Zhaoyan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3534807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of the Paraglottic Space on Voice Production in an MRI-Based Vocal Fold Model. Journal of Voice, 2023, 37, 633.e15-633.e23.	1.5	7
2	Voice Feature Selection to Improve Performance of Machine Learning Models for Voice Production Inversion. Journal of Voice, 2023, 37, 479-485.	1.5	6
3	Effects of Laryngeal Vibratory Asymmetry and Neuromuscular Compensation on Voice Quality. Laryngoscope, 2022, 132, 130-134.	2.0	2
4	Estimating subglottal pressure and vocal fold adduction from the produced voice in a single-subject study (L). Journal of the Acoustical Society of America, 2022, 151, 1337-1340.	1.1	2
5	Computational Study of the Impact of Dehydration-Induced Vocal Fold Stiffness Changes on Voice Production. Journal of Voice, 2022, , .	1.5	3
6	Contribution of Undesired Medial Surface Shape to Suboptimal Voice Outcome After Medialization Laryngoplasty. Journal of Voice, 2022, , .	1.5	2
7	Oral vibratory sensations during voice production at different laryngeal and semi-occluded vocal tract configurations. Journal of the Acoustical Society of America, 2022, 152, 302-312.	1.1	3
8	Effects of Arytenoid Adduction Suture Position on Voice Production and Quality. Laryngoscope, 2021, 131, 846-852.	2.0	2
9	Interaction between epilaryngeal and laryngeal adjustments in regulating vocal fold contact pressure. JASA Express Letters, 2021, 1, 025201.	1.1	9
10	Computational simulations of respiratory-laryngeal interactions and their effects on lung volume termination during phonation: Considerations for hyperfunctional voice disorders. Journal of the Acoustical Society of America, 2021, 149, 3988-3999.	1.1	8
11	Perceptual Evaluation of Vocal Fold Vibratory Asymmetry. Laryngoscope, 2021, 131, 2740-2746.	2.0	1
12	Vocal tract adjustments to minimize vocal fold contact pressure during phonation. Journal of the Acoustical Society of America, 2021, 150, 1609-1619.	1.1	2
13	The Physical Aspects of Vocal Health. Acoustics Today, 2021, 17, 60.	1.0	1
14	Contribution of laryngeal size to differences between male and female voice production. Journal of the Acoustical Society of America, 2021, 150, 4511-4521.	1.1	10
15	Vocal Fundamental Frequency and Sound Pressure Level in Charismatic Speech: A Cross-Gender and -Language Study. Journal of Voice, 2020, 34, 808.e1-808.e13.	1.5	6
16	Laryngeal strategies to minimize vocal fold contact pressure and their effect on voice production. Journal of the Acoustical Society of America, 2020, 148, 1039-1050.	1.1	11
17	Estimation of vocal fold physiology from voice acoustics using machine learning. Journal of the Acoustical Society of America, 2020, 147, EL264-EL270.	1.1	20
18	Effects of thyroplasty implant stiffness on glottal shape and voice acoustics. Laryngoscope Investigative Otolaryngology, 2020, 5, 82-89.	1.5	13

#	Article	IF	CITATIONS
19	Three-dimensional vocal fold structural change due to implant insertion in medialization laryngoplasty. PLoS ONE, 2020, 15, e0228464.	2.5	11
20	Vocal fold contact pressure in a three-dimensional body-cover phonation model. Journal of the Acoustical Society of America, 2019, 146, 256-265.	1.1	9
21	Effect of changes in medial surface shape on voice production in excised human larynges. Journal of the Acoustical Society of America, 2019, 146, EL412-EL417.	1.1	5
22	Structural constitutive modeling of the anisotropic mechanical properties of human vocal fold lamina propria. Journal of the Acoustical Society of America, 2019, 145, EL476-EL482.	1.1	4
23	Voice production in a MRI-based subject-specific vocal fold model with parametrically controlled medial surface shape. Journal of the Acoustical Society of America, 2019, 146, 4190-4198.	1.1	24
24	Dynamics of Intrinsic Laryngeal Muscle Contraction. Laryngoscope, 2019, 129, E21-E25.	2.0	9
25	Compensation Strategies in Voice Production With Glottal Insufficiency. Journal of Voice, 2019, 33, 96-102.	1.5	18
26	Hirano's cover–body model and its unique laryngeal postures revisited. Laryngoscope, 2018, 128, 1412-1418.	2.0	11
27	Vocal instabilities in a three-dimensional body-cover phonation model. Journal of the Acoustical Society of America, 2018, 144, 1216-1230.	1.1	20
28	Measurement of Cough Aerodynamics in Healthy Adults. Annals of Otology, Rhinology and Laryngology, 2017, 126, 396-400.	1.1	13
29	A Computational Study of Vocal Fold Dehydration During Phonation. IEEE Transactions on Biomedical Engineering, 2017, 64, 2938-2948.	4.2	7
30	Quantitative Evaluation of the In Vivo Vocal Fold Medial Surface Shape. Journal of Voice, 2017, 31, 513.e15-513.e23.	1.5	20
31	Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model. Journal of the Acoustical Society of America, 2017, 142, 2311-2321.	1.1	41
32	Biaxial mechanical properties of human vocal fold cover under vocal fold elongation. Journal of the Acoustical Society of America, 2017, 142, EL356-EL361.	1.1	14
33	Toward real-time physically-based voice simulation: An Eigenmode-based approach. Proceedings of Meetings on Acoustics, 2017, 30, .	0.3	5
34	Threeâ€dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles. Laryngoscope, 2017, 127, 656-664.	2.0	17
35	Laryngeal muscular control of vocal fold posturing: Numerical modeling and experimental validation. Journal of the Acoustical Society of America, 2016, 140, EL280-EL284.	1.1	10
36	Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. Journal of the Acoustical Society of America, 2016, 139, 1493-1507.	1.1	111

#	Article	IF	CITATIONS
37	Mechanics of human voice production and control. Journal of the Acoustical Society of America, 2016, 140, 2614-2635.	1.1	234
38	Experimental validation of a three-dimensional reduced-order continuum model of phonation. Journal of the Acoustical Society of America, 2016, 140, EL172-EL177.	1.1	17
39	A parametric vocal fold model based on magnetic resonance imaging. Journal of the Acoustical Society of America, 2016, 140, EL159-EL165.	1.1	15
40	Impact of Vocal Tract Resonance on the Perception of Voice Quality Changes Caused by Varying Vocal Fold Stiffness. Acta Acustica United With Acustica, 2016, 102, 209-213.	0.8	5
41	Tissueâ€Engineered Vocal Fold Mucosa Implantation in Rabbits. Otolaryngology - Head and Neck Surgery, 2016, 154, 679-688.	1.9	22
42	Respiratory Laryngeal Coordination in Airflow Conservation and Reduction of Respiratory Effort of Phonation. Journal of Voice, 2016, 30, 760.e7-760.e13.	1.5	29
43	Preliminary Study of the Open Quotient in an Ex Vivo Perfused Human Larynx. JAMA Otolaryngology - Head and Neck Surgery, 2015, 141, 751.	2.2	6
44	Effects of vocal fold epithelium removal on vibration in an excised human larynx model. Journal of the Acoustical Society of America, 2015, 138, EL60-EL64.	1.1	18
45	In vivo vocal fold cover layer replacement. Laryngoscope, 2015, 125, 406-411.	2.0	8
46	Regulation of glottal closure and airflow in a three-dimensional phonation model: Implications for vocal intensity control. Journal of the Acoustical Society of America, 2015, 137, 898-910.	1.1	45
47	Effects of Implant Stiffness, Shape, and Medialization Depth on the Acoustic Outcomes of Medialization Laryngoplasty. Journal of Voice, 2015, 29, 230-235.	1.5	22
48	Toward a unified theory of voice production and perception. Loquens, 2014, 1, e009.	0.1	60
49	The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model. Journal of the Acoustical Society of America, 2014, 135, 1480-1490.	1.1	15
50	Interaction Between the Thyroarytenoid and Lateral Cricoarytenoid Muscles in the Control of Vocal Fold Adduction and Eigenfrequencies. Journal of Biomechanical Engineering, 2014, 136, .	1.3	28
51	Influence of Embedded Fibers and an Epithelium Layer on the Glottal Closure Pattern in a Physical Vocal Fold Model. Journal of Speech, Language, and Hearing Research, 2014, 57, 416-425.	1.6	32
52	A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration. Journal of the Acoustical Society of America, 2014, 136, EL369-EL375.	1.1	10
53	Voice outcomes following laser cordectomy for early glottic cancer: A physical model investigation. Laryngoscope, 2014, 124, 1882-1886.	2.0	6
54	The role of thyroarytenoid muscles in regulating glottal closure in an in vivo canine larynx model. Proceedings of Meetings on Acoustics, 2014, 22, .	0.3	3

#	Article	IF	CITATIONS
55	Neuromuscular induced phonation in a human ex vivo perfused larynx preparation. Journal of the Acoustical Society of America, 2013, 133, EL114-EL117.	1.1	12
56	The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies. Journal of the Acoustical Society of America, 2013, 133, 2972-2983.	1.1	34
57	Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models. Journal of the Acoustical Society of America, 2013, 133, 453-462.	1.1	35
58	The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
59	Influence of epithelium and fiber locations on glottal closure and sound production at soft-phonation conditions. Proceedings of Meetings on Acoustics, 2013, , .	0.3	2
60	Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: Experiment and simulation. Journal of the Acoustical Society of America, 2012, 132, 1626-1635.	1.1	48
61	Measurement of Young's Modulus of Vocal Folds by Indentation. Journal of Voice, 2011, 25, 1-7.	1.5	107
62	Restraining mechanisms in regulating glottal closure during phonation. Journal of the Acoustical Society of America, 2011, 130, 4010-4019.	1.1	31
63	Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds. Journal of the Acoustical Society of America, 2011, 130, 2961-2968.	1.1	38
64	On the difference between negative damping and eigenmode synchronization as two phonation onset mechanisms. Journal of the Acoustical Society of America, 2011, 129, 2163-2167.	1.1	5
65	Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness. Journal of the Acoustical Society of America, 2010, 128, EL279-EL285.	1.1	22
66	Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. Journal of the Acoustical Society of America, 2010, 127, 2554-2562.	1.1	34
67	On the acoustical relevance of supraglottal flow structures to low-frequency voice production. Journal of the Acoustical Society of America, 2010, 128, EL378-EL383.	1.1	11
68	Functional testing of a tissueâ€engineered vocal fold cover replacement. Otolaryngology - Head and Neck Surgery, 2010, 142, 438-440.	1.9	40
69	Characteristics of phonation onset in a two-layer vocal fold model. Journal of the Acoustical Society of America, 2009, 125, 1091-1102.	1.1	76
70	Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model. Journal of Sound and Vibration, 2009, 322, 299-313.	3.9	42
71	Influence of flow separation location on phonation onset. Journal of the Acoustical Society of America, 2008, 124, 1689-1694.	1.1	31
72	Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds. Journal of the Acoustical Society of America, 2007, 121, 1102-1118.	1.1	159

#	Article	IF	CITATIONS
73	Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation. Journal of the Acoustical Society of America, 2007, 122, 2279-2295.	1.1	60
74	Broadband sound generation by confined pulsating jets in a mechanical model of the human larynx. Journal of the Acoustical Society of America, 2006, 119, 3995-4005.	1.1	14
75	Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. Journal of the Acoustical Society of America, 2006, 120, 2841-2849.	1.1	70
76	The influence of subglottal acoustics on laboratory models of phonation. Journal of the Acoustical Society of America, 2006, 120, 1558-1569.	1.1	124
77	Mechanisms of irregular vibration in a physical model of the vocal folds. Journal of the Acoustical Society of America, 2006, 120, EL36-EL42.	1.1	26
78	A vocal-tract model of American English /l/. Journal of the Acoustical Society of America, 2004, 115, 1274-1280.	1.1	28
79	Sound generation by steady flow through glottis-shaped orifices. Journal of the Acoustical Society of America, 2004, 116, 1720-1728.	1.1	40
80	Broadband sound generation by confined turbulent jets. Journal of the Acoustical Society of America, 2002, 112, 677-689.	1.1	22
81	Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes, lournal of the Acoustical Society of America, 2002, 112, 1652-1663.	1.1	75