelectronics, 1998, 13, 711-721.	10.1	58
69	Demetalation of Silver(III) Corrolates. Inorganic Chemistry, 2009, 48, 6879-6887.	4.0	57
70	Clinical analysis of human urine by means of potentiometric Electronic tongue. Talanta, 2009, 77, 1097-1104.	5.5	57
71	Tetra-phenyl porphyrin based thin film transistors. Synthetic Metals, 2003, 138, 261-266.	3.9	55
72	Detection of alcohols in beverages: An application of porphyrin-based Electronic tongue. Sensors and Actuators B: Chemical, 2006, 118, 439-447.	7.8	55

#	Article	IF	Citations
73	\hat{l}^2 -Nitro-5,10,15-tritolylcorroles. Inorganic Chemistry, 2012, 51, 6928-6942.	4.0	54
74	Electrochemistry of rhodium and cobalt corroles. Characterization of (OMC)Rh(PPh3) and (OMC)Co(PPh3) where OMC is the trianion of 2,3,7,8,12,13,17,18-octamethylcorrole. Inorganic Chemistry, 1992, 31, 2305-2313.	4.0	53
75	Piezoelectric sensors for dioxins: a biomimetic approach. Biosensors and Bioelectronics, 2004, 20, 1203-1210.	10.1	53
76	Gold nanoparticles-peptide based gas sensor arrays for the detection of foodaromas. Biosensors and Bioelectronics, 2013, 42, 618-625.	10.1	52
77	Introducing Cobalt(II) Porphyrin/Cobalt(III) Corrole Containing Transducers for Improved Potential Reproducibility and Performance of All-Solid-State Ion-Selective Electrodes. Analytical Chemistry, 2017, 89, 7107-7114.	6.5	52
78	Synthesis, Electrochemical, and Photophysical Study of Covalently Linked Porphyrin Dimers with Two Different Macrocycles. Inorganic Chemistry, 1998, 37, 2358-2365.	4.0	51
79	Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase. Sensors and Actuators B: Chemical, 2013, 179, 21-31.	7.8	51
80	Iminophosphine–palladium(0) complexes as highly active catalysts in the Suzuki reaction. Synthesis of undecaaryl substituted corroles. Tetrahedron Letters, 2004, 45, 5861-5864.	1.4	50
81	Pattern recognition approach to the study of the interactions between metalloporphyrin Langmuir–Blodgett films and volatile organic compounds. Analytica Chimica Acta, 1999, 384, 249-259.	5.4	49
82	Electronic tongue based on an array of metallic potentiometric sensors. Talanta, 2006, 70, 833-839.	5 . 5	49
83	Optochemical vapour detection using spin coated thin film of ZnTPP. Sensors and Actuators B: Chemical, 2006, 115, 12-16.	7.8	49
84	Demetalation of corrole complexes: an old dream turning into reality. Journal of Porphyrins and Phthalocyanines, 2008, 12, 19-26.	0.8	49
85	In situ detection of lung cancer volatile fingerprints using bronchoscopic air-sampling. Lung Cancer, 2012, 77, 46-50.	2.0	49
86	Electrospinning of Polystyrene/Polyhydroxybutyrate Nanofibers Doped with Porphyrin and Graphene for Chemiresistor Gas Sensors. Nanomaterials, 2019, 9, 280.	4.1	49
87	Towards the periodic table of metallocorrolates: synthesis and characterization of main group metal complexes of octamethylcorrole. Inorganica Chimica Acta, 1990, 178, 9-12.	2.4	48
88	Qualitative structure–sensitivity relationship in porphyrins based QMB chemical sensors. Sensors and Actuators B: Chemical, 2000, 68, 319-323.	7.8	48
89	Amphiphilic porphyrin film on glass as a simple and selective solid-state chemosensor for aqueous Hg2+. Biosensors and Bioelectronics, 2006, 22, 399-404.	10.1	48
90	Synthesis and Characterization of Free-Base, Copper, and Nickel Isocorroles. Inorganic Chemistry, 2010, 49, 5766-5774.	4.0	48

#	Article	IF	CITATIONS
91	Interaction of Tricationic Corroles with Single/Double Helix of Homopolymeric Nucleic Acids and DNA. Journal of the American Chemical Society, 2013, 135, 8632-8638.	13.7	48
92	Electronic nose analysis of urine samples containing blood. Physiological Measurement, 1999, 20, 377-384.	2.1	47
93	A model to predict fish quality from instrumental features. Sensors and Actuators B: Chemical, 2005, 111-112, 293-298.	7.8	47
94	Hemiporphycene from the Expansion of a Corrole Ring. Angewandte Chemie - International Edition, 2005, 44, 3047-3050.	13.8	47
95	Chiral Amplification of Chiral Porphyrin Derivatives by Templated Heteroaggregation. Journal of the American Chemical Society, 2007, 129, 6688-6689.	13.7	47
96	The Assembly of Porphyrin Systems in Well-Defined Nanostructures: An Update. Molecules, 2019, 24, 4307.	3.8	47
97	Development of a ChemFET sensor with molecular films of porphyrins as sensitive layer. Sensors and Actuators B: Chemical, 2001, 77, 567-571.	7.8	46
98	Gas sensing using single wall carbon nanotubes ordered with dielectrophoresis. Sensors and Actuators B: Chemical, 2005, 111-112, 181-186.	7.8	46
99	An Experimental Biomimetic Platform for Artificial Olfaction. PLoS ONE, 2008, 3, e3139.	2.5	46
100	Synthesis and characterization of cobalt(III) complexes of meso-phenyl-substituted corroles. Inorganica Chimica Acta, 1993, 203, 107-114.	2.4	45
101	Functionalization of Corroles:Â Formylcorroles. Journal of Organic Chemistry, 1997, 62, 6193-6198.	3.2	45
102	Self-assembled monolayers of mercaptoporphyrins as sensing material for quartz crystal microbalance chemical sensors. Sensors and Actuators B: Chemical, 1998, 47, 70-76.	7.8	45
103	Supramolecular chirality control by solvent changes. Solvodichroic effect on chiral porphyrin aggregation. Chemical Communications, 2005, , 2471.	4.1	45
104	Amination Reaction on Copper and Germanium \hat{I}^2 -Nitrocorrolates. Inorganic Chemistry, 2011, 50, 8281-8292.	4.0	45
105	Quartz crystal microbalance gas sensor arrays for the quality control of chocolate. Sensors and Actuators B: Chemical, 2015, 207, 1114-1120.	7.8	45
106	The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer. Oncotarget, 2016, 7, 14765-14780.	1.8	45
107	Phosphorus complex of corrole. Chemical Communications, 1998, , 1119-1120.	4.1	44
108	NMR and Structural Investigations of A Nonplanar Iron Corrolate:Â Modified Patterns of Spin Delocalization and Coupling in A Slightly Saddled Chloroiron(III) Corrolate Radical. Inorganic Chemistry, 2005, 44, 7030-7046.	4.0	44

#	Article	IF	CITATIONS
109	Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors and Actuators B: Chemical, 2012, 170, 163-171.	7.8	44
110	Metalloporphyrin - based Electronic Tongue: an Application for the Analysis of Italian White wines. Sensors, 2007, 7, 2750-2762.	3.8	43
111	Detection and identification of cancers by the electronic nose. Expert Opinion on Medical Diagnostics, 2012, 6, 175-185.	1.6	43
112	Langmuirâ^Blodgett Films of a Manganese Corrole Derivative. Langmuir, 1999, 15, 1268-1274.	3.5	42
113	Carbon nanotube films as a platform to transduce molecular recognition events in metalloporphyrins. Nanotechnology, 2011, 22, 125502.	2.6	42
114	Chiral Selectivity of Porphyrin–ZnO Nanoparticle Conjugates. ACS Applied Materials & Diterfaces, 2019, 11, 12077-12087.	8.0	42
115	A Novel Synthetic Route to Sapphyrins. Journal of Organic Chemistry, 1997, 62, 5133-5137.	3.2	41
116	Chloroiron meso-triphenylcorrolates: electronic ground state and spin delocalization. Inorganica Chimica Acta, 2002, 339, 171-178.	2.4	41
117	Sensitivity-selectivity balance in mass sensors: the case of metalloporphyrins. Journal of Materials Chemistry, 2004, 14, 1281.	6.7	41
118	One-step synthesis of isocorroles. Tetrahedron Letters, 2007, 48, 8643-8646.	1.4	41
119	Electronic nose and sensorial analysis: comparison of performances in selected cases. Sensors and Actuators B: Chemical, 1998, 50, 246-252.	7.8	40
120	Development of silicon-based potentiometric sensors: Towards a miniaturized electronic tongue. Sensors and Actuators B: Chemical, 2007, 123, 191-197.	7.8	40
121	The influence of gas adsorption on photovoltage in porphyrin coated ZnO nanorods. Journal of Materials Chemistry, 2012, 22, 20032.	6.7	40
122	Electronic tongue for microcystin screening in waters. Biosensors and Bioelectronics, 2016, 80, 154-160.	10.1	40
123	Synthesis of some bis(triphenylphosphine)(ethynylferrocenyl) platinum(II) complexes; molecular structure of [PtH(Cî—1/4C-C5H4FeC5H5)(PPh3)2]. Journal of Organometallic Chemistry, 1994, 469, 245-252.	1.8	39
124	Langmuir-ShÃfer Transfer of Fullerenes and Porphyrins: Formation, Deposition, and Application of Versatile Films. Chemistry - A European Journal, 2004, 10, 6523-6530.	3.3	39
125	Supramolecular Chirality in Solventâ€Promoted Aggregation of Amphiphilic Porphyrin Derivatives: Kinetic Studies and Comparison between Solution Behavior and Solidâ€State Morphology by AFM Topography. Chemistry - A European Journal, 2010, 16, 860-870.	3.3	39
126	Î ² -Nitro Derivatives of Iron Corrolates. Inorganic Chemistry, 2012, 51, 3910-3920.	4.0	39

#	Article	IF	Citations
127	Ethynyl porphyrins bridging bis(phosphine)platinum(II) centers: molecular models for conjugated organometallic porphyrin polymers. Journal of the Chemical Society Dalton Transactions, 1998, , 4063-4070.	1.1	38
128	Investigation of quartz microbalance and ChemFET transduction of molecular recognition events in a metalloporphyrin film. Sensors and Actuators B: Chemical, 2009, 135, 560-567.	7.8	38
129	Chemical sensitivity of self-assembled porphyrin nano-aggregates. Nanotechnology, 2009, 20, 055502.	2.6	38
130	Nitration of iron corrolates: further evidence for non-innocence of the corrole ligand. Chemical Communications, 2011, 47, 4255.	4.1	38
131	Platinum complex/Zn-porphyrin macrosystem assemblies: Electronic structure and conformational investigation by x-ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 832-839.	2.1	36
132	Portraits of gasses and liquids by arrays of nonspecific chemical sensors: trends and perspectives. Sensors and Actuators B: Chemical, 2000, 68, 324-330.	7.8	36
133	EAT-by-LIGHT: Fiber-Optic and Micro-Optic Devices for Food Quality and Safety Assessment. IEEE Sensors Journal, 2008, 8, 1342-1354.	4.7	36
134	Functionalization of the corrole ring: the role of isocorrole intermediates. Chemical Communications, 2011, 47, 4243.	4.1	36
135	Fluorescence Based Sensor Arrays. Topics in Current Chemistry, 2010, 300, 139-174.	4.0	35
136	Comparison and integration of arrays of quartz resonators and metal-oxide semiconductor chemoresistors in the quality evaluation of olive oils. Sensors and Actuators B: Chemical, 2001, 78, 303-309.	7.8	34
137	Thickness Dependence of the Optical Anisotropy for Porphyrin Octaester Langmuirâ^'Schaefer Filmsâ€. Langmuir, 2002, 18, 6881-6886.	3.5	34
138	Spontaneous deposition of amphiphilic porphyrin films on glassElectronic supplementary information (ESI) available: detailed kinetic studies and procedures, and aggregation studies on 1H2 and 2H2. See http://www.rsc.org/suppdata/nj/b4/b403591g/. New Journal of Chemistry, 2004, 28, 1123.	2.8	34
139	Study of the aroma of artificially flavoured custards by chemical sensor array fingerprinting. Sensors and Actuators B: Chemical, 2008, 133, 345-351.	7.8	34
140	Multi-transduction sensing films for Electronic Tongue applications. Sensors and Actuators B: Chemical, 2015, 207, 1076-1086.	7.8	34
141	Synthesis and reactivity toward nucleophiles of bis(isocyanide)(porphyrinato)rhodium(III) complexes. Crystal and molecular structure of a novel carbene complex: {(TPP)Rh(PhCH2NC)[:C(NHCH2Ph)2]PF6}. Organometallics, 1989, 8, 330-336.	2.3	33
142	Synthesis and characterization of novel metal(III) complexes of corrole. Crystal and molecular structure of (2,3,7,8,12,13,17,18-octamethylcorrolato)(triphenylarsine) rhodium(III). Journal of the Chemical Society Dalton Transactions, 1990, , 463.	1.1	33
143	Chemical images by porphyrin arrays of sensors. Mikrochimica Acta, 2008, 163, 103-112.	5.0	33
144	Synthetic Routes to 5,10,15-Triaryl-tetrabenzocorroles. Journal of Organic Chemistry, 2011, 76, 3765-3773.	3.2	33

#	Article	IF	CITATIONS
145	Site-Sensitive Gas Sensing and Analyte Discrimination in Langmuirâ 'Blodgett Porphyrin Films. Journal of Physical Chemistry C, 2011, 115, 8189-8194.	3.1	33
146	The light enhanced gas selectivity of one-pot grown porphyrins coated ZnO nanorods. Sensors and Actuators B: Chemical, 2013, 188, 475-481.	7.8	33
147	Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Research and Practice, $2015, 1, \ldots$	0.7	33
148	Î ² -Nitro Derivatives of Germanium(IV) Corrolates. Inorganic Chemistry, 2008, 47, 11680-11687.	4.0	32
149	Effects of Progressive Halogen Substitution on the Photoluminescence Properties of an Erbiumã°'Porphyrin Complex. Journal of Physical Chemistry A, 2010, 114, 4163-4168.	2.5	32
150	A Ferrocene-Porphyrin Ligand for Multi-Transduction Chemical Sensor Development. Sensors, 2013, 13, 5841-5856.	3.8	32
151	Sensors for Lung Cancer Diagnosis. Journal of Clinical Medicine, 2019, 8, 235.	2.4	32
152	Porphyrin-based array of cross-selective electrodes for analysis of liquid samples. Sensors and Actuators B: Chemical, 2003, 95, 400-405.	7.8	31
153	A sensor array and GC study about VOCs and cancer cells. Sensors and Actuators B: Chemical, 2010, 146, 483-488.	7.8	31
154	The corrole and ferrocene marriage: 5,10,15-triferrocenylcorrolato Cu. Chemical Communications, 2014, 50, 4076-4078.	4.1	31
155	Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays. Sensors, 2015, 15, 8121-8130.	3.8	31
156	Surface arrangement dependent selectivity of porphyrins gas sensors. Sensors and Actuators B: Chemical, 2017, 251, 524-532.	7.8	30
157	Extending electronic tongue calibration lifetime through mathematical drift correction: Case study of microcystin toxicity analysis in waters. Sensors and Actuators B: Chemical, 2016, 237, 962-968.	7.8	29
158	Acid-Catalyzed Cyclization of 1,19-Unsubstituted a,c-Biladienes. Journal of Organic Chemistry, 1998, 63, 3190-3195.	3.2	28
159	Optical anisotropy of Langmuir–Blodgett sapphyrin films. Applied Physics Letters, 2000, 77, 3164-3166.	3.3	28
160	MAPLE deposition of methoxy Ge triphenylcorrole thin films. Applied Physics A: Materials Science and Processing, 2008, 93, 651-654.	2.3	28
161	One-pot synthesis of <i>meso</i> -alkyl substituted isocorroles: the reaction of a triarylcorrole with Grignard reagent. Journal of Porphyrins and Phthalocyanines, 2010, 14, 752-757.	0.8	28
162	Recent advances in magnesium assessment: From single selective sensors to multisensory approach. Talanta, 2018, 179, 430-441.	5.5	28

#	Article	IF	CITATIONS
163	Electronic Effects on the Stereoselectivity of Epoxidation Reactions Catalysed by Manganese Porphyrins. European Journal of Organic Chemistry, 1999, 1999, 3281-3286.	2.4	27
164	Interface formation between C60 and diethynyl-Zn-porphyrinato investigated by SR-induced photoelectron and near-edge X-ray absorption (NEXAFS) spectroscopies. Chemical Physics, 2004, 297, 307-314.	1.9	27
165	6-Azahemiporphycene: A New Member of the Porphyrinoid Family. Inorganic Chemistry, 2009, 48, 10346-10357.	4.0	27
166	Supramolecular sensing mechanism of corrole thin films. Sensors and Actuators B: Chemical, 2013, 187, 72-77.	7.8	27
167	The influence of film morphology and illumination conditions on the sensitivity of porphyrins-coated ZnO nanorods. Analytica Chimica Acta, 2014, 810, 86-93.	5.4	27
168	Targeting LOX-1 Inhibits Colorectal Cancer Metastasis in an Animal Model. Frontiers in Oncology, 2019, 9, 927.	2.8	27
169	Optical anisotropy of porphyrin Langmuir–Blodgett films. Surface Science, 2002, 501, 31-36.	1.9	26
170	A sensor array based on mass and capacitance transducers for the detection of adulterated gasolines. Sensors and Actuators B: Chemical, 2009, 140, 508-513.	7.8	26
171	Phenyl Derivative of Iron 5,10,15-Tritolylcorrole. Inorganic Chemistry, 2014, 53, 4215-4227.	4.0	26
172	A Highly Emissive Waterâ€Soluble Phosphorus Corrole. Chemistry - A European Journal, 2017, 23, 905-916.	3.3	26
173	Synthesis and the Effect of Anions on the Spectroscopy and Electrochemistry of Mono(dimethyl) Tj ETQq1 1 0.78	4314 rgBT 4.0	 Overlock 26
174	Copperâ€Based Corrole as Thermally Stable Hole Transporting Material for Perovskite Photovoltaics. Advanced Functional Materials, 2020, 30, 2003790.	14.9	26
175	Chemical sensing materials characterization by Kelvin probe technique. Sensors and Actuators B: Chemical, 2000, 70, 254-262.	7.8	25
176	Application of a quartz microbalance based gas sensor array for the study of halitosis. Journal of Breath Research, 2008, 2, 017009.	3.0	25
177	Corrole-based ion-selective electrodes. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1168-1178.	0.8	25
178	Î ² -Pyrazino-fused tetrarylporphyrins. Dyes and Pigments, 2013, 99, 136-143.	3.7	25
179	All-solid-state paper based potentiometric potassium sensors containing cobalt(II) porphyrin/cobalt(III) corrole in the transducer layer. Sensors and Actuators B: Chemical, 2018, 277, 306-311.	7.8	25
180	Porphyrin-Functionalized Zinc Oxide Nanostructures for Sensor Applications. Sensors, 2018, 18, 2279.	3.8	25

#	Article	IF	CITATIONS
181	Old Dog, New Tricks: Innocent, Five-coordinate Cyanocobalt Corroles. Inorganic Chemistry, 2020, 59, 8562-8579.	4.0	25
182	Investigation of the Origin of Selectivity in Cavitand-Based Supramolecular Sensors. Chemistry - A European Journal, 2003, 9, 5388-5395.	3.3	24
183	Polychromatic Fingerprinting of Excitation Emission Matrices. Chemistry - A European Journal, 2008, 14, 6057-6060.	3.3	24
184	Silicon(IV) Corroles. Chemistry - A European Journal, 2018, 24, 8438-8446.	3.3	24
185	Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors, 2022, 10, 35.	3.6	24
186	First-row transition-metal complexes of corroles: synthesis and characterization of oxotitanium(IV) and oxovanadium(IV) complexes of \hat{l}^2 -alkylcorroles. Journal of the Chemical Society Dalton Transactions, 1995, , 3617-3621.	1.1	23
187	Human Glutathione Transferase T2-2 Discloses Some Evolutionary Strategies for Optimization of Substrate Binding to the Active Site of Glutathione Transferases. Journal of Biological Chemistry, 2001, 276, 5427-5431.	3.4	23
188	Förster energy transfer from poly(arylene–ethynylene)s to an erbium–porphyrin complex. Chemical Physics, 2004, 300, 217-225.	1.9	23
189	A Fluorescent Sensor Array Based on Heteroatomic Macrocyclic Fluorophores for the Detection of Polluting Species in Natural Water Samples. Frontiers in Chemistry, 2018, 6, 258.	3.6	23
190	Polymerization of N-benzylpropargylamine in the presence of ionic rhodium(l) complexes. A new functionalized polyacetylene: investigation of its conducting properties. Polymer, 1987, 28, 1221-1226.	3.8	22
191	Sorption and condensation phenomena of volatile compounds on solid-state metalloporphyrin films. Sensors and Actuators B: Chemical, 2007, 124, 260-268.	7.8	22
192	Sensing mechanisms of supramolecular porphyrin aggregates: a teamwork task for the detection of gaseous analytes. Journal of Materials Chemistry, 2011, 21, 18638.	6.7	22
193	Short time gas delivery pattern improves long-term sensor reproducibility. Sensors and Actuators B: Chemical, 2011, 156, 753-759.	7.8	22
194	Synthesis and Characterization of Functionalized <i>meso</i> -Triaryltetrabenzocorroles. Inorganic Chemistry, 2013, 52, 8834-8844.	4.0	22
195	Efficient Synthesis of βâ€Alkynylcorroles. European Journal of Organic Chemistry, 2015, 2015, 6811-6816.	2.4	22
196	Selective nitration and bromination of surprisingly ruffled phosphorus corroles. Journal of Inorganic Biochemistry, 2016, 158, 17-23.	3.5	22
197	Kinetic and spectroscopic studies on the self-aggregation of a meso-substituted amphiphilic corrole derivative. New Journal of Chemistry, 2007, 31, 1722.	2.8	21
198	Recent Advances in Chemical Sensors Using Porphyrin-Carbon Nanostructure Hybrid Materials. Nanomaterials, 2021, 11, 997.	4.1	21

#	Article	IF	CITATIONS
199	Synthesis of unsymmetrical porphyrin dimers containing \hat{l}^2 -octaalkyl and meso-tetraphenylporphyrin subunits. Tetrahedron Letters, 1996, 37, 2637-2640.	1.4	20
200	An Investigation on the Role of Spike Latency in an Artificial Olfactory System. Frontiers in Neuroengineering, 2011, 4, 16.	4.8	20
201	Monitoring of melanoma released volatile compounds by a gas sensors array: From in vitro to in vivo experiments. Sensors and Actuators B: Chemical, 2011, 154, 288-294.	7.8	20
202	Electronic Tongue for Brand Uniformity Control: A Case Study of Apulian Red Wines Recognition and Defects Evaluation â€. Sensors, 2018, 18, 2584.	3.8	20
203	Sensor array and gas chromatographic detection of the blood serum volatolomic signature of COVID-19. IScience, 2021, 24, 102851.	4.1	20
204	Molecular Orientation and Structure of the Transition Moments of Porphyrin Derivatives with Various Symmetries. The Journal of Physical Chemistry, 1994, 98, 8813-8816.	2.9	19
205	Electrochemistry of Metalloporphyrin Homo- and Hetero-dimers Containing Co, Ni or Cu Metal Ions. Journal of Porphyrins and Phthalocyanines, 1998, 02, 439-450.	0.8	19
206	New chemistry of oxophlorins (oxyporphyrins) and their π-radicals. Tetrahedron, 1999, 55, 6713-6732.	1.9	19
207	Direct quantitative evaluation of complex substances using computer screen photo-assisted technology: The case of red wine. Analytica Chimica Acta, 2007, 597, 103-112.	5.4	19
208	Salt release monitoring with specific sensors in "in vitro―oral and digestive environments from soft cheeses. Talanta, 2012, 97, 171-180.	5.5	19
209	Volatile Emissions from Compressed Tissue. PLoS ONE, 2013, 8, e69271.	2.5	19
210	Light-Activated Porphyrinoid-Capped Nanoparticles for Gas Sensing. ACS Applied Nano Materials, 2021, 4, 414-424.	5.0	19
211	Synthetic routes to rhodium(III) corrolates. Inorganica Chimica Acta, 1988, 141, 169-171.	2.4	18
212	Kelvin prove investigation of self-assembled-monolayers of thiol derivatized porphyrins interacting with volatile compounds. Sensors and Actuators B: Chemical, 1998, 48, 368-372.	7.8	18
213	Novel aspects of the chemistry of 1,19-diunsubstituted a,c-biladienes. Journal of Porphyrins and Phthalocyanines, 2003, 07, 585-592.	0.8	18
214	Sorting of apricots with computer screen photoassisted spectral reflectance analysis and electronic nose. Sensors and Actuators B: Chemical, 2006, 119, 70-77.	7.8	18
215	6-Azahemiporphycene: a further example of corrole metamorphosis. Chemical Communications, 2009, , 1580.	4.1	18
216	A Novel Approach for Prostate Cancer Diagnosis using a Gas Sensor Array. Procedia Engineering, 2012, 47, 1113-1116.	1.2	18

#	Article	IF	CITATIONS
217	5,10,15-Triferrocenylcorrole Complexes. Inorganic Chemistry, 2015, 54, 10256-10268.	4.0	18
218	An Exploration of the Metal Dependent Selectivity of a Metalloporphyrins Coated Quartz Microbalances Array. Sensors, 2016, 16, 1640.	3.8	18
219	Potentiometric E-Tongue System for Geosmin/Isoborneol Presence Monitoring in Drinkable Water. Sensors, 2020, 20, 821.	3.8	18
220	1H and 13C NMR characterization of a new chiral porphyrin, meso-Tetra ($\hat{l}\pm$, \hat{l}^2 , $\hat{l}\pm$,) Tj ETQq0 0 0 rgBT /Overlock 10 T 1991, 29, 1084-1091.	rf 50 627 1.9	Td (β-o-cam 17
221	Kelvin probe and scanning tunneling microscope characterization of Langmuir–Blodgett sapphyrin films. Applied Physics Letters, 1999, 75, 1237-1239.	3.3	17
222	Optical properties of novel Er-containing co-polymers with emission at 1530nm. Chemical Physics Letters, 2006, 426, 124-128.	2.6	17
223	Interaction of VOCs with pyrene tetratopic ligands layered on ZnO nanorods under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 62-69.	3.9	17
224	Conductive Photo-Activated Porphyrin-ZnO Nanostructured Gas Sensor Array. Sensors, 2017, 17, 747.	3.8	17
225	Tetrafluorobenzo-Fused BODIPY: A Platform for Regioselective Synthesis of BODIPY Dye Derivatives. Journal of Organic Chemistry, 2018, 83, 6498-6507.	3.2	17
226	Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors, 2022, 22, 2649.	3.8	17
227	An XPS study of Rh and Co derivatives of tetrapyrrole macrocyles. Inorganica Chimica Acta, 1988, 145, 175-177.	2.4	16
228	An investigation of the co-ordination properties of (2,3,7,8,12,13,17,18-octamethylcorrolato)iron(III) by nuclear magnetic resonance spectroscopy. Journal of the Chemical Society Dalton Transactions, 1991, ,461.	1.1	16
229	Bis-vinylogous Corrole: The First Expanded Corrole. Angewandte Chemie - International Edition, 1999, 38, 2577-2579.	13.8	16
230	Thickness shear mode resonator sensors for the detection of androstenone in pork fat. Sensors and Actuators B: Chemical, 2003, 91, 169-174.	7.8	16
231	An Integrated Analog Lock-In Amplifier for Low-Voltage Low-Frequency Sensor Interface. , 2007, , .		16
232	Imaging fingerprinting of excitation emission matrices. Analytica Chimica Acta, 2009, 635, 196-201.	5.4	16
233	Combining porphyrins and pH indicators for analyte detection. Analytical and Bioanalytical Chemistry, 2015, 407, 3975-3984.	3.7	16
234	Vortexes tune the chirality of graphene oxide and its non-covalent hosts. Chemical Communications, 2016, 52, 13094-13096.	4.1	16

#	Article	IF	CITATIONS
235	Systematic approach in Mg2+ ions analysis with a combination of tailored fluorophore design. Analytica Chimica Acta, 2017, 988, 96-103.	5.4	16
236	Synthesis and Characterization of meso-Tetraphenylporphyrin-Corrole Unsymmetrical Dyads. Journal of Porphyrins and Phthalocyanines, 1998, 02, 501-510.	0.8	15
237	Array of opto-chemical sensors based on fiber-optic spectroscopy. IEEE Sensors Journal, 2005, 5, 1165-1174.	4.7	15
238	A combined scanning tunneling microscopy and reflectance anisotropy spectroscopy investigation of tetraphenylporphyrin deposited on graphite. Surface Science, 2007, 601, 2607-2610.	1.9	15
239	Double layer sensors mimic olfactive perception: A case study. Thin Solid Films, 2008, 516, 7857-7865.	1.8	15
240	Chiral supramolecular capsule by ligand promoted self-assembly of resorcinarene- Zn porphyrin conjugate. Journal of Porphyrins and Phthalocyanines, 2008, 12, 1279-1288.	0.8	15
241	Synthetic protocols for the nitration of corroles. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1085-1092.	0.8	15
242	Towards Hyphenated Sensors Development: Design and Application of Porphyrin Electropolymer Materials. Electroanalysis, 2012, 24, 776-789.	2.9	15
243	Palladium complexes based nanogravimetric sensors for carbon monoxide detection. Sensors and Actuators B: Chemical, 2015, 208, 334-338.	7.8	15
244	A preliminary analysis of volatile metabolites of human induced pluripotent stem cells along the in vitro differentiation. Scientific Reports, 2017, 7, 1621.	3.3	15
245	Porphyrins for olfaction mimic: The Rome Tor Vergata approach. Journal of Porphyrins and Phthalocyanines, 2017, 21, 769-781.	0.8	15
246	Non-enzymatic portable optical sensors for microcystin-LR. Chemical Communications, 2018, 54, 2747-2750.	4.1	15
247	Urine LOX-1 and Volatilome as Promising Tools towards the Early Detection of Renal Cancer. Cancers, 2021, 13, 4213.	3.7	15
248	Molecular orbital analysis of some ligand-bridged iron binuclear complexes by UV photoelectron spectroscopy and DV-Xα calculations. Journal of Organometallic Chemistry, 1989, 366, 343-355.	1.8	14
249	Kelvin probe investigation of the thickness effects in Langmuir–Blodgett films of pyrrolic macrocycles sensitive to volatile compounds in gas phase. Sensors and Actuators B: Chemical, 1999, 57, 183-187.	7.8	14
250	Optical anisotropy and gas sensing properties of ordered porphyrin films. Physica Status Solidi (B): Basic Research, 2005, 242, 2714-2719.	1.5	14
251	The hyphenated CSPT-potentiometric analytical system: An application for vegetable oil quality control. Sensors and Actuators B: Chemical, 2009, 142, 457-463.	7.8	14
252	Metalloporphyrins-functionalized carbon nanotube networked films for room-temperature VOCs sensing applications. Procedia Chemistry, 2009, 1, 975-978.	0.7	14

#	Article	IF	CITATIONS
253	The light modulation of the interaction of l-cysteine with porphyrins coated ZnO nanorods. Sensors and Actuators B: Chemical, 2015, 209, 613-621.	7.8	14
254	β-Pyrrolopyrazino Annulated Corroles via a Pictet–Spengler Approach. Organic Letters, 2016, 18, 3318-3321.	4.6	14
255	Detection of diverse potential threats in water with an array of optical sensors. Sensors and Actuators B: Chemical, 2016, 236, 997-1004.	7.8	14
256	βâ€Acroleinâ€Substituted Corroles: A Route to the Preparation of Functionalized Polyacrolein Microspheres for Chemical Sensor Applications. Chemistry - A European Journal, 2017, 23, 14819-14826.	3.3	14
257	Î ² -Arylethynyl substituted silver corrole complexes. Dalton Transactions, 2019, 48, 13589-13598.	3.3	14
258	Aspergillus Species Discrimination Using a Gas Sensor Array. Sensors, 2020, 20, 4004.	3.8	14
259	Experimental determination of the mass sensitivity of quartz microbalances coated by an optical dye. Sensors and Actuators B: Chemical, 2020, 320, 128373.	7.8	14
260	Unexpected Salt/Cocrystal Polymorphism of the Ketoprofen–Lysine System: Discovery of a New Ketoprofen–I-Lysine Salt Polymorph with Different Physicochemical and Pharmacokinetic Properties. Pharmaceuticals, 2021, 14, 555.	3.8	14
261	Naked-Eye Detection of Morphine by Au@Ag Nanoparticles-Based Colorimetric Chemosensors. Sensors, 2022, 22, 2072.	3.8	14
262	Conductivity measurements on doped poly(substituted)acetylenes. Synthetic Metals, 1987, 21, 337-342.	3.9	13
263	Transition-metal-catalyzed cyclization of [a,c] biladiene salts as an efficient route to the synthesis of alkyl porphyrins. Inorganica Chimica Acta, 1990, 168, 83-87.	2.4	13
264	Energy transfer and excitation processes in thin films of rare-earth organic complexes for NIR emission. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1048-1051.	0.8	13
265	Design and test of an electronic nose for monitoring the air quality in the international space station. Microgravity Science and Technology, 2007, 19, 60-64.	1.4	13
266	Computer screen photo-assisted techniques for global monitoring of environmental and sanitary parameters. Sensors and Actuators B: Chemical, 2007, 121, 93-102.	7.8	13
267	Optical anisotropy readout in solid-state porphyrins for the detection of volatile compounds. Applied Physics Letters, 2009, 95, 091906.	3.3	13
268	An artificial olfaction system based on the optical imaging of a large array of chemical reporters. Sensors and Actuators B: Chemical, 2009, 142, 412-417.	7.8	13
269	Aluminum, Gallium, Germanium, Copper, and Phosphorus Complexes of <i>meso</i> -Triaryltetrabenzocorrole. Inorganic Chemistry, 2013, 52, 4061-4070.	4.0	13
270	New Example of Hemiporphycene Formation from the Corrole Ring Expansion. Inorganic Chemistry, 2014, 53, 7404-7415.	4.0	13

#	Article	IF	Citations
271	Identification of a Large Pool of Microorganisms with an Array of Porphyrin Based Gas Sensors. Sensors, 2016, 16, 466.	3.8	13
272	Metalloâ€Corroles Supported on Carbon Nanostructures as Oxygen Reduction Electrocatalysts in Neutral Media. European Journal of Inorganic Chemistry, 2019, 2019, 4760-4765.	2.0	13
273	Characterization of organic semiconductors by a large-signal capacitance–voltage method at high and low frequencies. Synthetic Metals, 2003, 138, 15-19.	3.9	12
274	Charge transport in pentacene and porphyrin-based organic thin film transistors. Semiconductor Science and Technology, 2004, 19, S354-S356.	2.0	12
275	Platinum porphyrins as ionophores in polymeric membrane electrodes. Analyst, The, 2011, 136, 4966.	3.5	12
276	Sensor array detection of malaria volatile signature in a murine model. Sensors and Actuators B: Chemical, 2017, 245, 341-351.	7.8	12
277	Simultaneous Proton Transfer Reaction-Mass Spectrometry and electronic nose study of the volatile compounds released by Plasmodium falciparum infected red blood cells in vitro. Scientific Reports, 2019, 9, 12360.	3.3	12
278	Kinetic and spectroscopic studies on the chiral self-aggregation of amphiphilic zinc and copper (<scp>I</scp>)-prolinate-tetraarylporphyrin derivatives in different aqueous media. Organic and Biomolecular Chemistry, 2019, 17, 1113-1120.	2.8	12
279	MCD and MCPL Characterization of Luminescent Si(IV) and P(V) Tritolylcorroles: The Role of Coordination Number. ACS Omega, 2021, 6, 26659-26671.	3.5	12
280	Biomedical Application of an Electronic Nose. Critical Reviews in Biomedical Engineering, 2000, 28, 481-485.	0.9	12
281	Human Glutathione Transferase T2-2 Discloses Some Evolutionary Strategies for Optimization of the Catalytic Activity of Glutathione Transferases. Journal of Biological Chemistry, 2001, 276, 5432-5437.	3.4	11
282	Polymers with embedded chemical indicators as an artificial olfactory mucosa. Analyst, The, 2010, 135, 1245.	3.5	11
283	BODIPY dyads from a,c-biladiene salts. Organic and Biomolecular Chemistry, 2017, 15, 7255-7257.	2.8	11
284	Chemically mediated species recognition in two sympatric Grayling butterflies: Hipparchia fagi and Hipparchia hermione (Lepidoptera: Nymphalidae, Satyrinae). PLoS ONE, 2018, 13, e0199997.	2.5	11
285	The Self-Aggregation of Porphyrins with Multiple Chiral Centers in Organic/Aqueous Media: The Case of Sugar- and Steroid-Porphyrin Conjugates. Molecules, 2020, 25, 4544.	3.8	11
286	One-pot synthesis of corrolates by cobalt catalyzed cyclization of formylpyrroles. Inorganica Chimica Acta, 1996, 241, 55-60.	2.4	10
287	Insights on the chemistry of a,c-biladienes from a CSPT investigation. New Journal of Chemistry, 2008, 32, 1162.	2.8	10
288	Evaluation of the performance of sensors based on optical imaging of a chemically sensitive layer. Analytical and Bioanalytical Chemistry, 2010, 397, 613-621.	3.7	10

#	Article	IF	CITATIONS
289	Fish freshness decay measurement with a colorimetric artificial olfactory system. Procedia Engineering, 2010, 5, 1228-1231.	1.2	10
290	Solid state deposition of chiral amphiphilic porphyrin derivatives on glass surface. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1209-1219.	0.8	10
291	Polymer matrices effects on the sensitivity and the selectivity of optical chemical sensors. Sensors and Actuators B: Chemical, 2011, 154, 220-225.	7.8	10
292	Surfactant-induced chirality on reluctant aggregates of a chiral amphiphilic cationic (l)-proline–Zn(ii)porphyrin conjugate in water. RSC Advances, 2014, 4, 55362-55366.	3.6	10
293	The scope of the \hat{l}^2 -halogenation of triarylcorroles. Journal of Porphyrins and Phthalocyanines, 2016, 20, 465-474.	0.8	10
294	Extending the corrole ring conjugation: preparation of \hat{l}^2 , \hat{l}^2 and Biomolecular Chemistry, 2016, 14, 2891-2897.	2.8	10
295	Electrostatic Map Of Proteasome α-Rings Encodes The Design of Allosteric Porphyrin-Based Inhibitors Able To Affect 20S Conformation By Cooperative Binding. Scientific Reports, 2017, 7, 17098.	3.3	10
296	Volatile compounds emission from teratogenic human pluripotent stem cells observed during their differentiation in vivo. Scientific Reports, 2018, 8, 11056.	3.3	10
297	N ₂ S ₂ pyridinophane-based fluorescent chemosensors for selective optical detection of Cd ²⁺ in soils. New Journal of Chemistry, 2020, 44, 20834-20852.	2.8	10
298	Porphyrins Through the Looking Glass: Spectroscopic and Mechanistic Insights in Supramolecular Chirogenesis of New Self-Assembled Porphyrin Derivatives. Frontiers in Chemistry, 2020, 8, 587842.	3.6	10
299	Panchromatic Light Harvesting and Stabilizing Chargeâ€Separated States in Corrole–Phthalocyanine Conjugates through Coordinating a Subphthalocyanine. Chemistry - A European Journal, 2020, 26, 13451-13461.	3.3	10
300	Combinatorial selectivity with an array of phthalocyanines functionalized TiO ₂ /ZnO heterojunction thin film sensors. Nanotechnology, 2022, 33, 075503.	2.6	10
301	The effect of steric hindrance in the synthesis of corrolates via the cobalt catalyzed cyclization of 2-(α-hydroxyalkyl)pyrroles. Inorganica Chimica Acta, 1995, 235, 15-20.	2.4	9
302	Langmuir–Blodgett films of a modified tetraphenylporphyrin. Materials Science and Engineering C, 2002, 22, 219-225.	7.3	9
303	Thermal analysis and food quality. Journal of Thermal Analysis and Calorimetry, 2005, 80, 465-467.	3.6	9
304	An array of capacitive sensors based on a commercial fingerprint detectors. Sensors and Actuators B: Chemical, 2008, 130, 264-268.	7.8	9
305	The hydrolytic route to Co-porphyrin-doped SnO2 gas-sensing materials. Inorganica Chimica Acta, 2008, 361, 79-85.	2.4	9
306	Multi-transduction of molecular recognition events in metalloporphyrin layers. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1123-1128.	0.8	9

#	Article	IF	Citations
307	Towards integrated devices for computer screen photo-assisted multi-parameter sensing. Analytica Chimica Acta, 2009, 632, 143-147.	5.4	9
308	Computer screen assisted digital photography. Sensors and Actuators B: Chemical, 2013, 179, 46-53.	7.8	9
309	Room Temperature CO Detection by Hybrid Porphyrin-ZnO Nanoparticles. Procedia Engineering, 2015, 120, 71-74.	1.2	9
310	Widening the scope of the corrole sulfonation. Journal of Porphyrins and Phthalocyanines, 2015, 19, 735-744.	0.8	9
311	Corrole and nucleophilic aromatic substitution are not incompatible: a novel route to 2,3-difunctionalized copper corrolates. Organic and Biomolecular Chemistry, 2015, 13, 6611-6618.	2.8	9
312	Chemical traffic light: A self-calibrating naked-eye sensor for fluoride. Journal of Porphyrins and Phthalocyanines, 2019, 23, 117-124.	0.8	9
313	The reduction of bridged carbonyl groups as a new route to $\hat{l}^{1}\!\!/\!\!4$ -methylene complexes of iron. Journal of Organometallic Chemistry, 1988, 346, 219-224.	1.8	8
314	Effect of central metal substitution on linear dichroism of porphyrins: evidence of out-of-plane transition moments. Biophysical Chemistry, 1997, 69, 71-84.	2.8	8
315	Iron, iron everywhere: synthesis and characterization of iron 5,10,15-triferrocenylcorrole complexes. New Journal of Chemistry, 2018, 42, 8207-8219.	2.8	8
316	Porphyrinoid Thin Films for Chemical Sensing. , 2018, , 422-443.		8
317	Sensing of diclofenac by a porphyrin-based artificial receptor. New Journal of Chemistry, 2018, 42, 15778-15783.	2.8	8
318	Si-corrole-based fluoride fluorometric turn-on sensor. Journal of Porphyrins and Phthalocyanines, 2020, 24, 929-937.	0.8	8
319	Trichlorotin(II)–(meso-Tetraphenylporphyrinato)rhodium(III), a Porphyrin Derivative with an Rh—Sn Bond. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 833-835.	0.4	7
320	Potentials and limitations of a porphyrin-based AT-cut resonator for sensing applications. Sensors and Actuators B: Chemical, 2008, 130, 411-417.	7.8	7
321	Potentiometric Polymeric Film Sensors Based on 5,10,15-tris(4-aminophenyl) Porphyrinates of Co(II) and Cu(II) for Analysis of Biological Liquids. International Journal of Electrochemistry, 2011, 2011, 1-8.	2.4	7
322	Photographic Detection of Cadmium(II) and Zinc(II) Ions. Procedia Engineering, 2016, 168, 346-350.	1.2	7
323	Colour Catcher \hat{A}^{\otimes} sheet beyond the laundry: A low-cost support for realizing porphyrin-based mercury ion sensors. Sensors and Actuators B: Chemical, 2022, 364, 131900.	7.8	7
324	Synthesis and characterization of novel rhodium porphyrin derivatives with a metalî—,metal bond. Inorganica Chimica Acta, 1988, 145, 19-20.	2.4	6

#	Article	IF	CITATIONS
325	Novel rhodium porphyrin derivatives IV. A study of the interaction between rhodium porphyrinates and amides. Inorganica Chimica Acta, 1989, 163, 135-137.	2.4	6
326	A Reflectance Anisotropy Spectroscopy Investigation of Porphyrin Langmuir-Blodgett Films. Physica Status Solidi A, 2001, 188, 1339-1344.	1.7	6
327	Construction and complexation studies of some self-assembled diporphyrin receptors. Journal of Porphyrins and Phthalocyanines, 2003, 07, 112-119.	0.8	6
328	Gas sensors based on high blue spectral responsivity photodiodes. Sensors and Actuators B: Chemical, 2005, 111-112, 242-246.	7.8	6
329	Melanoma Volatile Fingerprint with a Gas Sensor Array: In Vivo and In Vitro Study. Procedia Chemistry, 2009, 1, 995-998.	0.7	6
330	COPD diagnosis by a gas sensor array. Procedia Engineering, 2010, 5, 484-487.	1.2	6
331	Sharing data processing among replicated optical sensor arrays. Sensors and Actuators B: Chemical, 2013, 179, 252-258.	7.8	6
332	Copper Î ² -trinitrocorrolates. Journal of Porphyrins and Phthalocyanines, 2013, 17, 440-446.	0.8	6
333	E-tongue for Ecological Monitoring Purposes: The Case of Microcystins Detection. Procedia Engineering, 2014, 87, 1358-1361.	1.2	6
334	Spontaneous Deposition of Porphyrin-Based Layers on Polylysinated Substrates: Role of the Central Metal on Layer Structural and Sensing Properties. Journal of Physical Chemistry C, 2016, 120, 724-730.	3.1	6
335	The interaction of a β-fused isoindoline–porphyrin conjugate with nucleic acids. New Journal of Chemistry, 2016, 40, 5662-5665.	2.8	6
336	Moving corrole towards a red-record: synthesis of \hat{l}^2 -acrolein Ga and Cu corroles using the Vilsmeier reaction. New Journal of Chemistry, 2018, 42, 8200-8206.	2.8	6
337	Chemical Sensors for Water Potability Assessment. , 2019, , 177-208.		6
338	The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement. Sensors, 2021, 21, 1401.	3.8	6
339	Chirality induction to achiral molecules by silicaâ€coated chiral molecular assemblies. Chirality, 2021, 33, 494-505.	2.6	6
340	Sensor-Embedded Face Masks for Detection of Volatiles in Breath: A Proof of Concept Study. Chemosensors, 2021, 9, 356.	3.6	6
341	STM study of sapphyrin films deposited on gold substrates by the Langmuir–Blodgett technique. Surface Science, 2000, 466, 167-172.	1.9	5
342	Structure-dependent optical anisotropy of porphyrin Langmuir–Schaefer films. Surface Science, 2002, 521, L645-L649.	1.9	5

#	Article	IF	CITATIONS
343	Gas Sensitivity of Blends of Metalloporphyrins and Colorimetric Acid-Base Indicators. Procedia Engineering, 2011, 25, 1413-1416.	1.2	5
344	Data processing for image-based chemical sensors: unsupervised region of interest selection and background noise compensation. Analytical and Bioanalytical Chemistry, 2012, 402, 823-832.	3.7	5
345	3-NO2-5,10,15-triarylcorrolato-Cu as a versatile platform for synthesis of novel 3-functionalized corrole derivatives. Organic and Biomolecular Chemistry, 2014, 12, 6200-6207.	2.8	5
346	Electrochemistry and spectroelectrochemistry of \hat{l}^2 -pyrazino-fused tetraarylporphyrins in nonaqueous media. Journal of Porphyrins and Phthalocyanines, 2015, 19, 388-397.	0.8	5
347	The aggregation of amphiphilic (L)-proline-porphyrin derivatives in ethanol-water mixtures promoted by chiral anionic surfactants. Journal of Porphyrins and Phthalocyanines, 2017, 21, 391-397.	0.8	5
348	Corroles at the <i>Real</i> Solid–Liquid Interface: In Situ STM Investigation of a Waterâ€Soluble Corrole Layer Deposited onto Au(111). Chemistry - A European Journal, 2018, 24, 17538-17544.	3.3	5
349	Fabrication of Langmuir–Blodgett chiral films from cationic (L)-proline-porphyrin derivatives. Journal of Porphyrins and Phthalocyanines, 2019, 23, 462-468.	0.8	5
350	Grafting Copper and Gallium Corroles onto Zinc Oxide Nanoparticles. ChemPlusChem, 2019, 84, 154-160.	2.8	5
351	Tunable Supramolecular Chirogenesis in the Self-Assembling of Amphiphilic Porphyrin Triggered by Chiral Amines. International Journal of Molecular Sciences, 2020, 21, 8557.	4.1	5
352	Looking for Minor Phenolic Compounds in Extra Virgin Olive Oils Using Neutron and Raman Spectroscopies. Antioxidants, 2021, 10, 643.	5.1	5
353	Gas Effect On The Surface Photovoltage Of Porphyrin Functionalized ZnO Nanorods. Advanced Materials Letters, 2012, 3, 442-448.	0.6	5
354	Phosphorous (V) Corrole Fluorophores for Nitrite Assessment in Environmental and Biological Samples. Chemosensors, 2022, 10, 107.	3.6	5
355	Charge injection and transport in tetra-phenyl-porphyrin. Synthetic Metals, 2003, 138, 255-260.	3.9	4
356	Dip and wait: a facile route to nanostructured porphyrin films for QCM functionalization. Procedia Chemistry, 2009, 1, 180-183.	0.7	4
357	SWCNTs Modified with Porphyrin Units for Chemical Sensing Applications. Procedia Engineering, 2010, 5, 1043-1046.	1.2	4
358	Preparation and spectroscopic studies of silica nanoparticle-porphyrin hybrids held by noncovalent interactions. Journal of Porphyrins and Phthalocyanines, 2011, 15, 382-390.	0.8	4
359	Spectroscopic characterization of water soluble phosphonato corrole: The effect of H-bounds on the self-assembled species. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1272-1276.	0.8	4
360	Wine and Combined Electronic Nose and Tongue. , 2016, , 301-307.		4

#	Article	IF	CITATIONS
361	â€~Rough guide' evanescent wave optrode for colorimetric metalloporphyrine sensors. Talanta, 2017, 164, 228-232.	5.5	4
362	The strength in Numbers! Porphyrin hybrid nanostructured materials for chemical sensing. Dalton Transactions, 2021, 50, 5724-5731.	3.3	4
363	Fast Optical Sensing of Metals: A Case Study of Cu ²⁺ Assessment in Soils. ECS Journal of Solid State Science and Technology, 2020, 9, 061004.	1.8	4
364	Seeding Chiral Ensembles of Prolinated Porphyrin Derivatives on Glass Surface: Simple and Rapid Access to Chiral Porphyrin Films. Frontiers in Chemistry, 2021, 9, 804893.	3.6	4
365	Novel NMR aspects of tertiary phosphine complexes of Ru(II) etioporphyrin I. Magnetic Resonance in Chemistry, 1995, 33, 954-958.	1.9	3
366	A comparison between an electronic nose and human olfaction in a selected case study. , 0, , .		3
367	Synthesis, complexation properties and spectroscopic studies of the cation-induced conformational changes of some new oligooxaethylene-spacered diporphyrin arrays. New Journal of Chemistry, 2001, 25, 597-605.	2.8	3
368	Quality monitoring of extra-virgin olive oil using an optical sensor., 2006, 6189, 604.		3
369	Spectral fingerprinting of porphyrins for distributed chemical sensing. Journal of Porphyrins and Phthalocyanines, 2009, 13, 77-83.	0.8	3
370	Monocarboxy Tetraphenylporphyrin functionalized ZnO nanorods photoactivated gas sensor. Procedia Engineering, 2011, 25, 1333-1336.	1.2	3
371	Fluorimetric Chemosensors Combined with Familiar CSPT Devices for the Selective Detection of Mercury(II) Ions. Procedia Engineering, 2012, 47, 334-337.	1.2	3
372	An Investigation about the origin of the lung cancer signalling VOCs in breath. , 2014, , .		3
373	The Gas Sensing Properties of Porphyrins-coated Laterally Grown ZnO Nanorods. Procedia Engineering, 2014, 87, 1039-1042.	1.2	3
374	Drift Correction in a Porphyrin-coated ZnO Nanorods Gas Sensor. Procedia Engineering, 2014, 87, 608-611.	1.2	3
375	Synthesis and functionalization of \hat{l}^2 -alkyl-meso-triarylcorroles. Journal of Porphyrins and Phthalocyanines, 2015, 19, 865-873.	0.8	3
376	A Leopard Cannot Change Its Spots: Unexpected Products from the Vilsmeier Reaction on 5,10,15-Tritolylcorrole. Molecules, 2020, 25, 3583.	3.8	3
377	Perimeter fractal dimension analysis of corrole islands on Au(111) at the solid-water interface. Journal of Porphyrins and Phthalocyanines, 2020, 24, 959-963.	0.8	3
378	GC/MS-based Analysis of Volatile Metabolic Profile Along in vitro Differentiation of Human Induced Pluripotent Stem Cells. Bio-protocol, 2017, 7, e2642.	0.4	3

#	Article	IF	Citations
379	Selective Detection of Mg ²⁺ for Sensing Applications in Drinking Water. Chemistry - A European Journal, 2022, 28, .	3.3	3
380	Porphyrinoids coated silica nanoparticles capacitive sensors for COVID-19 detection from the analysis of blood serum volatolome. Sensors and Actuators B: Chemical, 2022, 369, 132329.	7.8	3
381	Identification of wine defects by means of a miniaturized electronic tongue., 2007, 6589, 436.		2
382	Facile sensors replacement in optical gas sensors array. Procedia Engineering, 2011, 25, 35-38.	1.2	2
383	Gas Sensitivity of the Surface Potential of Hybrid Porphyrin-ZnO Nanorods. Procedia Engineering, 2012, 47, 446-449.	1.2	2
384	Detection of Toxic Compounds in Water with an Array of Optical Reporters. Procedia Engineering, 2015, 120, 146-149.	1.2	2
385	Electronic tongue based on porphyrins for Apulian red wines defects detection. , 2017, , .		2
386	Crown-Porphyrin Ligand for Optical Sensors Development. Proceedings (mdpi), 2018, 2, 922.	0.2	2
387	5,10,15â€Tris(4â€sulfonatophenyl)corrole Synthesis. European Journal of Organic Chemistry, 2019, 2019, 6525-6533.	2.4	2
388	5,10,15-Triarylcorrole atropisomerism. Journal of Porphyrins and Phthalocyanines, 2020, 24, 153-160.	0.8	2
389	Growth of Corrole Films from Solution: A Nanometer-Scale Study at the Real Solid–Liquid Interface. Journal of Physical Chemistry C, 2021, 125, 11540-11547.	3.1	2
390	Optimization of gas sensors measurements by dynamic headspace analysis supported by simultaneous direct injection mass spectrometry. Sensors and Actuators B: Chemical, 2021, 347, 130580.	7.8	2
391	Metalloporphyrin-Modified Carbon Nanotube Layers for Gas Microsensors. Sensor Letters, 2011, 9, 913-919.	0.4	2
392	Exploring the Association of Electronâ€Donating Corroles with Phthalocyanines as Electron Acceptors. Chemistry - A European Journal, 2022, , .	3.3	2
393	Unveiling the robustness of porphyrin crystalline nanowires toward aggressive chemicals. European Physical Journal Plus, 2022, 137, 1.	2.6	2
394	ELECTRONIC NOSE AND VIS-SPECTRA DATA FUSION FOR THE PREDICTION OF FRUITS CHARACTERISTICS. , 2001, , .		1
395	Food and Beverage Quality Assurance. , 0, , 505-524.		1
396	Fiber optic multimeter for interrogating an array of absorption-based optochemical sensors. , 2004, 5270, 140.		1

#	Article	IF	Citations
397	Eat-by-light fiber-optic and micro-optic devices for food quality and safety assessment. , 2007, , .		1
398	An Experimental Methodology For The Analysis Of The Headspace Of In-Vitro Culture Cells. , 2009, , .		1
399	Design Of A Sorbentâ^desorbent Unit For Sample Pre-treatment Optimized For QMB Gas Sensors. , 2009, , .		1
400	Bringing Chromatography Back To Colour. , 2009, , .		1
401	Multiparametric light-assisted silicon device transduction of molecular recognition events. , 2009, , .		1
402	Testing olfactory models with an artificial experimental platform. , 2010, , .		1
403	COPD Identification By The Analysis Of Breath With An Electronic Nose., 2011,,.		1
404	Indicators Blends Extend the Receptive Field of Colorimetric Chemical Sensors. Procedia Engineering, 2012, 47, 1189-1190.	1.2	1
405	Detection of Soluble Organic and Inorganic Compounds with an Array of Pure and Blended Optical Reporters. Procedia Engineering, 2014, 87, 1441-1444.	1.2	1
406	Porphyrin Electropolymers as Opto-electrochemical Probe for the Detection of Red-ox Analytes. Lecture Notes in Electrical Engineering, 2014, , 49-55.	0.4	1
407	The gas sensing properties of one-pot prepared porphyrin-ZnO nanoparticles. , 2015, , .		1
408	Synthesis and characterization of a \hat{l}^2 -fused tetraporphyrin-phthalocyanine star-shaped array. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1256-1263.	0.8	1
409	Preface â€" Special Issue in Honor of Professor Claudio Ercolani. Journal of Porphyrins and Phthalocyanines, 2017, 21, i-i.	0.8	1
410	FRIOO12â€Role of volatile compounds released by synovial fluid in the diagnosis of osteoarthritis and rheumatoid arthritis of the knee joint. , 2017, , .		1
411	Joining Chromophores: a Porphyrin-BPI Fused System. European Journal of Organic Chemistry, 2019, 2019, 655-659.	2.4	1
412	Keeping Track of Phaeodactylum tricornutum (Bacillariophyta) Culture Contamination by Potentiometric E-Tongue. Sensors, 2021, 21, 4052.	3.8	1
413	ANALYSIS OF VOLATILES IN THE HEADSPACE OF BREAST USING A QMB BASED GAS SENSOR ARRAY FOR BREAST CANCER STUDY: FIRST EVIDENCES. , 2008, , .		1
414	Hybrid and optical multisensory systems for liquid analysis: theoretical basis, trends and applications, $0, 0, \dots$		1

#	Article	IF	CITATIONS
415	Polythiophene based fluorimetric insight into minute styrene concentration in solution and gas phase. Optical Materials, 2022, 123, 111848.	3.6	1
416	Preparation of Conducting materials by doping of polyethinylferrocene. Synthetic Metals, 1987, 19, 1009.	3.9	0
417	AN ELECTRONIC TONGUE BASED ON METALLOPORPHYRIN FUNCTIONALIZED ELECTRODES. , 2004, , .		0
418	An 'electronic tongue' system based on an array of metallic potentiometric sensors. , 0, , .		0
419	Iminophosphine—Palladium(0) Complexes as Highly Active Catalysts in the Suzuki Reaction. Synthesis of Undecaaryl Substituted Corroles ChemInform, 2004, 35, no.	0.0	0
420	Selectivity Tailoring in Molecular Recognition Based Sensors: Enhancement of Metalloporphyrins Sensitivity to Hydrogen Bond., 0,,.		0
421	Chemical Sensitivity of Porphyrin Nanotubes. , 2007, , .		0
422	Optical transduction of the chemical sensitivity of porphyrin nanotubes by CSPT platform., 2007,,.		0
423	Microstructured Devices for Computer Screen Photo Assisted Optical Fingerprinting of High Density Response Patterns., 2007,,.		0
424	FET Transduction of Electric Dipole Changes in Organic Layers. , 2007, , .		0
425	A smart cap for olive oil rancidity detection using optochemical sensors. , 2007, , .		0
426	Gas sensitivity of amino acids monolayers. , 2008, , .		0
427	Non-destructive testing of olive oil off-flavors by means of a micro-optic smart cap. , 2008, , .		0
428	An Artificial Olfaction System Formed by a Massive Sensors Array Dispersed in a Diffusion Media and an Automatically Formed Glomeruli Layer. , 2009, , .		0
429	Porphyrin Electropolymers For Application In Hyphenated Chemical Sensors., 2009, , .		0
430	Alteration of optical anisotropy by adsorption of volatile molecules on ordered metalloporphyrins layers. Journal of Nanophotonics, 2009, 3, 031945.	1.0	0
431	Investigating the structure-sensitivity relationship of metalloporphyrins based chemical sensors. Procedia Chemistry, 2009, 1, 228-231.	0.7	0
432	Optical Sensor Response Modulation Using Different Polymeric Matrices. Procedia Chemistry, 2009, 1, 1371-1374.	0.7	0

#	Article	IF	CITATIONS
433	Electronic Nose Characterization of the Quality Parameters of Freeze-Dried Bacteria., 2011,,.		O
434	Chemoresistivity of solid state layers of porphyrin nanotubes. , 2011, , .		0
435	Colors and Odors: Porphyrinoids Based Artificial Olfaction Systems. , 2011, , .		0
436	The Role of Spike Temporal Latencies in Artificial Olfaction. , 2011, , .		0
437	An Application of Specific Sensors For The Monitoring of NaCl in Soft Cheeses. , 2011, , .		0
438	Sensing materials with a concurrent sensitivity: design, synthesis and application in multisensory systems. , $2011, , .$		0
439	Chemical Sensitivity of Functionalized Cotton Yarns. , 2011, , .		0
440	Olive Oil Headspace Characterization by a Gas Sensor Array. , 2011, , .		0
441	(Invited) Electroreduction of Iron and Free-Base Nitrocorroles in Non-Aqueous Media. ECS Meeting Abstracts, 2012, , .	0.0	0
442	Optical sensors cross-sensitivity amendment: The case study of heavy metals CSPT detection. , 2013, , .		0
443	Photo-assisted chemical sensors. Proceedings of SPIE, 2014, , .	0.8	0
444	High resolution surface characterization of chromophore-modified graphene., 2015,,.		0
445	NMR spectroscopy of the phenyl derivative of germanium(IV) 5,10,15-tritolylcorrole. Journal of Porphyrins and Phthalocyanines, 2016, 20, 525-533.	0.8	0
446	Interaction of Pyrene Ligands with Neat and Defective Two Dimensional ZnO: A First Principles Study. MRS Advances, 2017, 2, 2799-2805.	0.9	0
447	Identification of stem cells differentiation steps. , 2017, , .		0
448	Enhance of Sensitivity of Corrole Functionalized Polymeric Microspheres Coated Quartz Microbalances. Proceedings (mdpi), 2017, 1, 406.	0.2	0
449	E-tongue based on Porphyrin Electropolymers for Apulian Red Wines Defects Detection. Proceedings (mdpi), 2017, 1, 489.	0.2	0
450	Gas Sensing with Porphyrin Functionalized Metal Oxide Nanostructures. Proceedings (mdpi), 2019, 14, 28.	0.2	0

#	Article	IF	CITATIONS
451	Optical sensor array based on P(V) corroles for fluorometric detection of nitrite., 2019,,.		O
452	Chemical traffic light: A self-calibrating naked-eye sensor for fluoride. , 2021, , 983-990.		0
453	Electrochemistry of Innocent Cyanocobalt Corroles. ECS Meeting Abstracts, 2021, MA2021-01, 739-739.	0.0	0
454	Functionalized Corroles for Sensor Applications. ECS Meeting Abstracts, 2021, MA2021-01, 767-767.	0.0	0
455	Styrene Detection in Water By Polythiophene Nanoparticles Suspension. ECS Meeting Abstracts, 2021, MA2021-01, 1630-1630.	0.0	0
456	Chiral Porphyrin Assemblies: From Solution to Solid State. ECS Meeting Abstracts, 2021, MA2021-01, 775-775.	0.0	0
457	Towards Neutron Scattering Identification of Olive Oil's Antioxidant Properties. Neutron News, 0, , 1-2.	0.2	0
458	Fabrication of Langmuir–Blodgett chiral films from cationic (L)-proline-porphyrin derivatives. , 2021, , 878-884.		0
459	MOSFET GAS SENSORS WITH METALLOPORHYRINS AS GAS SENSITIVE MATERIALS., 2000, , .		0
460	CHEMICAL SENSORS BASED ON TSMRS: EFFECT OF COATING THICKNESS. , 2004, , .		0
461	DEVELOPMENT OF QMB SENSORS BASED ON IRON PORPHYRINS FOR CARBON MONOXIDE DETECTION: A FEASIBILITY STUDY. , 2008, , .		0
462	Electronic Nose Applications in Medical Diagnose. , 2010, , 233-247.		0
463	Chemical Sensors for Indoor Atmosphere Monitoring. Lecture Notes in Electrical Engineering, 2011, , 119-123.	0.4	0
464	An Optical Sensor for Measuring Oxygen Concentration. Lecture Notes in Electrical Engineering, 2014, , 459-463.	0.4	0
465	Synthesis and characterization of mesoâ€tetraphenylporphyrin–corrole unsymmetrical dyads. Journal of Porphyrins and Phthalocyanines, 1998, 2, 501-510.	0.8	0
466	P2AR.8 - The discrimination of cannabis seed oils and flours by an array of porphyrnoids based gas sensors. , 2018, , .		0
467	P2NG.20 - Gas Sensitivity of the surface potential of Pyrene Coated ZnO Nanorods. , 2018, , .		0
468	SM2.3 - Silicon Corrole based paper strips for the visual determination of fluoride ion. , 2018, , .		0

#	Article	IF	CITATIONS
469	P2MM.2 - Direct Estimation of Quartz Microbalance Sensitivity by a Straight Optical Procedure. , 2018, , .		O
470	AR1.3 - Real time Proton Transfer Reaction and Electronic Nose simultaneous measurements on same samples. , 2018, , .		0
471	GS4.3 - Gas sensing properties of Porphyrins-Graphene composite electrospun fibers. , 2018, , .		0
472	Olfactory Atlases with an Array of Porphyrinoids Coated ZnO Nanoparticle. ECS Meeting Abstracts, 2020, MA2020-01, 1861-1861.	0.0	0
473	Electrochemical Properties of Mono- and Bis-CN Ligated Cobalt Corroles. ECS Meeting Abstracts, 2020, MA2020-01, 917-917.	0.0	0
474	Acroleylcorroles. ECS Meeting Abstracts, 2020, MA2020-01, 909-909.	0.0	0
475	Styrene Detection in Water By Polythiophene Nanoparticles Suspension. ECS Meeting Abstracts, 2020, MA2020-01, 2388-2388.	0.0	0
476	Integration of Porphyrinoids Based Gas Sensor Arrays with Direct Injection Mass Spectrometry. ECS Meeting Abstracts, 2020, MA2020-01, 911-911.	0.0	0
477	In Vitro Discrimination of Bacterial Volatile Compound Patterns Using a Gas Sensor Array. Lecture Notes in Electrical Engineering, 2020, , 157-161.	0.4	0
478	Preface—JSS Focus Issue on Porphyrins, Phthalocyanines, and Supramolecular Assemblies in Honor of Karl M. Kadish. ECS Journal of Solid State Science and Technology, 2020, 9, 080001.	1.8	0
479	Nickel (0) Complexes as Promising Chemosensors for Detecting the "Cork Taint―in Wine. European Journal of Inorganic Chemistry, 0, , .	2.0	0
480	Notice of Removal: A Movie Should Be Forever: Monitoring the Degradation Pathway of Photographic Films. , 2022, , .		0
481	Odorant Binding Proteins and Porphyrins Mixed Gas Sensor Array. , 2022, , .		0
482	The Chemical Sensitivity of Hybrid Porphyrin Materials. ECS Meeting Abstracts, 2022, MA2022-01, 939-939.	0.0	0
483	Triarylcorrole Vs Octaalkylcorrole: Similar but Different. ECS Meeting Abstracts, 2022, MA2022-01, 951-951.	0.0	0